85 research outputs found

    Human Elastase 1: Evidence for Expression in the Skin and the Identification of a Frequent Frameshift Polymorphism

    Get PDF
    Human pancreatic elastase 1 is a serine protease which maps to the chromosomal region 12q13 close to a locus for an autosomal dominant skin disease, diffuse nonepidermolytic palmoplantar keratoderma, and was investigated as a possible candidate gene for this disorder. Expression of two elastase inhibitors, elafin and SLPI, has been related to several hyperproliferative skin conditions. elastase 1 is functionally silent in the human pancreas but elastase 1 expression at the mRNA level was detected in human cultured primary keratinocytes. Antibody staining localized the protein to the basal cell layer of the human epidermis at a number of sites including the palmoplanta. Sequencing of genomic DNA from individuals with/without the keratoderma revealed a sequence variant, which would result in a premature truncation of the protein. This sequence variant, however, did not segregate with the skin disease and, indeed, was found to occur at a relatively high frequency in the population. Individuals homozygous for the variant do not have any obvious skin abnormalities. Based on the analysis of the secondary structure of the translated putative protein, the truncation is unlikely to result in knock-out of the elastase, but may cause destabilization of the enzyme–inhibitor complex

    Intermediate filament–membrane attachments function synergistically with actin-dependent contacts to regulate intercellular adhesive strength

    Get PDF
    By tethering intermediate filaments (IFs) to sites of intercellular adhesion, desmosomes facilitate formation of a supercellular scaffold that imparts mechanical strength to a tissue. However, the role IF–membrane attachments play in strengthening adhesion has not been directly examined. To address this question, we generated Tet-On A431 cells inducibly expressing a desmoplakin (DP) mutant lacking the rod and IF-binding domains (DPNTP). DPNTP localized to the plasma membrane and led to dissociation of IFs from the junctional plaque, without altering total or cell surface distribution of adherens junction or desmosomal proteins. However, a specific decrease in the detergent-insoluble pool of desmoglein suggested a reduced association with the IF cytoskeleton. DPNTP-expressing cell aggregates in suspension or substrate-released cell sheets readily dissociated when subjected to mechanical stress whereas controls remained largely intact. Dissociation occurred without lactate dehydrogenase release, suggesting that loss of tissue integrity was due to reduced adhesion rather than increased cytolysis. JD-1 cells from a patient with a DP COOH-terminal truncation were also more weakly adherent compared with normal keratinocytes. When used in combination with DPNTP, latrunculin A, which disassembles actin filaments and disrupts adherens junctions, led to dissociation up to an order of magnitude greater than either treatment alone. These data provide direct in vitro evidence that IF–membrane attachments regulate adhesive strength and suggest furthermore that actin- and IF-based junctions act synergistically to strengthen adhesion

    p63 Mediates an Apoptotic Response to Pharmacological and Disease-Related ER Stress in the Developing Epidermis

    Get PDF
    SummaryEndoplasmic reticulum (ER) stress triggers tissue-specific responses that culminate in either cellular adaptation or apoptosis, but the genetic networks distinguishing these responses are not well understood. Here we demonstrate that ER stress induced in the developing zebrafish causes rapid apoptosis in the brain, spinal cord, tail epidermis, lens, and epiphysis. Focusing on the tail epidermis, we uncover an apoptotic response that depends on Puma, but not on p53 or Chop. puma is transcriptionally activated during this ER stress response in a p53-independent manner, and is an essential mediator of epidermal apoptosis. We demonstrate that the p63 transcription factor is upregulated to initiate this apoptotic pathway and directly activates puma transcription in response to ER stress. We also show that a mutation of human Connexin 31, which causes erythrokeratoderma variabilis, induces ER stress and p63-dependent epidermal apoptosis in the zebrafish embryo, thus implicating this pathway in the pathogenesis of inherited disease

