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SUMMARY

Endoplasmic reticulum (ER) stress triggers tissue-
specific responses that culminate in either cellular
adaptation or apoptosis, but the genetic networks
distinguishing these responses are not well under-
stood. Here we demonstrate that ER stress induced
in the developing zebrafish causes rapid apoptosis
in the brain, spinal cord, tail epidermis, lens, and
epiphysis. Focusing on the tail epidermis, we un-
cover an apoptotic response that depends on
Puma, but not on p53 or Chop. puma is transcription-
ally activated during this ER stress response in a p53-
independent manner, and is an essential mediator of
epidermal apoptosis. We demonstrate that the p63
transcription factor is upregulated to initiate this
apoptotic pathway and directly activates puma tran-
scription in response to ER stress. We also show
that a mutation of human Connexin 31, which causes
erythrokeratoderma variabilis, induces ER stress and
p63-dependent epidermal apoptosis in the zebrafish
embryo, thus implicating this pathway in the patho-
genesis of inherited disease.

INTRODUCTION

In all eukaryotic cells, the endoplasmic reticulum (ER) serves the

critical cellular functions of protein translation, calcium storage,

and folding and processing of membrane and secreted proteins

(Rao et al., 2004). When the load of proteins to be folded in the

ER exceeds the capacity of cellular chaperones to aid in the

folding process, a response known as the ER stress pathway,

or unfolded protein response (UPR; reviewed in Malhotra and

Kaufman, 2007; Ron andWalter, 2007), is triggered. Shortly after

the onset of ER stress, cells activate three proximal pathways,

mediated by IRE1, ATF6, and PERK, to upregulate the trans-

cription and translation of ER chaperones, amino acid biosyn-

thesis enzymes, and the endoplasmic reticulum-associated

degradation (ERAD) proteins. Successful engagement of these
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pathways can lower the unfolded protein load and return the

cell to homeostasis. However, severe or prolonged stress can

lead to an apoptotic response (Fribley et al., 2009), and the

cellular outcome is central to a variety of human diseases in-

cluding cancer, inherited skin disorders, diabetes, and neurode-

generative disorders (Lin et al., 2008; Tattersall et al., 2009). The

tissue-specific decisions responsible for apoptotic outcomes in

diseased and normal cells are still poorly understood, warranting

further research into how distinct vertebrate tissues integrate

molecular signaling downstream of the proximal ER stress

pathways to determine whether cells initiate programmed cell

death or overcome the stress response and survive.

While the decisive events that induce cellular apoptosis after

ER stress are not fully understood, the signaling pathways that

sense and respond to ER stress have been extensively studied.

Seminal work to elucidate these proximal ER stress pathways in

yeast led to the discovery that the trans-ER membrane-bound

IRE1 (inositol requiring enzyme-1) protein contains both kinase

and endoribonuclease activities, which are triggered after stress

in the ER (Cox et al., 1993; Mori et al., 1993). When the load

of unfolded proteins in the ER lumen becomes excessive, the

protein-folding chaperone BiP (Hspa5) detaches from IRE1

(Bertolotti et al., 2000; Okamura et al., 2000), resulting in trans-

autophosphorylation of the IRE1 homodimer, which activates

the endoribonuclease activity of IRE1 and the subsequent

unconventional splicing of HAC1 mRNA (Sidrauski and Walter,

1997). This unconventional splicing alters the reading frame for

translation of the HAC1 protein, resulting in the synthesis of

a highly active transcription factor that can activate a wide array

of downstream target genes, including those encoding protein

chaperones and others encoding the ERAD components

(Kopito, 1997; Travers et al., 2000). This work established the

IRE1-HAC1 pathway as the most ancient and most conserved

proximal ER stress pathway in eukaryotes.

Two additional ER stress pathways have been delineated

in multicellular organisms (Ron and Walter, 2007). The ATF6

protein, a trans-ER membrane molecule, is directed to the

Golgi apparatus upon activation via BiP uncoupling, where it

undergoes cleavage by Site-1 and Site-2 proteases to become

an active transcription factor (Haze et al., 1999). Like XBP1 (the

target of mammalian IRE1), ATF6 can activate the transcription

of a myriad of recovery genes to allow the stressed cell to repair
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its ER burden and survive. It also induces the transcription of

XBP1, providing a cross-talk mechanism between the ATF6-

and IRE1-mediated ER stress pathways (Yoshida et al., 2001).

The third ER stress pathway directly triggers global translational

attenuation to lessen the rate of unfolded proteins accumulating

in the ER. When released by BiP, the trans-ER protein PKR-like

endoplasmic reticulum kinase (PERK), directly phosphorylates

eukaryotic translation initiation factor 2a (eIF2a) (Harding et al.,

1999). This phosphorylation on serine 51 greatly diminishes the

ability of eIF2a to initiate the cap-dependent translation of

cellular proteins, thus reducing the overall amount of proteins

in the ER. Remarkably, however, mRNA encoding the transcrip-

tion factor ATF4 is preferentially translated due to the presence

of small upstream ORFs (uORFs), resulting in a paradoxical up-

regulation of translation of this gene in response to phosphoryla-

tion of eIF2a (Harding et al., 2000). ATF4 then enters the nucleus

as an active transcription factor that initiates the transcription of

downstream target genes, including the pro-apoptotic transcrip-

tion factor Chop. While no Chop homolog exists in worms,

mammalian Chop contributes to some forms of ER stress-

induced apoptosis and can kill cells when overexpressed (Mat-

sumoto et al., 1996; Maytin et al., 2001; Zinszner et al., 1998).

Although work in yeast, worms, mice, and human cell culture

has provided valuable insights into the proximal mechanisms

that cells and tissues use to cope with ER stress, many of the

downstream molecular events that determine stress-induced

outcomes remain elusive. Here, we take advantage of the rapid

chemical uptake properties of the zebrafish embryo to analyze

the timing and spatial activation of ER stress, together with its

apoptotic consequences, after the whole-animal application of

thapsigargin or brefeldin A, two well-characterized ER stress-

inducing compounds. In developing embryos treated with either

drug, we demonstrate that cells within the lens, epiphysis, and

tail epidermis undergo ER stress-induced apoptosis within 4 hr

in a p53-independent manner. Further, we show that this rapid

apoptotic response requires the BH3-only gene puma. Using

morpholino knockdown, we demonstrate that the transcription

factor p63 is required for puma expression, and further that

p63 directly binds the puma promoter in vivo following an

increase in p63 levels. Finally, we demonstrate that p63 medi-

ates an in vivo apoptotic response to mutant Connexin 31,

a protein produced as a result of a dominantly inherited mutation

in humans that induces an ER stress response in the epidermis of

the skin, contributing to the disease erythrokeratoderma variabi-

lis (EKV).

