12,663 research outputs found

    Teachers as mediators: an exploration of situated English teaching

    Get PDF
    Within the context of lower secondary English teaching in South West England, this study identifies in broad terms the competing goals between which English teachers mediate and the explicit and hidden tensions that result. To understand the interactions of competing goals, teachers’ goal-oriented behaviours are referenced to a set of idealised ‘role types’ based on the dimensions of goals, norms, discourses and practices. It is asserted that competing goals, significant to particular educational circumstances, emanate from various sometimes contradictory local, national and perhaps broader social and cultural influences on practice. Yet the teachers observed moved smoothly between goal-oriented behaviours in a continuous and comfortable style, easily and without reflecting any tensions between them. Thus, this article elaborates an account of situated English teaching

    Interpreting iron studies

    Get PDF
    No abstract available

    On the use of a sunward-libration-point orbiting spacecraft as an IMF monitor for magnetospheric studies

    Get PDF
    Magnetospheric studies often require knowledge of the orientation of the IMF. In order to test the accuracy of using magnetometer data from a spacecraft orbiting the sunward libration point for this purpose, the angle between the IMF at ISEE 3, when it was positioned around the libration point, and at ISEE 1, orbiting Earth, has been calculated for a data set of two-hour periods covering four months. For each period, a ten-minute average of ISEE 1 data is compared with ten-minute averages of ISEE 3 data at successively lagged intervals. At the lag time equal to the time required for the solar wind to convect from ISEE 3 to ISEE 1, the median angle between the IMF orientation at the two spacecraft is 20 deg, and 80% of the cases have angles less than 38 deg. The results for the angles projected on the y-z plane are essentially the same

    Nb3Sn wire shape and cross sectional area inhomogeneity in Rutherford cables

    Full text link
    During Rutherford cable production the wires are plastically deformed and their initially round shape is distorted. Using X-ray absorption tomography we have determined the 3D shape of an unreacted Nb3Sn 11 T dipole Rutherford cable, and of a reacted and impregnated Nb3Sn cable double stack. State-of-the-art image processing was applied to correct for tomographic artefacts caused by the large cable aspect ratio, for the segmentation of the individual wires and subelement bundles inside the wires, and for the calculation of the wire cross sectional area and shape variations. The 11 T dipole cable cross section oscillates by 2% with a frequency of 1.24 mm (1/80 of the transposition pitch length of the 40 wire cable). A comparatively stronger cross sectional area variation is observed in the individual wires at the thin edge of the keystoned cable where the wire aspect ratio is largest.Comment: 6 pages, 11 figures, presented at EUCAS 201

    Mean Field Dynamics in Non-Abelian Plasmas from Classical Transport Theory

    Get PDF
    Based on classical transport theory, we present a general set of covariant equations describing the dynamics of mean fields and their statistical fluctuations in a non-Abelian plasma in or out-of-equilibrium. A procedure to obtain the collision integrals for the Boltzmann equation from the microscopic theory is described. As an application, we study a hot non-Abelian plasma close to equilibrium, where the fluctuations are integrated out explicitly. For soft fields, and at logarithmic accuracy, we obtain B\"odeker's effective theory.Comment: 4 pages, revtex, no figures. Typo removed, a reference updated, version as to appear in Phys. Rev. Let

    Developing an integrated technology roadmapping process to meet regional technology planning needs: the e-bike pilot study

