During Rutherford cable production the wires are plastically deformed and
their initially round shape is distorted. Using X-ray absorption tomography we
have determined the 3D shape of an unreacted Nb3Sn 11 T dipole Rutherford
cable, and of a reacted and impregnated Nb3Sn cable double stack.
State-of-the-art image processing was applied to correct for tomographic
artefacts caused by the large cable aspect ratio, for the segmentation of the
individual wires and subelement bundles inside the wires, and for the
calculation of the wire cross sectional area and shape variations. The 11 T
dipole cable cross section oscillates by 2% with a frequency of 1.24 mm (1/80
of the transposition pitch length of the 40 wire cable). A comparatively
stronger cross sectional area variation is observed in the individual wires at
the thin edge of the keystoned cable where the wire aspect ratio is largest.Comment: 6 pages, 11 figures, presented at EUCAS 201