RESULTS

ER Stressors Induce p53-Independent Apoptosis
in the Brain, Spinal Cord, Lens, Epiphysis,
and Tail Epidermis of Early Zebrafish Embryos
To test whether zebrafish undergo ER stress-induced apoptosis

in vivo, we first treated 24 hr postfertilization (hpf) embryos with

thapsigargin, a potent ER calcium pump inhibitor that induces

ER stress in mammalian cells (Pahl and Baeuerle, 1995). This

treatment interval was chosen because most major develop-

mental patterning is complete at this stage, allowing the assess-

ment of tissue-specific cell death (Pyati et al., 2007). After 4 hr of

continuous treatment with thapsigargin, we observed focal
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increases in apoptotic cell death as assayed by whole-mount

TUNEL staining (Figures 1A–1F) (Jette et al., 2008). Increased

TUNEL positivity was evident in the brain, spinal cord, lenses

of the eyes, epiphysis (which ultimately forms the pineal gland),

and tail epidermis (Figure 1). TUNEL staining was most pro-

nounced in the latter three tissues, with less positivity in the brain

and spinal cord. These data show that specific tissues within

developing embryos are sensitive to thapsigargin-induced ER

stress and rapidly undergo apoptosis.

In mammals, ER stress-induced apoptosis can be triggered

in either a p53-dependent or -independent manner, depending

on the context (Galehdar et al., 2010; Puthalakath et al., 2007;

Reimertz et al., 2003). To test whether p53 is required for ER

stress-induced apoptosis in the zebrafish, we treated embryos

that carry a homozygous inactivating mutation within the DNA-

binding domain of p53 (p53e7/e7; Berghmans et al., 2005;

Sidi et al., 2008) with thapsigargin. As in wild-type embryos,

we observed a marked increase in apoptotic cells by TUNEL

staining (Figures 1G–1L) in p53 mutants. To confirm that the

observed tissue-specific apoptosis was due to ER stress, we

treated embryos with brefeldin A, which disrupts ER to Golgi

trafficking of membrane and secreted proteins (Samali et al.,

2010). Similar to thapsigargin, brefeldin A triggered a p53-inde-

pendent apoptotic response that was most prominent in the

lens, epiphysis, and tail epidermis after 4 hr of treatment (Figures

1M–1R). Since thapsigargin treatment caused a more robust cell

death response than did brefeldin A after 4 hr (compare Figures

1J–1L and 1P–1R), we chose to use thapsigargin for most

subsequent experiments, reserving brefeldin A to confirm key

results. Taken together, these data show that ER stress-

inducing drugs trigger apoptosis in zebrafish embryos indepen-

dently of p53.

To determine the spatial extent of ER stress induced by thap-

sigargin, we examined expression of the ER stress recovery

gene bip by whole-mount in situ hybridization (Figures 1S–1V).

Similar to reports for mammalian cells, we observed a robust

posttreatment increase of bip that was especially prominent in

the tail epidermis, lens, and epiphysis, where we had observed

apoptosis in our whole-mount TUNEL assays. Interestingly, we

also observed increased bip expression in many parts of the

head as well as in the hatching gland, where we saw lower levels

of apoptosis. Similar staining was observed following brefeldin A

treatment, confirming the selective sensitivity of distinct embry-

onic tissues to ER stressors (Figure S1 available online). Since

the most robust apoptotic response to ER stress occurred in

the tail epidermis (Figures 1F, 1L, and 1R), we cryosectioned

thapsigargin-treated embryos followed by TUNEL staining, to

determine the precise tissue layer(s) that underwent cell death

in this region. As shown in Figures 1W–E1, the primary location

of apoptotic cells in the tails of both AB and p53mutant embryos

was the epidermal cell layer (marked by arrowheads). Thus, ER

stress triggers rapid apoptosis in the developing tail that is

primarily localized to the epidermis, which later becomes the

skin of the zebrafish.

ER Stress Activates Proximal UPR Pathways within 1 Hr
in Zebrafish Embryos
To asses the kinetics of ER stress-induced apoptosis in zebra-

fish embryos, we examined thapsigargin-treated embryos by
tal Cell 21, 492–505, September 13, 2011 ª2011 Elsevier Inc. 493



Figure 1. ER Stressors Trigger bip Upregulation and Apoptosis in the Lens, Epiphysis, and Tail Epidermis of 24 Hpf Zebrafish Embryos

Embryos (24 hpf) from an AB incross or a stage-matched p53 homozygous mutant incross were treated with a DMSO vehicle or 5 mM thapsigargin for 4 hr, fixed,

and assayed for apoptosis by TUNEL labeling.

(A–C) Scattered cells in AB DMSO-treated control embryos (n = 29) showed TUNEL positivity.

(D–F) Thapsigargin-treated AB embryos had increased TUNEL positivity that was concentrated in the epiphysis, lens, and tail (93% of embryos with increased

apoptosis, n = 30).

(G–I) p53 homozygous mutant embryos treated with DMSO (n = 31) showed comparable levels of TUNEL positivity to AB DMSO-treated embryos.

(J–E1) p53 homozygous mutant embryos treated with thapsigargin showed increased apoptosis in the same regions as in AB embryos (100% of embryos with

increased apoptosis, n = 31). Like thapsigargin treatment, Brefeldin A treatment (5 ug/ml) caused increased apoptosis in the lens, epiphysis, and tail (P–R)

compared to vehicle-treated controls (M–O) (see also Figure S1). Compared to DMSO-treated controls (S and U), bip expression was upregulated in embryos

treated for 3 hr with thapsigargin (T and V). In cryosections, DMSO controls (W–Y) hadminimal apoptosis, while thapsigargin treatment of both AB embryos (Z–B1)

and p53 mutant embryos (C1–E1) caused extensive enriched apoptosis in the tail epidermis (white arrowheads).

In (A)–(R), zoomed images of head and tail are shown at the right of corresponding whole-embryo images. Asterisks indicate epiphysis, arrowheads the lens, and

arrows the tail in thapsigargin-treated embryos.
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TUNEL staining every hour for 4 hr. By 2 hr, we observed an

increase in cell death, mainly in the tail, followed by a gradual

increase in dying cells within the tail, lens, and epiphysis, until

peak levels were reached at 4 hr posttreatment (Figures 2A–2D).

