7,506 research outputs found

    An Investigation Of Organizational Information Security Risk Analysis

    Get PDF
    Despite a growing number and variety of information security threats, many organizations continue to neglect implementing information security policies and procedures.  The likelihood that an organization’s information systems can fall victim to these threats is known as information systems risk (Straub & Welke, 1998).  To combat these threats, an organization must undergo a rigorous process of self-analysis. To better understand the current state of this information security risk analysis (ISRA) process, this study deployed a questionnaire using both open-ended and closed ended questions administered to a group of information security professionals (N=32).  The qualitative and quantitative results of this study show that organizations are beginning to conduct regularly scheduled ISRA processes.  However, the results also show that organizations still have room for improvement to create idyllic ISRA processes.&nbsp

    Presence and Localization of Pro-and Mature Forms of Biglycan and Decorin in Human Costal Cartilage Derived from Chest Wall Deformities

    Get PDF
    Costal cartilage is a type of hyaline cartilage that forms rod-like structures that connect the ribs to the sternum. The most common chest wall deformities, pectus excavatum and pectus carinatum involved efective costal cartilage resulting in sternal displacement. Costal cartilage is not widely studied leaving little insight into possible factors involved in the pathogenesis of these pectus deformities. This study focused on the presence and distribution of two important regulators of collagen fibrillogenesis and organization, biglycan and decorin. Immunohistochemical analysis of transverse cross sections of normal and deformed costal cartilage revealed that biglycan and decorin mainly localized in the territorial matrix except for prodecorin which was only found within chondrocytes. Western blot analysis of whole protein extracts demonstrated the presence of both pro and mature forms of biglycan and mature decorin in patients and controls. In normal costal cartilage of different ages, the mature form of decorin was absent in a fetal sample whereas mature biglycan was weakly expressed, suggestive that mature biglycan may play a role in early costal cartilage development. Further studies are needed to determine the functional differences between the pro- and mature forms of biglycan and decorin both in age and disease

    Perceived Stress Levels, Chemotherapy, Radiation Treatment and Tumor Characteristics Are Associated with a Persistent Increased Frequency of Somatic Chromosomal Instability in Women Diagnosed with Breast Cancer: A One Year Longitudinal Study

    Get PDF
    While advances in therapeutic approaches have resulted in improved survival rates for women diagnosed with breast cancer, subsets of these survivors develop persistent psychoneurological symptoms (fatigue, depression/anxiety, cognitive dysfunction) that compromise their quality of life. The biological basis for these persistent symptoms is unclear, but could reflect the acquisition of soma-wide chromosomal instability following the multiple biological/psychological exposures associated with the diagnosis/treatment of breast cancer. An essential first step toward testing this hypothesis is to determine if these cancer-related exposures are indeed associated with somatic chromosomal instability frequencies. Towards this end, we longitudinally studied 71 women (ages 23-71) with early-stage breast cancer and quantified their somatic chromosomal instability levels using a cytokinesis-blocked micronuclear/cytome assay at 4 timepoints: before chemotherapy (baseline); four weeks after chemotherapy initiation; six months after chemotherapy (at which time some women received radiotherapy); and one year following chemotherapy initiation. Overall, a significant change in instability frequencies was observed over time, with this change differing based on whether the women received radiotherapy (p=0.0052). Also, significantly higher instability values were observed one year after treatment initiation compared to baseline for the women who received: sequential taxotere/doxorubicin/cyclophosphamide (pp=0.014). Significant predictive associations for acquired micronuclear/cytome abnormality frequencies were also observed for race (p=0.0052), tumor type [luminal B tumors] (p=0.0053), and perceived stress levels (p=0.0129). The impact of perceived stress on micronuclear/cytome frequencies was detected across all visits, with the highest levels of stress being reported at baseline (p =0.0024). These findings suggest that the cancer-related exposome has an impact on both healthy somatic cells and tumor cells, and may lead to persistent chromosomal instability. In addition, stress was a significant predictor of chromosomal instability; thus, interventions that aim to reduce stress may reduce acquired soma-wide chromosomal instability for cancer survivors

    NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    Get PDF
    Since 1986, the NASA-Langley Research Center has sponsored the NASA-UVa Light Alloy and Structures Technology (LA2ST) Program at the University of Virginia (UVa). The fundamental objective of the LA2ST program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures. The LA2ST program has aimed to product relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The scope of the LA2ST Program is broad. Research areas include: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites, (2) Aerospace Materials Science, (3) Mechanics of materials for Aerospace Structures, and (4) Thermal Gradient Structures. A substantial series of semi-annual progress reports issued since 1987 documents the technical objectives, experimental or analytical procedures, and detailed results of graduate student research in these topical areas

    Coupled-barrier diffusion: the case of oxygen in silicon

    Full text link
    Oxygen migration in silicon corresponds to an apparently simple jump between neighboring bridge sites. Yet, extensive theoretical calculations have so far produced conflicting results and have failed to provide a satisfactory account of the observed 2.52.5 eV activation energy. We report a comprehensive set of first-principles calculations that demonstrate that the seemingly simple oxygen jump is actually a complex process involving coupled barriers and can be properly described quantitatively in terms of an energy hypersurface with a ``saddle ridge'' and an activation energy of 2.5\sim 2.5 eV. Earlier calculations correspond to different points or lines on this hypersurface.Comment: 4 Figures available upon request. Accepted for publication in Phys. Rev. Let

    NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    Get PDF
    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Here, we report on progress achieved between July I and December 31, 1996. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report are summarized as follows. Three research areas are being actively investigated, including: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals, (2) Aerospace Materials Science, and (3) Mechanics of Materials for Light Aerospace Structures

    Quantification of Cell Signaling Networks Using Kinase Activity Chemosensors

    Get PDF
    The ability to directly determine endogenous kinase activity in tissue homogenates provides valuable insights into signaling aberrations that underlie disease phenotypes. When activity data is collected across a panel of kinases, a unique “signaling fingerprint” is generated that allows for discrimination between diseased and normal tissue. Here we describe the use of peptide-based kinase activity sensors to fingerprint the signaling changes associated with disease states. This approach leverages the phosphorylation-sensitive sulfonamido-oxine (Sox) fluorophore to provide a direct readout of kinase enzymatic activity in unfractionated tissue homogenates from animal models or clinical samples. To demonstrate the application of this technology, we focus on a rat model of nonalcoholic fatty liver disease (NAFLD). Sox-based activity probes allow for the rapid and straightforward analysis of changes in kinase enzymatic activity associated with disease states, providing leads for further investigation using traditional biochemical approaches
    corecore