929 research outputs found

    The Hemodynamics of Aneurysms Treated with Flow-Diverting Stents Considering both Stent and Aneurysm/Artery Geometries

    Get PDF
    Flow diverting stents are deployed to reduce the blood flow into the aneurysm, which would thereby induce thrombosis in the aneurysm sac; the stents prevent its rupture. The present study aimed to examine and quantify the impacts of different flow stents on idealized configurations of the cerebral artery. In our study, we considered a spherical sidewall aneurysm located on curved and tortuous idealized artery vessels and three stents with different porosities (70, 80 and 90%) for deployment. Using computational fluid dynamics, the local hemodynamics in the presence and absence of the stents were simulated, respectively, under the assumption that the blood flow was unsteady and non-Newtonian. The hemodynamic parameters, such as the intra-aneurysmal flow, velocity field and wall shear stress and its related indices, were examined and compared among the 12 cases simulated. The results illustrated that with the stent deployment, the intra-aneurysmal flow and the wall shear stress and its related indices were considerably modified depending on both stent and aneurysm/artery geometries, and that the intra-aneurysmal relative residence time increased rapidly with decreasing stent porosity in all the vessel configurations. These results also inform the rationale for selecting stents for treating aneurysms of different configurations

    A remark on non-Abelian classical kinetic theory

    Get PDF
    It is known that non-Abelian classical kinetic theory reproduces the Hard Thermal/Dense Loop (HTL/HDL) effective action of QCD, obtained after integrating out the hardest momentum scales from the system, as well as the first higher dimensional operator beyond the HTL/HDL level. We discuss here its applicability at still higher orders, by comparing the exact classical effective action obtained in the static limit, with the 1-loop quantum effective potential. We remark that while correct types of operators arise, the classical colour algebra reproduces correctly the prefactor of the 4-point function trA04tr A_0^4 only for matter in asymptotically high dimensional colour representations.Comment: 6 page

    Polarization transfer in the 4^{4}He(e⃗,eâ€Čp⃗3(\vec{e},e' \vec{p}^{3}H reaction

    Full text link
    Polarization transfer in the 4He(e,e'p)3H reaction at a Q^2 of 0.4 (GeV/c)^2 was measured at the Mainz Microtron MAMI. The ratio of the transverse to the longitudinal polarization components of the ejected protons was compared with the same ratio for elastic ep scattering. The results are consistent with a recent fully relativistic calculation which includes a predicted medium modification of the proton form factor based on a quark-meson coupling model.Comment: 5 pages, Latex, 2 postscript figures, submitted to Physics Letters

    Direct CP violation and the ΔI=1/2 rule in K→ππ decay from the standard model

    Get PDF
    We present a lattice QCD calculation of the ΔI=1/2, K→ππ decay amplitude A0 and Ï”â€Č, the measure of direct CP violation in K→ππ decay, improving our 2015 calculation [1] of these quantities. Both calculations were performed with physical kinematics on a 323×64 lattice with an inverse lattice spacing of a-1=1.3784(68)  GeV. However, the current calculation includes nearly 4 times the statistics and numerous technical improvements allowing us to more reliably isolate the ππ ground state and more accurately relate the lattice operators to those defined in the standard model. We find Re(A0)=2.99(0.32)(0.59)×10-7  GeV and Im(A0)=-6.98(0.62)(1.44)×10-11  GeV, where the errors are statistical and systematic, respectively. The former agrees well with the experimental result Re(A0)=3.3201(18)×10-7  GeV. These results for A0 can be combined with our earlier lattice calculation of A2 [2] to obtain Re(Ï”â€Č/Ï”)=21.7(2.6)(6.2)(5.0)×10-4, where the third error represents omitted isospin breaking effects, and Re(A0)/Re(A2)=19.9(2.3)(4.4). The first agrees well with the experimental result of Re(Ï”â€Č/Ï”)=16.6(2.3)×10-4. A comparison of the second with the observed ratio Re(A0)/Re(A2)=22.45(6), demonstrates the standard model origin of this “ΔI=1/2 rule” enhancement.We present a lattice QCD calculation of the ΔI=1/2\Delta I=1/2, K→ππK\to\pi\pi decay amplitude A0A_0 and Δâ€Č\varepsilon', the measure of direct CP-violation in K→ππK\to\pi\pi decay, improving our 2015 calculation of these quantities. Both calculations were performed with physical kinematics on a 323×6432^3\times 64 lattice with an inverse lattice spacing of a−1=1.3784(68)a^{-1}=1.3784(68) GeV. However, the current calculation includes nearly four times the statistics and numerous technical improvements allowing us to more reliably isolate the ππ\pi\pi ground-state and more accurately relate the lattice operators to those defined in the Standard Model. We find Re(A0)=2.99(0.32)(0.59)×10−7{\rm Re}(A_0)=2.99(0.32)(0.59)\times 10^{-7} GeV and Im(A0)=−6.98(0.62)(1.44)×10−11{\rm Im}(A_0)=-6.98(0.62)(1.44)\times 10^{-11} GeV, where the errors are statistical and systematic, respectively. The former agrees well with the experimental result Re(A0)=3.3201(18)×10−7{\rm Re}(A_0)=3.3201(18)\times 10^{-7} GeV. These results for A0A_0 can be combined with our earlier lattice calculation of A2A_2 to obtain Re(Δâ€Č/Δ)=21.7(2.6)(6.2)(5.0)×10−4{\rm Re}(\varepsilon'/\varepsilon)=21.7(2.6)(6.2)(5.0) \times 10^{-4}, where the third error represents omitted isospin breaking effects, and Re(A0)(A_0)/Re(A2)=19.9(2.3)(4.4)(A_2) = 19.9(2.3)(4.4). The first agrees well with the experimental result of Re(Δâ€Č/Δ)=16.6(2.3)×10−4{\rm Re}(\varepsilon'/\varepsilon)=16.6(2.3)\times 10^{-4}. A comparison of the second with the observed ratio Re(A0)/(A_0)/Re(A2)=22.45(6)(A_2) = 22.45(6), demonstrates the Standard Model origin of this "ΔI=1/2\Delta I = 1/2 rule" enhancement