In mammalian cells, ER stressors activate proximal ER stress

pathways through three major trans-ER membrane proteins:

IRE1, ATF6, and PERK (Malhotra and Kaufman, 2007; Ron and

Walter, 2007). In the zebrafish embryo, we interrogated the

kinetics of the Ire-1 and Perk pathways, measuring over time

the endogenous ER-membrane associated ‘‘unconventional’’

splicing of xbp-1 (as a direct readout of IRE1 activation; Calfon

et al., 2002) and the phosphorylation of eIF2a (as a direct
494 Developmental Cell 21, 492–505, September 13, 2011 ª2011 Els
readout of PERK activation; Harding et al., 1999), using cell

lysates prepared from pooled thapsigargin-treated embryos.

Analysis of xbp-1 splicing indicated that the Ire-1 pathway was

activated after only 45 min of thapsigargin treatment (Figure 2E)

and was sustained over 4 hr. Measurements of endogenous

levels of phosphorylated eIF2a indicated that Perk was acti-

vated after 1 hr of treatment and was continuously activated

for 4 hr (Figure 2F). Thus, thapsigargin-treated zebrafish em-

bryos rapidly activate proximal ER stress pathways, as indicated

by the prompt induction of xbp-1 splicing by Ire-1 at 45 min

posttreatment and by phosphorylation of eIF2a after an addi-

tional 15 min.
evier Inc.



Figure 2. Thapsigargin Treatment Rapidly Activates Conserved Vertebrate ER Stress Pathways to Induce Apoptosis

(A–D) TUNEL staining was performed in fixed embryos after (A) 4 hr of DMSO treatment or after (B) 1 hr, (C) 2 hr, or (D) 4 hr of thapsigargin treatment. (C) Increased

apoptosis was first apparent in the tail by 2 hr of thapsigargin treatment, but robust apoptosis in the lens, epiphysis, and tail was evident only after (D) 4 hr of

thapsigargin treatment compared to DMSO controls at the same stage. All images are representative of embryos examined at each time point (n = 10 in all

treatments except D, where n = 9).

(E) By RT-PCR, xbp-1 splicing in the Ire-1 pathway was first apparent after 45 min of thapsigargin treatment, and was maintained over 4 hr. Note the lower band

present from 45 min on, which corresponds to the nonconventional splice-form downstream of Ire-1 activation.

(F) Antiphospho eIF2a immunoblots showed that eIF2a was robustly phosphorylated in the Perk pathway from 1 hr through the end of the thapsigargin

time-course. Total eIF2a was immunoblotted as a loading control after stripping of the original blot.
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Figure 3. Zebrafish Chop Is Dispensable for Rapid ER Stress-Induced Apoptosis, but Is Required for 24 Hr Apoptosis in the Caudal Fin Fold

(A) Alignment of zebrafish Chop with human and mouse orthologs. Consensus sequence is listed below the aligned sequences.

(B–D) DMSO-treated embryos have minimal chop expression, while embryos treated with thapsigargin for 3 hr (C) have high levels of chop expression in the tail

(brackets), including the tail epidermis (black arrowhead). Expression was also observed in the dorsal trunk epidermis (open arrowhead in C).

(E) An anterior view reveals additional chop expression in the epiphysis region (dashed white box) and the lens (black arrowhead). Images in (B)–(E) represent

100% of embryos examined; n R 14 embryos per condition.

(F) Agarose gel (1%) showing alternate splice product generated 28 hr after chopmorpholino (MO) injection compared to uninjected controls (Ctrl.); both groups

of embryos were treated with thapsigargin at 24 hpf.

(G) Depiction of splice-blocking event in chop morphant mRNA compared to wild-type, as determined by sequencing.

(H) chopmorpholino (5 ng) was injected into p53 homozygous mutant embryos, which were then grown to 24 hpf, treated with thapsigargin for 4 hr, and assayed

for cell death by AO staining. Cropped photos were quantitated for total fluorescence intensity with Volocity software, and values were normalized to controls.

(I) chopmorpholino-injected embryos were grown to 24 hpf, treated with thapsigargin for 4 hr, washed into egg medium, left for 24 hr, and then stained with AO

and assayed as in (H). All data are represented as means ± SEM.
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Chop Is Dispensable for the Rapid ER Stress-Induced
Apoptotic Pathway but Is Essential for Late ER
Stress-Induced Apoptosis
In mammalian systems, the pro-apoptotic transcription factor

Chop is necessary to elicit peak levels of cell death following

ER stress induction in some contexts (Zinszner et al., 1998).

We thus sought to determine whether the zebrafish genome

harbors a chop ortholog and whether Chop plays a critical pro-

apoptotic role in the zebrafish epidermis as in some mammalian

tissues. By performing a BLAST search in the Ensembl genome

server using the human CHOP sequence, we identified a single

highly similar sequence located on chromosome 5 of the zebra-

fish genome. This putative ortholog showed a close syntenic

relationship to mouse and human CHOP, with coding regions

for similar genes in direct proximity (www.ensembl.org). Based

on our cloned and verified cDNA fragment for the full-length to

Chop coding region, the predicted zebrafish Chop protein,

although divergent in length from human and mouse isoforms,

shares particularly high sequence identity in the C-terminal

DNA-binding domain (brackets in Figure 3A). Thus, we conclude
496 Developmental Cell 21, 492–505, September 13, 2011 ª2011 Els
that the zebrafish genome contains a single zebrafish chop or-

tholog that encodes a protein with a highly conserved DNA

binding-domain sequence.

Next, we wished to determine whether zebrafish chop, like

human CHOP, is transcriptionally activated following ER stress.

In 24-hpf embryos treated with thapsigargin for 3 hr, we

observed robust induction of this pro-apoptotic factor at the

end of treatment (Figure 3B–3E). Similar to bip (Figure 1), the

expression of chop was tissue-restricted and enriched in

the tail (brackets in Figure 3C), lens (black arrowhead in Fig-

ure 3E), and epiphysis region (box in Figure 3E).Chop expression

was also induced in the dorsal epidermis (white arrowhead in

Figure 3C), where we had observed minimal apoptosis in our

TUNEL assays (Figure 1). Importantly, brefeldin A triggered

chop expression in similar tissues and with similar kinetics

(Figure S1), confirming that zebrafish chop is generally ER

stress-responsive and not solely responsive to thapsigargin.

