20 research outputs found

    Contribution of Organic Cation Transporter 2 (OCT2) to Cisplatin-Induced Nephrotoxicity

    Get PDF
    Cisplatin is the most widely used anticancer agent; however, the cellular pharmacokinetics are poorly understood. Cisplatin is predominantly eliminated through the urine via active secretion and is associated with nephrotoxicity. Currently, prehydration therapy is employed to prevent toxic renal side effects; however it has not been completely ameliorated. The studies described herein aim to determine the mechanism in which cisplatin enters the kidney cell from the blood and how it is subsequently secreted into the urine. Organic cation transporter 2 (OCT2) and ABCC2 are highly expressed in the kidney on the basolateral and apical membrane, respectively. We determined the contribution of OCT2 and ABCC2 to cisplatin transport and toxicity. We also evaluated the contribution of genetic variation in both transporters to cisplatin pharmacokinetics. Our results suggest a prominent role for OCT2 in the cellular accumulation of cisplatin in vivo and in vitro, whereas, ABCC2 may only play a limited role in cisplatin pharmacokinetics in conjunction with other ABC transporters. OCT2 also significantly influences cisplatin induced nephrotoxicity indicating a potential for new preventative strategies to circumvent toxicity

    Mechanisms of Cisplatin Nephrotoxicity

    Get PDF
    Cisplatin is a widely used and highly effective cancer chemotherapeutic agent. One of the limiting side effects of cisplatin use is nephrotoxicity. Research over the past 10 years has uncovered many of the cellular mechanisms which underlie cisplatin-induced renal cell death. It has also become apparent that inflammation provoked by injury to renal epithelial cells serves to amplify kidney injury and dysfunction in vivo. This review summarizes recent advances in our understanding of cisplatin nephrotoxicity and discusses how these advances might lead to more effective prevention

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    Pharmacogenomics in Oncology Care

    No full text
    Cancer pharmacogenomics have contributed a number of important discoveries to current cancer treatment, changing the paradigm of treatment decisions. Both somatic and germline mutations are utilized to better understand the underlying biology of cancer growth and treatment response. The level of evidence required to fully translate pharmacogenomic discoveries into the clinic has relied heavily on randomized clinical trials. In this review, the use of observational studies, as well as, the use of adaptive trials and next generation sequencing to develop the required level of evidence for clinical implementation are discussed

    Clinical decisions surrounding genomic and proteomic testing among United States veterans treated for lung cancer within the Veterans Health Administration

    No full text
    Abstract Background Current clinical guidelines recommend epidermal growth factor receptor (EGFR) mutational testing in patients with metastatic non-small cell lung cancer (NSCLC) to predict the benefit of the tyrosine kinase inhibitor erlotinib as first-line treatment. Proteomic (VeriStrat) testing is recommended for patients with EGFR negative or unknown status when erlotinib is being considered. Departure from this clinical algorithm can increase costs and may result in worse outcomes. We examined EGFR and proteomic testing among patients with NSCLC within the Department of Veterans Affairs (VA). We explored adherence to guidelines and the impact of test results on treatment decisions and cost of care. Methods Proteomic and EGFR test results from 2013 to 2015 were merged with VA electronic health records and pharmacy data. Chart reviews were conducted. Cases were categorized based on the appropriateness of testing and treatment. Results Of the 69 patients with NSCLC who underwent proteomic testing, 33 (48%) were EGFR-negative and 36 (52%) did not have documented EGFR status. We analyzed 138 clinical decisions surrounding EGFR/proteomic testing and erlotinib treatment. Most decisions (105, or 76%) were concordant with clinical practice guidelines. However, for 24 (17%) decisions documentation of testing or justification of treatment was inadequate, and 9 (7%) decisions represented clear departures from guidelines. Conclusion EGFR testing, the least expensive clinical intervention analyzed in this study, was significantly underutilized or undocumented. The records of more than half of the patients lacked information on EGFR status. Our analysis illustrated several clinical scenarios where the timing of proteomic testing and erlotinib diverged from the recommended algorithm, resulting in excessive costs of care with no documented improvements in health outcomes

    Influence of Oct1/Oct2-deficiency on cisplatin-induced changes in urinary N-acetyl-beta-D-glucosaminidase

    No full text
    PURPOSE: This study aimed to test the influence of functional renal organic cation transporters (OCT2 in humans, Oct1 and Oct2 in mice) on biomarkers of cisplatin nephrotoxicity, such as urinary activity of N-acetyl-beta-D-glucosaminidase (NAG). EXPERIMENTAL DESIGN: Temporal cisplatin-induced nephrotoxicity was assessed by histopathology and biomarkers. Cisplatin-mediated NAG changes and survival were determined in wild-type and Oct1/2(-/-) mice. Identification of OCT2 inhibitors was done in transfected 293Flp-In cells, and the NCI(60) cell line panel was used to assess contribution of OCT2 to cisplatin uptake in cancer cells. RESULTS: Classical biomarkers such as blood urea nitrogen and serum creatinine were not elevated until 72 hours after cisplatin administration and substantial kidney damage had occurred. Oct1/2(-/-) mice had 2.9-fold lower NAG by 4 hours (P 0.4 absorbance units (AU) was associated with 21-fold increased odds for severe nephrotoxicity (P = 0.0017), which was linked with overall survival (hazard ratio, 8.1; 95% confidence interval, 2.1-31; P = 0.0078). CONCLUSIONS: Cimetidine is able to inhibit OCT2-mediated uptake of cisplatin in the kidney, and subsequently ameliorate nephrotoxicity likely with minimal effect on uptake in tumor cells

    Interaction of imatinib with human organic ion carriers

    No full text
    Purpose: The activity of imatinib in leukemia has recently been linked with expression of the organic cation transporter 1 (OCT1) gene SLC22A1. Here, we characterized the contribution of solute carriers to imatinib transport in an effort to further understand mechanisms involved in the intracellular uptake and retention (IUR) of the drug. Experimental Design: IUR of [3H] imatinib was studied in Xenopus laevis oocytes and HEK293 cells expressing OATP1A2, OATP1B1, OATP1B3, OCT1-3, OCTN1-2, or OAT1-3. Gene expression was determined in nine leukemia cell lines using the Affymetrix U133 array. Results: Imatinib was not found to be a substrate for OCT1 in oocytes (P = 0.21), whereas in HEK293 cells IUR was increased by only 1.20-fold relative to control cells (P = 0.002). Further-more, in 74 cancer patients, the oral clearance of imatinib was not significantly altered in individuals carrying reduced-function variants in SLC22A1 (P = 0.99). Microarray analysis indicated that SLC22A1 was interrelated with gene expression of various transporters, including ABCB1, ABCC4, ABCG2 (negative), and OATP1A2 (positive). Imatinib was confirmed to be a substrate for the three efflux transporters (P < 0.05) as well as for OATP1A2 (P = 0.0001). Conclusions: This study suggests that SLC22A1 expression is a composite surrogate for expression of various transporters relevant to imatinib IUR. This observation provides a mechanistic explanation for previous studies that have linked SLC22A1 with the antitumor activity of imatinib. Because of its high expression in the intestine, ciliary body, gliomas, and leukemia cells, OATP1A2 may play a key role in imatinib pharmacokinetics-pharmacodynamics
    corecore