1,110 research outputs found

    Modelling the species jump: towards assessing the risk of human infection from novel avian influenzas

    Get PDF
    The scientific understanding of the driving factors behind zoonotic and pandemic influenzas is hampered by complex interactions between viruses, animal hosts and humans. This complexity makes identifying influenza viruses of high zoonotic or pandemic risk, before they emerge from animal populations, extremely difficult and uncertain. As a first step towards assessing zoonotic risk of Influenza, we demonstrate a risk assessment framework to assess the relative likelihood of influenza A viruses, circulating in animal populations, making the species jump into humans. The intention is that such a risk assessment framework could assist decisionmakers to compare multiple influenza viruses for zoonotic potential and hence to develop appropriate strain-specific control measures. It also provides a first step towards showing proof of principle for an eventual pandemic risk model. We show that the spatial and temporal epidemiology is as important in assessing the risk of an influenza A species jump as understanding the innate molecular capability of the virus.We also demonstrate data deficiencies that need to be addressed in order to consistently combine both epidemiological and molecular virology data into a risk assessment framework

    Light-Evoked Calcium Responses of Isolated Melanopsin- Expressing Retinal Ganglion Cells

    Get PDF
    A small number (\u3c2%) of mammalian retinal ganglion cells express the photopigment melanopsin and are intrinsically photosensitive (ipRGCs). Light depolarizes ipRGCs and increases intracellular calcium levels ( [Ca2+]i ) but the signaling cascades underlying these responses have yet to be elucidated. To facilitate physiological studies on these rare photoreceptors, highly enriched ipRGC cultures from neonatal rats were generated using anti-melanopsin-mediated plate adhesion (immunopanning). This novel approach enabled experiments on isolated ipRGCs, eliminating the potential confounding influence of rod/cone-driven input. Light induced a rise in [Ca2+]i (monitored using fura-2 imaging) in the immunopanned ipRGCs and the source of this Ca2+ signal was investigated. The Ca2+ responses were inhibited by 2-aminoethoxydiphenyl borate, SKF-96365 (1–2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl)propoxy]ethyl-1H-imidazole), flufenamic acid, lanthanum, and gadolinium, consistent with the involvement of canonical transient receptor potential (TRP) channels in ipRGC phototransduction. However, the contribution of direct Ca2+ flux through a putative TRP channel to ipRGC [Ca2+]i was relatively small, as most (~90%) of the light-induced Ca2+ responses could be blocked by preventing action potential firing with tetrodotoxin. The L-type voltage-gated Ca2+ channel (VGCC) blockers verapamil and (+)-cis-diltiazem significantly reduced the light-evoked Ca2+ responses, while the internal Ca2+ stores depleting agent thapsigargin had negligible effect. These results indicate that Ca2+ influx through VGCCs, activated after action potential firing, was the primary source for light-evoked elevations in ipRGC [Ca2+]i. Furthermore, concurrent Ca2+ imaging and cell-attached electrophysiological recordings demonstrated that the Ca2+ responses were highly correlated to spike frequency, thereby establishing a direct link between action potential firing and somatic [Ca2+]i in lightstimulated ipRGCs

    Geometric control of vascular networks to enhance engineered tissue integration and function

    Get PDF
    Tissue vascularization and integration with host circulation remains a key barrier to the translation of engineered tissues into clinically relevant therapies. Here, we used a microtissue molding approach to demonstrate that constructs containing highly aligned “cords” of endothelial cells triggered the formation of new capillaries along the length of the patterned cords. These vessels became perfused with host blood as early as 3 d post implantation and became progressively more mature through 28 d. Immunohistochemical analysis showed that the neovessels were composed of human and mouse endothelial cells and exhibited a mature phenotype, as indicated by the presence of alpha-smooth muscle actin–positive pericytes. Implantation of cords with a prescribed geometry demonstrated that they provided a template that defined the neovascular architecture in vivo. To explore the utility of this geometric control, we implanted primary rat and human hepatocyte constructs containing randomly organized endothelial networks vs. ordered cords. We found substantially enhanced hepatic survival and function in the constructs containing ordered cords following transplantation in mice. These findings demonstrate the importance of multicellular architecture in tissue integration and function, and our approach provides a unique strategy to engineer vascular architecture.National Institutes of Health (U.S.) (Grant EB08396)National Institutes of Health (U.S.) (Grant EB00262)National Institutes of Health (U.S.) (National Research Service Award 1F32DK091007

    Calculations of collisions between cold alkaline earth atoms in a weak laser field