    EKV mutant connexin 31 associated cell death is mediated by ER stress

    Get PDF
    The epidermis expresses a number of connexin (Cx) proteins that are implicated in gap junction-mediated cell communication. Distinct dominantly inherited mutations in Cx31 cause the skin disease erythrokeratoderma variabilis (EKV) and hearing loss with or without neuropathy. Functional studies reveal tissue-specific effects of these Cx31 disease-associated mutations. The Cx31 mutants (R42P)Cx31, (C86S)Cx31 and (G12D)Cx31 are associated with EKV and the mutant (66delD)Cx31 with peripheral neuropathy and hearing loss, however the mechanisms of pathogenesis remain to be elucidated. Expression of (R42P)Cx31, (C86S)Cx31 and (G12D)Cx31 in vitro, but not (WT)Cx31 or (66delD)Cx31, cause elevated levels of cell-type specific cell death. Previous studies suggest that Cx-associated cell death may be related to abnormal ‘leaky’ hemichannels but we produced direct evidence against that being the major mechanism. Additionally, our immunocytochemistry showed upregulation of components of the unfolded protein response (UPR) in cells expressing the EKV-associated Cx31 mutants but not (WT)Cx31 or (66delD)Cx31. We conclude that the endoplasmic reticulum (ER) stress leading to the UPR is the main mechanism of mutant Cx31-associated cell death. These results indicate that, in vivo, ER stress may lead to abnormal keratinocyte differentiation and hyperproliferation in EKV patient skin

    Biallelic mutations in <i>KDSR </i>disrupt ceramide synthesis and result in a spectrum of keratinization disorders associated with thrombocytopenia

    Get PDF
    Mutations in ceramide biosynthesis pathways have been implicated in a few Mendelian disorders of keratinization, although ceramides are known to have key roles in several biological processes in skin and other tissues. Using whole-exome sequencing in four probands with undiagnosed skin hyperkeratosis/ichthyosis, we identified compound heterozygosity for mutations in KDSR, encoding an enzyme in the de novo synthesis pathway of ceramides. Two individuals had hyperkeratosis confined to palms, soles, and anogenital skin, whereas the other two had more severe, generalized harlequin ichthyosis-like skin. Thrombocytopenia was present in all patients. The mutations in KDSR were associated with reduced ceramide levels in skin and impaired platelet function. KDSR enzymatic activity was variably reduced in all patients, resulting in defective acylceramide synthesis. Mutations in KDSR have recently been reported in inherited recessive forms of progressive symmetric erythrokeratoderma, but our study shows that biallelic mutations in KDSR are implicated in an extended spectrum of disorders of keratinization in which thrombocytopenia is also part of the phenotype. Mutations in KDSR cause defective ceramide biosynthesis, underscoring the importance of ceramide and sphingosine synthesis pathways in skin and platelet biology

    Mutations in EDA and EDAR Genes in a Large Mexican Hispanic Cohort with Hypohidrotic Ectodermal Dysplasia

    Get PDF
    Ectodermal dysplasias (ED) encompass nearly 200 different genetic conditions identified by the lack, or dysgenesis, of at least two ectodermal derivatives, such as hair, nails, teeth, and sweat glands. Hypohidrotic/anhidrotic ED (HED) is the most frequent form of ED and it can be inherited as an X-linked (XL)-HED (MIM 305100), autosomal recessive (AR)-HED (MIM 224900), or autosomal dominant (AD)-HED (MIM 229490) condition. HED is caused by mutations in any of the three ectodisplasin pathway genes: ectodisplasin (EDA), which encodes a ligand for the second gene, the EDA receptor (ectodysplasin A-receptor, EDAR), and EDARADD, an intracellular signaling for this pathway. HED is characterized by a triad of clinical features including absent or diminished eccrine sweat glands, missing and/or malformed teeth, and thin, sparse hair. It also includes dryness of the skin, eyes, airways, and mucous membranes, as well as other ectodermal defects and, in some cases, fever, seizures, and rarely, death. XL-HED is caused by mutations in the EDA gene, located on chromosome Xq12-q13.1, which encodes a signaling molecule of the tumor necrosis factor (TNF) superfamily. AR- and AD-HED are caused by mutations in the EDAR gene, located on chromosome 2q11.q13 or the EDARAssociated Death Domain encoding gene, EDARADD, located on chromosome 1q42-q431. Several mutations in the EDA, EDAR, and EDARADD genes have been described as causing HED in different populations. The XL-HED form is the most common and is responsible for 90% of all HED cases2-6. The three forms of HED are clinically indistinguishable. To date, a comprehensive evaluation of HED in the Mexican Hispanic population has not been undertaken. In the present study, we aimed to characterize the mutations in EDA, EDAR, and EDARADD genes present in Mexican Hispanic patients with HED. Male and female patients (35 families) from different geographical regions of Mexico with features suggestive of HED were enrolled in the study (Fig. 1). Index cases and their parents were screened for missing or malformed teeth, thin or sparse hair, and nail changes; all subjects answered questions about sweating, heat intolerance, fever, seizures, and family history of siblings deceased due to unknown feve
    corecore