To test whether zebrafish Chop is required in vivo for the ER

stress-induced apoptotic pathway in tail epidermis, we injected

a chop-specific splice-blocking morpholino (Robu et al., 2007)
evier Inc.
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into p53 homozygous mutant embryos (to eliminate any nonspe-

cific morpholino toxicity that could confound our results (Figures

3F and 3G). Next, to quantify the level of apoptosis induction, we

treated morpholino-injected embryos with thapsigargin for 4 hr

starting at 24 hpf and performed AO staining in live embryos to

mark dead and dying cells. Remarkably, despite nearly complete

knockdown of Chop (Figure 3F), we still observed marked ER

stress-induced cell death after 4 hr of thapsigargin treatment

(Figure 3H), indicating that this apoptotic pathway was rapidly

triggered independently of both Chop and p53.

Multiple studies in mammalian cell culture have shown that

Chop deficiency attenuates ER stress-induced apoptosis over

a prolonged period (Puthalakath et al., 2007; Zinszner et al.,

1998). Thus, we asked whether a delayed ER stress-induced

cell death response occurs that is distinct from the rapid

apoptotic response shown in Figure 1, and whether it depends

on Chop. We injected either a control morpholino or the chop

morpholino into p53 mutant embryos, treated 24 hpf embryos

with thapsigargin for 4 hr, and then washed out the drug and

assayed for cell death by AO staining 24 hr later. Since AO stain-

ing provides a transient image of dying cells during development

(Abrams et al., 1993), we reasoned that this vital dye would mark

only cells that were dying or had died within 24 hr posttreatment.

Indeed, control morphants displayed cell death at 24 hr post-

treatment that was distinct from the cell death we observed in

the 4 hr apoptotic assay (Figure 3I). This cell death was enriched

in the caudal fin fold (white arrowheads in Figure 3I), in cells that

normally develop into the tail fins (Webb and Kimelman, 2005),

with significantly decreased cell death in the lateral region of

the tail. In contrast to control morpholino-injected embryos,

chopmorpholino-injected embryos showed very few dying cells

in the tail at this stage (Figure 3I). These data are consistent with

the expression pattern of chop in the caudal fin fold epidermis

following ER stress (black arrowhead in Figure 3C), suggesting

that developing caudal fin cells die at 24 hr posttreatment in

a Chop-dependent manner that does not require p53. Impor-

tantly, we could block all ER stress-induced cell death by over-

expression of mRNA encoding Bcl-2 (Figure S2), confirming

that intrinsic mitochondrial apoptosis is induced by ER stress

in this system. We conclude that zebrafish embryos activate

both a rapid Chop-independent apoptotic pathway within 4 hr

of ER stress induction, and a separate Chop-dependent

apoptotic pathway 24 hr later. Interestingly, 5-dpf thymocytes

were also sensitive to ER stress, indicating that these pathways

can still be triggered beyond early development (Figure S3).

puma Is Transcriptionally Activated Following ER Stress
and Is Necessary for Rapid Epidermal Apoptosis
To discover which genes are transcriptionally activated and

critical for the Chop-independent cell death program, we per-

formed cDNA microarray analysis using dissected tails from

pooled thapsigargin-treated embryos in both the AB and p53

mutant backgrounds. By using dissected tail tissue only, we

reasoned that we could decrease the influence of developmental

gene expression elsewhere in the organism and maximize the

fold induction of ER stress-responsive genes in the tail

epidermis. Among the list of the 50most upregulated genes after

thapsigargin treatment, therewere numerous knownmammalian

ER stress-induced genes, including igfbp1a, junb, dusp2, atf3,
Developmen
fos, and dnajc3. These results indicate that thapsigargin induces

a rapid ER stress response in the zebrafish epidermis similar

to that in mammals. Interestingly, when we analyzed the 50

most highly ER stress-activated genes, we discovered that the

pro-apoptotic BH3-only gene puma was among this group (Fig-

ure 4A), showing an�6-fold upregulation in thapsigargin-treated

tails compared to DMSO controls. Since Bcl-2 overexpression

could block the early apoptotic pathway (Figure S2), we consid-

ered puma to be a strong candidate for the pro-apoptotic

BH3-only gene that was activated to kill tail epidermal cells.

Indeed in thapsigargin-treated embryos, puma was induced in

many parts of the brain as well as the lens, epiphysis, and tail,

where rapid ER stress-induced apoptosis was most robust

(Figures 4B and 4C). Furthermore, as observed in the microar-

rays, the transcriptional activation of puma was p53-indepen-

dent (Figures 4D and 4E), supporting a role for this factor in ER

stress-induced apoptosis. Importantly, we observed a similar

increase in puma transcription following brefeldin A treatment,

supporting the hypothesis that puma activation is part of the

general response to ER stress induction, and not specific to

thapsigargin treatment (Figure S3).

To determine whether Puma is critical for epidermal ER stress-

induced apoptosis in vivo, we injected a puma splice-blocking

morpholino (Sidi et al., 2008) into p53 mutant embryos and

treated the embryos with thapsigargin for 4 hr (Figures 4F and

4G). puma knockdown strongly blocked the 4 hr apoptotic

response in the lateral tail epidermis (Figure 4F), showing that

puma transcriptional induction is the apoptotic ‘‘trigger’’ down-

stream of ER stress. This result was confirmed with brefeldin A

(Figure S3), indicating that puma is required for the apoptotic

response to multiple ER stressors. Despite its requirement for

the 4 hr Chop-independent apoptotic response, Puma was not

required for the 24 hr Chop-dependent apoptotic response (Fig-

ure 4G), further demarcating these two pathways. Thus, ER

stress activates puma expression within 3 hr in the tail epidermis

in a Chop and p53-independent manner, while upregulation of

puma is critical for the subsequent 4 hr apoptotic response

in vivo.

p63 Is Required for theActivation of puma andApoptotic
Death that Occurs 4 Hr after ER Stress in the Epidermis
Because p63 and p73 partially overlapwith p53 in their transcrip-

tional targets (Harms et al., 2004), we could not be certain about

the stringency of the requirement for p63 in puma activation.

Thus, using published morpholinos against both p63 (Sidi

et al., 2008) and p73 (Rentzsch et al., 2003) (Figure S4). We

compared the effects of these knockdowns on puma expression

in homozygous p53 mutant fish after induction of ER stress. As

shown in Figure 5, p63 knockdown, but not p73 knockdown,

markedly reduced puma activation after 3 hr of thapsigargin

treatment in the lens, epiphysis, and tail epidermis (Figure 5B)

compared with findings in controls (Figure 5A) or p73morphants

(Figure 5C). This reduction was especially pronounced in the tail

epidermis, where puma expression was nearly absent in p63

morphants.