    Get PDF
    We calculate the light-induced collisional loss of laser-cooled and trapped magnesium atoms for detunings up to 50 atomic linewidths to the red of the ^1S_0-^1P_1 cooling transition. We evaluate loss rate coefficients due to both radiative and nonradiative state-changing mechanisms for temperatures at and below the Doppler cooling temperature. We solve the Schrodinger equation with a complex potential to represent spontaneous decay, but also give analytic models for various limits. Vibrational structure due to molecular photoassociation is present in the trap loss spectrum. Relatively broad structure due to absorption to the Mg_2 ^1Sigma_u state occurs for detunings larger than about 10 atomic linewidths. Much sharper structure, especially evident at low temperature, occurs even at smaller detunings due to of Mg_2 ^1Pi_g absorption, which is weakly allowed due to relativistic retardation corrections to the forbidden dipole transition strength. We also perform model studies for the other alkaline earth species Ca, Sr, and Ba and for Yb, and find similar qualitative behavior as for Mg.Comment: 20 pages, RevTex, 13 eps figures embedde

    Gas and aerosol carbon in California: comparison of measurements and model predictions in Pasadena and Bakersfield

    Get PDF
    Co-located measurements of fine particulate matter (PM2.5) organic carbon (OC), elemental carbon, radiocarbon (14C), speciated volatile organic compounds (VOCs), and OH radicals during the CalNex field campaign provide a unique opportunity to evaluate the Community Multiscale Air Quality (CMAQ) model's representation of organic species from VOCs to particles. Episode average daily 23 h average 14C analysis indicates PM2.5 carbon at Pasadena and Bakersfield during the CalNex field campaign was evenly split between contemporary and fossil origins. CMAQ predicts a higher contemporary carbon fraction than indicated by the 14C analysis at both locations. The model underestimates measured PM2.5 organic carbon at both sites with very little (7% in Pasadena) of the modeled mass represented by secondary production, which contrasts with the ambient-based SOC / OC fraction of 63% at Pasadena. Measurements and predictions of gas-phase anthropogenic species, such as toluene and xylenes, are generally within a factor of 2, but the corresponding SOC tracer (2,3-dihydroxy-4-oxo-pentanoic acid) is systematically underpredicted by more than a factor of 2. Monoterpene VOCs and SOCs are underestimated at both sites. Isoprene is underestimated at Pasadena and overpredicted at Bakersfield and isoprene SOC mass is underestimated at both sites. Systematic model underestimates in SOC mass coupled with reasonable skill (typically within a factor of 2) in predicting hydroxyl radical and VOC gas-phase precursors suggest error(s) in the parameterization of semivolatile gases to form SOC. Yield values (α) applied to semivolatile partitioning species were increased by a factor of 4 in CMAQ for a sensitivity simulation, taking into account recent findings of underestimated yields in chamber experiments due to gas wall losses. This sensitivity resulted in improved model performance for PM2.5 organic carbon at both field study locations and at routine monitor network sites in California. Modeled percent secondary contribution (22% at Pasadena) becomes closer to ambient-based estimates but still contains a higher primary fraction than observed

    Internal and external cooling methods and their effect on body temperature, thermal perception and dexterity

    Get PDF
    © 2018 The Authors. Published by PLOS. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1371/journal.pone.0191416© 2018 Maley et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Objective The present study aimed to compare a range of cooling methods possibly utilised by occupational workers, focusing on their effect on body temperature, perception and manual dexterity. Methods Ten male participants completed eight trials involving 30 min of seated rest followed by 30 min of cooling or control of no cooling (CON) (34C, 58% relative humidity). The cooling methods utilised were: ice cooling vest (CV0), phase change cooling vest melting at 14C (CV14), evaporative cooling vest (CVEV), arm immersion in 10C water (AI), portable water-perfused suit (WPS), heliox inhalation (HE) and ice slushy ingestion (SL). Immediately before and after cooling, participants were assessed for fine (Purdue pegboard task) and gross (grip and pinch strength) manual dexterity. Rectal and skin temperature, as well as thermal sensation and comfort, were monitored throughout. Results Compared with CON, SL was the only method to reduce rectal temperature (P = 0.012). All externally applied cooling methods reduced skin temperature (P0.05). Conclusion The present study observed that ice ingestion or ice applied to the skin produced the greatest effect on rectal and skin temperature, respectively. AI should not be utilised if workers require subsequent fine manual dexterity. These results will help inform future studies investigating appropriate pre-cooling methods for the occupational worker.This project is financially supported by the US Government through the Technical Support Working Group within the Combating Terrorism Technical Support Office.Published versio
    corecore