    Near-field optical power transmission of dipole nano-antennas

    Get PDF
    Nano-antennas in functional plasmonic applications require high near-field optical power transmission. In this study, a model is developed to compute the near-field optical power transmission in the vicinity of a nano-antenna. To increase the near-field optical power transmission from a nano-antenna, a tightly focused beam of light is utilized to illuminate a metallic nano-antenna. The modeling and simulation of these structures is performed using 3-D finite element method based full-wave solutions of Maxwell’s equations. Using the optical power transmission model, the interaction of a focused beam of light with plasmonic nanoantennas is investigated. In addition, the tightly focused beam of light is passed through a band-pass filter to identify the effect of various regions of the angular spectrum to the near-field radiation of a dipole nano-antenna. An extensive parametric study is performed to quantify the effects of various parameters on the transmission efficiency of dipole nano-antennas, including length, thickness, width, and the composition of the antenna, as well as the wavelength and half-beam angle of incident light. An optimal dipole nanoantenna geometry is identified based on the parameter studies in this work. In addition, the results of this study show the interaction of the optimized dipole nano-antenna with a magnetic recording medium when it is illuminated with a focused beam of light

    Breaking of general rotational symmetries by multi-dimensional classical ratchets

    Full text link
    We demonstrate that a particle driven by a set of spatially uncorrelated, independent colored noise forces in a bounded, multidimensional potential exhibits rotations that are independent of the initial conditions. We calculate the particle currents in terms of the noise statistics and the potential asymmetries by deriving an n-dimensional Fokker-Planck equation in the small correlation time limit. We analyze a variety of flow patterns for various potential structures, generating various combinations of laminar and rotational flows.Comment: Accepted, Physical Review

    An Exploratory Study of Value Added Services

    Get PDF
    Purpose: Using data from 104 countries over a six-year period (2009-2014), this study proposes a value-added predictor in service industries based on the eight indicators of the prosperity index, namely economy, entrepreneurship and opportunity, governance, education, health, safety and security, personal freedom, and social capital. Design/methodology/approach: The fuzzy-set qualitative comparative analysis (fsQCA) and complexity theory, a relatively novel approach for developing and testing the conceptual model, are used for asymmetric modelling of value added in service industries, and the predictive validity of the proposed configural model is tested. Findings: Apart from advancing method and theory, this study simulates causal conditions (i.e., recipes) leading to both high and low scores of the value added of services. The configural conditions indicating a high/low level of value added in service industries can be used as a guiding strategy for marketers, investors and policy makers. Originality/value: An analysis of worldwide data provides complex models demonstrating both how to regulate country conditions to achieve a high value-added score and select a foreign country for investment that offers a high level of value added service

    Causal categories: relativistically interacting processes

    Full text link
    A symmetric monoidal category naturally arises as the mathematical structure that organizes physical systems, processes, and composition thereof, both sequentially and in parallel. This structure admits a purely graphical calculus. This paper is concerned with the encoding of a fixed causal structure within a symmetric monoidal category: causal dependencies will correspond to topological connectedness in the graphical language. We show that correlations, either classical or quantum, force terminality of the tensor unit. We also show that well-definedness of the concept of a global state forces the monoidal product to be only partially defined, which in turn results in a relativistic covariance theorem. Except for these assumptions, at no stage do we assume anything more than purely compositional symmetric-monoidal categorical structure. We cast these two structural results in terms of a mathematical entity, which we call a `causal category'. We provide methods of constructing causal categories, and we study the consequences of these methods for the general framework of categorical quantum mechanics.Comment: 43 pages, lots of figure

    Hadron Structure on the Lattice

    Full text link
    A few chosen nucleon properties are described from a lattice QCD perspective: the nucleon sigma term and the scalar strangeness in the nucleon; the vector form factors in the nucleon, including the vector strangeness contribution, as well as parity breaking effects like the anapole and electric dipole moment; and finally the axial and tensor charges of the nucleon. The status of the lattice calculations is presented and their potential impact on phenomenology is discussed.Comment: 17 pages, 9 figures; proceedings of the Conclusive Symposium of the Collaborative Research Center 443 "Many-body structure of strongly interacting systems", Mainz, February 23-25, 201

    Survey of nucleon electromagnetic form factors

    Full text link
    A dressed-quark core contribution to nucleon electromagnetic form factors is calculated. It is defined by the solution of a Poincare' covariant Faddeev equation in which dressed-quarks provide the elementary degree of freedom and correlations between them are expressed via diquarks. The nucleon-photon vertex involves a single parameter; i.e., a diquark charge radius. It is argued to be commensurate with the pion's charge radius. A comprehensive analysis and explanation of the form factors is built upon this foundation. A particular feature of the study is a separation of form factor contributions into those from different diagram types and correlation sectors, and subsequently a flavour separation for each of these. Amongst the extensive body of results that one could highlight are: r_1^{n,u}>r_1^{n,d}, owing to the presence of axial-vector quark-quark correlations; and for both the neutron and proton the ratio of Sachs electric and magnetic form factors possesses a zero.Comment: 43 pages, 17 figures, 12 tables, 5 appendice
    • 

    corecore