The above results suggest that knockdown of p63 would

likely, given the importance of Puma in this response, block ER

stress-induced apoptosis in the epidermis. To test this predic-

tion, we treated p63 and control morpholino-injected p53
tal Cell 21, 492–505, September 13, 2011 ª2011 Elsevier Inc. 497



Figure 4. puma Expression Is Increased in a p53-Independent Manner Following Thapsigargin Treatment

(A) Microarray analysis of dissected tail tissue revealed increased puma expression following thapsigargin treatment in both AB and p53 mutant embryos.

(B–E) Compared to DMSO-treated controls (B), thapsigargin-treated embryos (C) had increased puma expression in the tail (arrow), epiphysis (asterisk), and lens

(arrowhead). This increased expression was also observed in thapsigargin-treated p53 mutant embryos (E) compared to DMSO-treated controls (D).

(F and G) Knockdown of puma attenuated 4 hr ER stress-induced apoptosis, but not (G) 28 hr ER stress-induced apoptosis. See also Figure S2 and Figure S3.
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mutant embryos with thapsigargin at 24 hpf and performed AO

staining 4 hr later. Since p63 and p73 loss-of-function have

been reported to increase apoptosis that is unrelated to ER

stress (Pietsch et al., 2008), we also examined DMSO control

embryos for each of thesemorpholino injections. p63morphants

treated with thapsigargin had markedly decreased AO fluores-

cence compared to controls treated in the same manner (Fig-

ure 5D). Both thapsigargin-treated and DMSO-treated p63mor-

phants showed weak AO positivity in the outer fin epidermis at

this stage (white arrowheads in Figure 5D), supporting previously

described roles for p63 in fin development (Bakkers et al., 2002;

Lee and Kimelman, 2002). However, neither of these conditions

with p63 knockdown displayed the robust AO positivity of

control morphants treated with thapsigargin, particularly in the

lateral epidermis of the tail (black arrowhead in Figure 5D).

Repeated AO staining after brefeldin A treatment yielded similar

results (Figure S5), confirming the involvement of p63 in epi-

dermal apoptosis induced by ER stress. By contrast, p63

knockdown did not block the late Chop-dependent apoptotic

pathway (Figure 5E) while p73 knockdown failed to block either

the early or late apoptotic response (Figures 5F and 5G). Impor-

tantly, we observed similar results in AB embryos (Figure S5),

showing that p63 is not simply redundant with p53 in this

apoptotic response, but, rather acts independently of p53 to

induce apoptosis in epidermal cells following ER stress.

To confirm our p63 knockdown results with a second apo-

ptotic assay, we performed dual immunofluorescence for acti-

vated Caspase-3 to mark apoptotic cells (in green) and for p63

(in red) to indicate the extent of p63 protein deficiency (Figures

5H–5K). Compared to the standard control morpholino, the p63

splice-blocking morpholino effectively reduced p63 protein
498 Developmental Cell 21, 492–505, September 13, 2011 ª2011 Els
levels and eliminated Caspase-3 activation in the lateral epi-

dermis of thapsigargin-treated embryos, confirming that p63 is

required for Caspase-3 activation following ER stress.

Unlike mammals, which have six different isoforms of p63

(Yang et al., 1998), the only isoform of p63 thus far detected in

zebrafish is DNp63a (Bakkers et al., 2002; Lee and Kimelman,

2002). Nonetheless, since our p63 splice-blocking morpholino

could affect all potential isoforms of p63 (Sidi et al., 2008), we

repeated our apoptosis assay using a second morpholino

designed to block only the translation of DNp63. As shown in

Figure 5J, the DNp63-specific morpholino blocked 4 hr apo-

ptosis similar to the pan-p63 morpholino, showing that the pro-

apoptotic effects of p63 are elicited through DNp63.

Finally, to determine the spatial distribution of p63 in the tail

epidermis relative to the dying cells observed in the 4 hr

apoptotic response, we performed dual confocal immunofluo-

rescence using the p63 antibody together with the activated-

Caspase-3 antibody. By examining single optical sections

obtained from confocal microscopy, we analyzed clusters of

p63-positive cells within the tail epidermis of 28-hpf embryos

(schematized by red region in Figure 5L). While DMSO-treated

embryos showed minimal activation of Caspase-3 (Figure 5M),

embryos treated with thapsigargin for 4 hr showed clear

Caspase-3 activation in the tail epidermis (Figure 5N). In other

systems, the activated form of Caspase-3 has been shown to

translocate from the cytoplasm to the nucleus during apoptosis

(Kamada et al., 2005); accordingly, we observed activated

Caspase-3 staining that partially overlapped with p63-positive

nuclear staining in �50% of cells within the tail epidermis (see

arrowheads in Figure 5N), indicating that apoptosis was occur-

ring in p63-expressing cells. Together, these data show that in
evier Inc.



Figure 5. p63, but Not p73, Is Required for ER Stress-Induced puma Expression and 4 Hr Apoptosis

(A and B) Compared to thapsigargin-treated control morphants (100% with high puma expression, n = 16) thapsigargin-treated p63 morphants had reduced

puma expression in the epiphysis, lens, and tail (78% with reduced expression, n = 18).

(C) Thapsigargin-treated p73 morphants had similar puma expression (94%, n = 18) compared to control morphants. Asterisk, epiphysis; dashed box, lens.

(D and E) p63 and control morphants were assayed for apoptosis by AO staining at 4 hr after thapsigargin or DMSO treatment, or (E) washed out and assayed by

AO staining 24 hr later. See also Figure S4 and Figure S5. In (D), note the weak AO staining in the outer fin epidermis (white arrowheads) of p63 morphants,

regardless of thapsigargin treatment, but the nearly complete block of cell death in the lateral epidermis compared to the same region in thapsigargin-treated

control morphants (black arrowhead).

(F and G) p73morphants were processed the same as for p63morphants. p73morpholino injection does not block either (F) 4 hr thapsigargin-induced apoptosis

or (G) 28 hr thapsigargin-induced apoptosis.

(H–J) Embryos were injected with either (H) control morpholino, (I) p63MO1 or (J) p63MO2, then treated with thapsigargin for 4 hr and assayed for p63 expression

(red) and activated Caspase-3 (green) by immunofluorescence microscopy. Note the severe reduction in p63 and Caspase-3 expression in both p63 morphants

(I and J) compared to control morphants (H).