    Get PDF
    Smart grid is a promising class of new technologies offering many potential benefits for electric utility systems, including possibilities for smart appliances which can communicate with power systems and help to better match supply and demand. Additional services include the ability to\ud better integrate growing supplies of renewable energy and perform a variety of value-added services on the grid. However, a number of challenges exist in order to achieving these benefits.\ud Many utility systems have substantial regulatory structures that make business processes and technology innovation substantially different than in other industries. Due to complex histories regarding regulatory and deregulatory efforts, and due to what some economists consider natural monopoly characteristics in the industry, such regulatory structures are unlikely to change in the immediate future. Therefore, innovation within these industries, including the development of\ud smart grid, will require an understanding of such regulatory and policy frameworks, development of appropriate business models, and adaptation of technologies to fit these emerging requirements. Technology Roadmapping may be a useful method of planning this type of future development within the smart grid sector, but such technology roadmaps would require a high level of integrated thinking regarding technology, business, and regulatory and policy considerations. This research provides an initial examination of the process for creating such a type of integrated technology roadmapping and assessment process. This research proposes to build upon previous research in the Pacific Northwest and create a more robust technology planning process that will allow key variables to be tested and different pathways to be explored

    Organizational learning and emotion: constructing collective meaning in support of strategic themes

    Get PDF
    Missing in the organizational learning literature is an integrative framework that reflects the emotional as well as the cognitive dynamics involved. Here, we take a step in this direction by focusing in depth over time (five years) on a selected organization which manufactures electronic equipment for the office industry. Drawing on personal construct theory, we define organizational learning as the collective re-construal of meaning in the direction of strategically significant themes. We suggest that emotions arise as members reflect on progress or lack of progress in achieving organizational learning. Our evidence suggests that invalidation – where organizational learning fails to correspond with expectations – gives rise to anxiety and frustration, while validation – where organizational learning is aligned with or exceeds expectations – evokes comfort or excitement. Our work aims to capture the key emotions involved as organizational learning proceeds

    Interacting Turing-Hopf Instabilities Drive Symmetry-Breaking Transitions in a Mean-Field Model of the Cortex: A Mechanism for the Slow Oscillation

    Get PDF
    Electrical recordings of brain activity during the transition from wake to anesthetic coma show temporal and spectral alterations that are correlated with gross changes in the underlying brain state. Entry into anesthetic unconsciousness is signposted by the emergence of large, slow oscillations of electrical activity (≲1  Hz) similar to the slow waves observed in natural sleep. Here we present a two-dimensional mean-field model of the cortex in which slow spatiotemporal oscillations arise spontaneously through a Turing (spatial) symmetry-breaking bifurcation that is modulated by a Hopf (temporal) instability. In our model, populations of neurons are densely interlinked by chemical synapses, and by interneuronal gap junctions represented as an inhibitory diffusive coupling. To demonstrate cortical behavior over a wide range of distinct brain states, we explore model dynamics in the vicinity of a general-anesthetic-induced transition from “wake” to “coma.” In this region, the system is poised at a codimension-2 point where competing Turing and Hopf instabilities coexist. We model anesthesia as a moderate reduction in inhibitory diffusion, paired with an increase in inhibitory postsynaptic response, producing a coma state that is characterized by emergent low-frequency oscillations whose dynamics is chaotic in time and space. The effect of long-range axonal white-matter connectivity is probed with the inclusion of a single idealized point-to-point connection. We find that the additional excitation from the long-range connection can provoke seizurelike bursts of cortical activity when inhibitory diffusion is weak, but has little impact on an active cortex. Our proposed dynamic mechanism for the origin of anesthetic slow waves complements—and contrasts with—conventional explanations that require cyclic modulation of ion-channel conductances. We postulate that a similar bifurcation mechanism might underpin the slow waves of natural sleep and comment on the possible consequences of chaotic dynamics for memory processing and learning

    Software fault-tolerance by design diversity DEDIX: A tool for experiments

    Get PDF
    The use of multiple versions of a computer program, independently designed from a common specification, to reduce the effects of an error is discussed. If these versions are designed by independent programming teams, it is expected that a fault in one version will not have the same behavior as any fault in the other versions. Since the errors in the output of the versions are different and uncorrelated, it is possible to run the versions concurrently, cross-check their results at prespecified points, and mask errors. A DEsign DIversity eXperiments (DEDIX) testbed was implemented to study the influence of common mode errors which can result in a failure of the entire system. The layered design of DEDIX and its decision algorithm are described
    corecore