(K) Control embryos treated with DMSO showed extensive p63 expression with minimal Caspase-3 positivity.

(L–N) Confocal analysis of coimmunofluorescence in embryos treated with DMSO (M) or thapsigargin (N) to analyze p63 expression (red) and activated

Caspase-3 (green). Note the extensive colocalization of activated Caspase-3 with p63 in (N), marked with arrowheads. (L) A schematic representation of the

imaged region in (M) and (N). All graphical data are represented as means ± SEM.
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Figure 6. p63 Is Transcriptionally Increased and

Directly Binds the puma Promoter

(A) Western blot to analyze p63 protein levels following 4 hr

of thapsigargin (Th.) treatment, DMSO (DM) treatment,

Brefeldin A (BA) treatment, or Ethanol (EtOH) treatment.

Note the increased levels of p63 following both thapsi-

gargin and brefeldin A treatment relative to their respective

vehicle-only controls. Total Eif2-a antibody was used to

control for loading.

(B) p63 qRT-PCR revealed an increase in p63 transcript

levels following 3 hr of thapsigargin treatment relative to

controls (the sum of three experiments is represented).

(C) Chromatin Immunoprecipitation to determine p63

binding to the puma promoter. Data are representative

of experiments from two sets of biological samples, and

are normalized to the p63 morpholino-injected negative

control sample (p63 MO).
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the tail epidermis, p63 mediates a 4 hr ER stress-induced

apoptotic response via transcriptional activation of puma.

p63 Is Activated by ER Stress and Directly Binds
to the puma Promoter
Given the link between p63 and the apoptotic response of

epithelial cells to ER stress, we sought to elucidate the mecha-

nism(s) underlying p63 activation and its role in the ER stress

response. One major mechanism for p63 activation in other

systems is an increase in protein levels, either through increased

p63 transcription or stabilization of the p63 protein (Antonini

et al., 2006; Rossi et al., 2006a, 2006b). We initially examined

whether p63 protein levels were increased by performing immu-

noblotting for p63 from pooled thapsigargin-treated p53 mutant

embryos compared to DMSO controls. We noted an increase of

p63 protein levels in thapsigargin-treated embryos, indicating

that p63 levels rise in response to ER stress (Figure 6A). To

confirm that this effect was not specific to thapsigargin, we

also compared brefeldin A-treated with ethanol-treated control

lysates, observing an increase in p63 levels after treatment

with brefeldin A (Figure 6A) that was not as robust as for thapsi-

gargin treatment, consistent with the somewhat lower levels of

epidermal apoptosis triggered by this drug. To test whether

p63 was increased transcriptionally, we performed qRT-PCR

on pooled thapsigargin-treated embryos compared to DMSO

controls (Figure 6B). This led to an �2-fold increase in p63 tran-

script levels, consistent with our western blotting results. Thus,

when ER stress activates p63 transcription, the resultant in p63

protein levels likely contributes to the activation of puma and

subsequent apoptosis in the epidermis.
500 Developmental Cell 21, 492–505, September 13, 2011 ª2011 Elsevier Inc.
To determine whether p63 binds directly to

the puma promoter following ER stress to

activate gene transcription, we performed chro-

matin immunoprecipitation (ChIP) from thapsi-

gargin and DMSO-treated control embryos

using an anti-p63 antibody (Figure 5C). The

zebrafish puma locus contains two conserved

p53 response elements in the first intron (www.

ensembl.org), similar to mouse and human

puma (Wu et al., 2005), leading us to ask

whether p63 binds to these response elements
in vivo during thapsigargin-induced ER stress. As a negative

control for this experiment, we used p63 morphant embryos,

which express much lower levels of p63 protein (Figures 5H–

5K). After measuring the fold enrichment in immunoprecipitated

chromatin compared to input chromatin by qPCR and normal-

izing the result to the fold-enrichment in our p63 morphant

sample, we found that p63 constitutively binds Site 1

(GGGCTGG) within the puma first intron (Figure 6C). The fold-

enrichment was higher in DMSO samples than in thapsigargin-

treated samples (�8-fold versus �4-fold), indicating that p63

binding to this site cannot explain the ER-stress induced

increase in puma expression. Importantly, we observed enrich-

ment of the levels of p63 binding to Site 2 (GATGCCC) in the

thapsigargin-treated sample (�2.5-fold), but not in the DMSO

control sample (Figure 5C). Thus, our ChIP results show that

Site 1 in the puma first intron is constitutively bound by p63, while

Site 2 is bound only upon thapsigargin treatment, and thus is

likely involved in the p63-mediated transcriptional upregulation

of puma during the ER stress response.

Connexin 31 Mutants Trigger ER Stress-Induced
Apoptosis through p63
To investigate the clinical relevance of the epidermal p63-ER

stress pathway, we generated a zebrafishmodel of human eryth-

rokeratoderma variabilis (EKV). This hereditary disease of the

skin epidermis, characterized by hyperkeratosis and erythema,

is caused by mutations in the hemichannel protein Connexin

31 (Cx31) (Hunzeker et al., 2008). Recently, the Cx31 mutation

C86S, a dominantly inherited mutation leading to the human

disease, was shown to trigger apoptosis in cultured epidermal

http://www.ensembl.org
http://www.ensembl.org
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cells through defective intracellular trafficking and ER stress,

rather than through impaired hemichannel function (Tattersall

et al., 2009). To determine whether we could model this re-

sponse in vivo in the zebrafish and whether p63 is required for

the apoptotic response, we generated heat-shock inducible

constructs containing human Cx31mutant and wild-type cDNAs

fused to EGFP and flanked by tol2 transposable element sites

(Figure 7A). Since coinjection of tol2 mRNA yields high levels of

plasmid integration and low levels of mosaicism (Kawakami,

2007), we injected the wild-type or C86S mutant Cx31 con-

structs with tol2 into fertilized eggs of homozygous p53 mutant

embryos at the one-cell stage. We then heat-shocked the

embryos at 24 hpf to induce expression of the Cx31-EGFP

coding sequences within each of the two constructs. As shown

in Figures S6A–S6D, heat-shock for 30min triggered nearly ubiq-

uitous expression of the Cx31-EGFP constructs throughout the

embryos within 2 hr. We next assessed the phenotypes resulting

from expression of the Cx31-EGFP constructs, observing a

severe phenotype in (C86S)Cx31-EGFP embryos, characterized

by disruption of the skin epidermis in 85%of the embryos (n = 20)

by 3 hr post heat-shock, suggesting induction of an apoptotic

response. This phenotype resembles the one obtained in vitro

that is thought to contribute to human EKV disease (Tattersall

et al., 2009).

Next, we reduced the level of expression by limiting the time of

heat shock to 10min, and injected specific cells into the embryos

at the 2- to 4-cell stage to produce mosaic expression. This

allowed us to observe the fates of subsets of skin epidermal cells

that expressed the Cx31-EGFP constructs (Figure 7A). To

measure the level of apoptosis induced by (C86S)Cx31-EGFP

expression, we injected this construct or the control (WT)Cx31-

EGFP construct and subjected the embryos to heat shock for

10 min at 24 hpf. Using dual immunofluorescence to detect

EGFP (green) and activated Caspase-3 (red), and phalloidin

(blue) to mark the epidermal cell boundaries (Figures 7B–7E),

we found that �25% of the (C86S)Cx31-EGFP-positive cells

underwent apoptosis, compared to �10% of the (WT)Cx31-

EGFP positive cells (p = 0.0002) (Figure 7F). As shown by a rep-

resentative image in Figure 7E, knockdown of p63 transcripts

blocked the epidermal apoptosis caused by the (C86S)Cx31-

EGFP mutant construct. Quantitatively, that was a nearly

complete loss of the apoptotic cells with each of the p63 MOs

(Figure 7F; p < 0.0001). These results support the role of ER

stress- induced apoptotic cell death in the pathogenesis of

human EKV and indicate that this response occurs through the

p63-mediated, p53-independent apoptotic axis identified in

this study.

DISCUSSION

Wehave shown that ER stress pathways are activated within 1 hr

of thapsigargin treatment in the tail epidermis of 24-hpf zebrafish

embryos. This highly conserved ER stress response triggers 4 hr

apoptosis through direct activation of puma by p63 in the

epidermal cell layer, independently of Chop, p53, and p73.

This pathway is activated by the mutant (CS86)Cx31 protein

in human EKV disease, likely because mutant Cx31 protein acti-

vates the unfolded protein response and induces ER stress in

epidermal cells as in mammals.
Developmen
High Levels of ER Stress in the Developing Epidermis
Trigger Rapid p53-Independent Apoptosis
Development of the mammalian epidermis involves ER stress as

part of the physiological barrier formation process en route to

skin maturation (Celli et al., 2011). Additionally, we and others

have observed that bip and xbp, twomarkers of ER stress induc-

tion, are constitutively expressed in the developing zebrafish

epidermis (data not shown). Based on these findings, we pro-

pose that the epidermis continuously induces low-level ER

stress during early development, owing to the massive amounts

of membrane and secreted proteins that are produced to form

the epidermal basement membrane (Webb et al., 2007). Another

tissue in the developing zebrafish, the hatching gland, also

expresses these ER stress markers, and a previous study

showed that Xbp loss causes massive ER dysfunction indicative

of ER stress (Bennett et al., 2007). We propose that the

epidermis, like the lens, epiphysis, and hatching gland, is highly

sensitized to ER stress induction, and that this tissue undergoes

robust apoptosis after excessive ER stress. Thus, when zebra-

fish embryos are treated at 24 hpf with pharmacological

stressors such as thapsigargin and brefeldin A or genetic

stressors such as (C86S)Cx31-EGFP, the epidermis is quickly

overloaded with ER stress, leading to the death of epidermal

cells via induction of puma by the transcription factor p63.

Furthermore, this activation is independent of p53, which medi-

ates DNA damage-induced apoptosis in the developing zebra-

fish spinal cord (Berghmans et al., 2005; Langheinrich et al.,

2002; Sidi et al., 2008).

Thapsigargin Is a Robust and Rapid Inducer of ER Stress
in the Early Embryo
Our tissue-restricted microarray data allow us to implicate puma

as the critical factor mediating ER stress-induced epidermal

apoptosis. They also underscore the activity of thapsigargin in

inducing a robust ER stress response within 3 hr in the tail

epidermis. Although the calcium-mediated axis-kinking pheno-

type caused by thapsigargin is often severe, a previous study

of the accordion mutant, which has the axis-kinking phenotype,

did not describe any overt apoptosis during development (Hirata

et al., 2004). This mutant lacks the function of a major muscle-

specific calcium ATPase pump, resembling the pharmacological

effects of thapsigargin treatment in the muscle. In addition, our

results were confirmed with a second drug, brefeldin A, that

inhibits transport of proteins from the ER to Golgi through a

mechanism independent of calcium flux. Thus, thapsigargin

and brefeldin A each appear to induce a specific ER stress

response in the epidermis via p63 and puma within the 4 hr

window of our analysis.

p63 Directly Activates puma to Trigger ER
Stress-Induced Epidermal Apoptosis
By knocking down the transcripts encoding the p53 homologs

p63 and p73, we uncovered a role for p63 in the epidermal ER

stress response. After its ER stress-mediated activation, p63

directly binds the promoter of the BH3-only cell death inducer

puma and activates its transcription. Using chromatin immuno-

precipitation from whole zebrafish embryos, we found that p63

binds constitutively to one of its response elements within

puma intron 1. Following ER stress induction, there was
tal Cell 21, 492–505, September 13, 2011 ª2011 Elsevier Inc. 501



Figure 7. p63 Is Required for Apoptosis Induced by a Mutant Connexin 31 Construct Associated with Human EKV Disease

(A) Overview of the Cx31 DNA constructs used in this study.

(B–F) p53mutant embryos were injected with wt or (C86S) mutant Cx31-EGFP constructs, then heat shocked at 24 hpf to induce Cx31-EGFP expression, fixed at

2 hr later, and processed for anti-EGFP (green), anti-activated Caspase-3 (red) and phalloidin staining (blue). See also Figure S6. (B) (wt) Cx31-EGFP caused

minimal apoptosis. (C) (C86S) Cx31-EGFP caused a higher level of epidermal apoptosis than (wt) Cx31-EGFP. (D) Zoomed region from (C). (E) Coinjection of p63
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increased binding of p63 to a second response element within

the same intron, suggesting that this site is responsible for the

marked increase in puma expression after ER stress. Based on

these results and our in situ hybridization data showing that ER

stress-induced puma expression in the epidermis is markedly

diminished after p63 knockdown, we propose that after ER

stress, p63 binds to site 2within the puma first intron and triggers

the expression of this BH3-only gene. Subsequently, cells within

the tail epidermis undergo apoptosis, which can be blocked by

Bcl-2 overexpression.

p63 Is Required for Apoptosis Induced by the Human
Connexin 31 Mutation C86S
The p63-mediated ER stress pathway we have identified

appears to have a role in human disease. The C86S germline

mutation in the GJB3 gene, which encodes the Cx31 protein,

causes a skin disease called EKV, which is characterized by

erythematous patches along with hyperkeratosis. In mammalian

keratinocytes, (C86S) Cx31 but not wild-type Cx31, was recently

shown to induce cell death through ER stress rather than through

disruption of hemichannels at the cell membrane (Tattersall et al.,

2009). In addition to the pharmacological induction of ER stress,

we show that human Cx31-EGFP with a C86S mutation induces

apoptosis in the developing tail epidermis, similar to that

observed after treatment with thapsigargin or brefeldin A. By

using two different p63 morpholinos, we show further that the

(C86S)Cx31-EGFP construct causes apoptosis in a p63-depen-

dent manner. This implicates the p63-dependent apoptotic axis

in the pathogenesis of EKV, where it presumably contributes

to the erythema and hyperproliferation of the skin epidermis

characteristic of this disease.

EXPERIMENTAL PROCEDURES

Thapsigargin Treatment

Thapsigargin (10 mM, Sigma, St. Louis, MO) in DMSO was diluted 1:20 in E3

egg water, and 10 ml was then added to 1 ml of egg water in a single well of

a 12-well tissue culture plate (BD Falcon, Canaan, CT) to make a 5 mM final

concentration. A total of 20–25 embryos, no older than 24 hpf at the start of

the experiment, were placed in each well. For rapid apoptosis induction,

embryos were left for 4 hr in the dark at 28.5�C and processed for either

Acridine Orange staining, TUNEL staining, or anti-activated Caspase-3 immu-

nohistochemistry. For the induction of late apoptosis, embryos were left in

thapsigargin for 4 hr in the dark at 28.5�, washed three times with E3 egg

medium, and replaced at 28.5� for 24 hr. Cell death was then assayed by

AO staining.

Apoptosis Quantitation with Volocity Software

To quantify AO or TUNEL positivity in the tail, we mounted stained embryos

laterally in 0.8% low melting point agarose within 60 3 15 mm Petri dishes

(Falcon). Subsequently, stained embryos were visualized by fluorescent

microscopy with a Nikon SMZ1500 zoom stereomicroscope (Nikon Instru-

ments, Melville, NY) using a 488 nm filter for the green fluorescent signal;

photographs were taken with a Nikon Digital Sight DS-2MBWc black and

white camera with NIS Elements software. All images were acquired at the

same magnification, exposure, and gain. Subsequently, acquired images

were rotated and cropped to a 3’’ 3 3’’ square extending from the tip of the
MO1 blocked the apoptosis induced by (C86S) Cx31-EGFP. (F) Quantification

epidermal cluster. At least eight embryos per condition were used for quantitatio

(G) A model for the mechanism of ER stress-induced apoptosis in the developin

Developmen
tail anteriorly using Adobe Photoshop software. Only images in focus were

used for Volocity analysis, in which fluorescence intensity was calculated by

first setting the threshold intensity above background in a representative

control morpholino-injected embryo treated with thapsigargin. This was

done for each experiment, since the threshold varied between experiments.

Next, the total fluorescence intensity at or above the threshold value was

calculated for each image. Means were calculated for each treatment using

Prism software, and Microsoft Excel software was used to convert all

data points to a percentage of the control mean. Unless otherwise noted,

three independent experiments were conducted for each morpholino injection

and were summed for graphical illustration and statistical analysis in

Prism. Unpaired Student’s t tests were performed in Prism to determine the

p value for each treatment compared to controls. All findings are reported as

means ± SEM.

Chromatin Immunoprecipitation

For each sample (Ctrl MO + DMSO, Ctrl MO + Thapsigargin, p63 MO1 +

Thapsigargin), input chromatin was saved following sonication to deter-

mine enrichment. Chromatin immunoprecipitation was performed using

Dynabeads as described on the ZFIN website for whole zebrafish embryos

(https://wiki.zfin.org/display/prot/Chromatin+Immunoprecipitation+%28ChIP%

29+Protocol+using+Dynabeads). 4A4 anti-human p63 antibody (Santa Cruz)

was used for immunoprecipitation. The sequences for the primers used for

subsequent qPCR of the puma promoter and additional information can be

found in the Supplemental Experimental Procedures.

Microarrays

Tails from 20 embryos in each experimental condition were dissected and

processed using Trizol (Ambion) to extract RNA. Three biological samples

on separate days were generated and submitted simultaneously to the DFCI

Microarray Core Facility for processing. GeneChip Zebrafish Genome Array

chips (Affymetrix) were used for hybridization, representing �14,900 tran-

scripts. Subsequently, data processing was performed using dChip software

(Cheng Li laboratory, DFCI) to generate a list of transcripts with p values

<0.05 and fold-change of >1.5 per sample for AB + Thapsigargin versus

AB + DMSO RNAs. This list of genes was then sorted in descending order of

fold change and fold-change values for the same gene list were included

from p53 mutant samples (Thapsigargin versus DMSO-treated). The top 50

upregulated genes following thapsigargin treatment were used to generate

a heatmap in GenePattern (Broad Institute).

Caspase-3/Connexin 31-EGFP Immunofluorescence

and Confocal Microscopy

Heat-shocked embryos were fixed for 1 hr in 4% paraformaldehyde at room

temperature, then washed into PBST and permeabilized in PBS + 0.1% Triton

for 30 min at room temperature. Embryos were blocked in 2% FBS/PBST

for 1 hr, and then incubated in primary antibody overnight at 4�C. The anti-

activated Caspase-3 antibody was used at a dilution of 1:200, anti-EGFP at

1:500. For Caspase-3 detection, an Alexa 647 goat anti-rabbit secondary

antibody was used, while for EGFP detection, an Alexa 488 goat anti-mouse

secondary antibody was used. Subsequently, embryos were washed in

PBST and stained in phalloidin for 1 hr prior to imaging. Imaging was per-

formed using a Leica SP5 confocal microscope with a 203 water immersion

lens. Counts were performed in clusters of EGFP positive and EGFP/Caspase

3 positive cells between the yolk extension and the end of the tail.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and six figures and can be found with this article online at doi:10.1016/

j.devcel.2011.07.012.
of apoptosis expressed as % Caspase-3 positive cells in an EGFP positive

n.

g epidermis.
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