2,274 research outputs found

    A Small Community Model for the Transmission of Infectious Diseases: Comparison of School Closure as an Intervention in Individual-Based Models of an Influenza Pandemic

    Get PDF
    BACKGROUND: In the absence of other evidence, modelling has been used extensively to help policy makers plan for a potential future influenza pandemic. METHOD: We have constructed an individual based model of a small community in the developed world with detail down to exact household structure obtained from census collection datasets and precise simulation of household demographics, movement within the community and individual contact patterns. We modelled the spread of pandemic influenza in this community and the effect on daily and final attack rates of four social distancing measures: school closure, increased case isolation, workplace non-attendance and community contact reduction. We compared the modelled results of final attack rates in the absence of any interventions and the effect of school closure as a single intervention with other published individual based models of pandemic influenza in the developed world. RESULTS: We showed that published individual based models estimate similar final attack rates over a range of values for R(0) in a pandemic where no interventions have been implemented; that multiple social distancing measures applied early and continuously can be very effective in interrupting transmission of the pandemic virus for R(0) values up to 2.5; and that different conclusions reached on the simulated benefit of school closure in published models appear to result from differences in assumptions about the timing and duration of school closure and flow-on effects on other social contacts resulting from school closure. CONCLUSION: Models of the spread and control of pandemic influenza have the potential to assist policy makers with decisions about which control strategies to adopt. However, attention needs to be given by policy makers to the assumptions underpinning both the models and the control strategies examined

    A quantitative meta-analysis and qualitative meta-synthesis of aged care residents’ experiences of autonomy, being controlled, and optimal functioning

    Get PDF
    Background and Objectives The poor mental health of adults living in aged care needs addressing. Improvements to nutrition and exercise are important, but mental health requires a psychological approach. Self-determination theory finds that autonomy is essential to wellbeing while experiences of being controlled undermine it. A review of existing quantitative data could underscore the importance of autonomy in aged care, and a review of the qualitative literature could inform ways to promote autonomy and avoid control. Testing these possibilities was the objective of this research. Research Design and Methods We conducted a mixed-methods systematic review of studies investigating autonomy, control, and indices of optimal functioning in aged care settings. The search identified 30 eligible reports (19 quantitative, 11 qualitative), including 141 quantitative effect sizes, 84 qualitative data items, and N = 2,668. Quantitative effects were pooled using three-level meta-analytic structural equation models, and the qualitative data were meta-synthesized using a grounded theory approach. Results As predicted, the meta-analysis showed a positive effect of aged care residents’ autonomy and their wellness, r = 0.33 [95% CI: 0.27, 0.39], and a negative effect of control, r = −0.16 [95% CI: −0.27, −0.06]. The meta-synthesis revealed seven primary and three sub-themes describing the nuanced ways autonomy, control, and help seeking are manifest in residential aged care settings. Discussion and Implications The results suggest that autonomy should be supported, and unnecessary external control should be minimized in residential aged care, and we discuss ways the sector could strive for both aims

    Síntese e caracterização de copolímeros de cadeia lateral derivados de acrilatos de 4,5-di-hidroisoxazol e do (-)-mentol

    Get PDF
    Five monomers 5-[4-(5-cyano-4,5-dihydroisoxazol-3-yl)phenoxy]undecyl acrylate (7a); n-alkyl 3-{4-[5-(acryloyloxyundecyl)oxyphenyl]}-4,5-dihydroisoxazole-5-carboxylate (7b,c for n-butyl and n-hexyl, respectively); 3-{4-[5-(acryloyloxyundecyl) oxyphenyl]}-4,5-dihydroisoxazole-5-carboxylic acid (7d) and (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl acrylate (9) and the corresponding copolymers 10a-d,11 and homopolymers 12 from 7a and 13 from 9 were designed and synthesized. Except for acrylate 9 which is derived from (-)-menthol, all of the monomers belong to the series containing the isoxazoline ring linked to the acrylate unit by a flexible spacer chain of eleven methylene units. They presented low glass temperature and despite birefringence behavior, these copolymers showed no mesomorphic properties

    Regulation of Synaptic Structure and Function by FMRP-Associated MicroRNAs miR-125b and miR-132

    Get PDF
    MicroRNAs (miRNAs) are noncoding RNAs that suppress translation of specific mRNAs. The miRNA machinery interacts with fragile X mental retardation protein (FMRP), which functions as translational repressor. We show that miR-125b and miR-132, as well as several other miRNAs, are associated with FMRP in mouse brain. miR-125b and miR-132 had largely opposing effects on dendritic spine morphology and synaptic physiology in hippocampal neurons. FMRP knockdown ameliorates the effect of miRNA overexpression on spine morphology. We identified NMDA receptor subunit NR2A as a target of miR-125b and show that NR2A mRNA is specifically associated with FMRP in brain. In hippocampal neurons, NR2A expression is negatively regulated through its 3′ UTR by FMRP, miR-125b, and Argonaute 1. Regulation of NR2A 3′UTR by FMRP depends in part on miR-125b. Because NMDA receptor subunit composition profoundly affects synaptic plasticity, these observations have implications for the pathophysiology of fragile X syndrome, in which plasticity is altered.Deutsche Forschungsgemeinschaft (ED157/1, postdoctoral fellowship)National Cancer Institute (U.S.) (NCI PO1-CA42063)National Cancer Institute (U.S.) (NCI P30-CA14051)National Cancer Institute (U.S.) (Cancer Center Support (Core) Grant)National Cancer Institute (U.S.) (NCI K99-CA131474)Howard Hughes Medical Institute (Investigator

    Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in the forest tree Populus trichocarpa

    Get PDF
    This is the publisher’s final pdf. The article is copyrighted by the New Phytologist Trust and published by John Wiley & Sons, Inc. It can be found at: http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291469-8137. To the best of our knowledge, one or more authors of this paper were federal employees when contributing to this work.•Plant population genomics informs evolutionary biology, breeding, conservation and bioenergy feedstock development. For example, the detection of reliable phenotype–genotype associations and molecular signatures of selection requires a detailed knowledge about genome-wide patterns of allele frequency variation, linkage disequilibrium and recombination.\ud •We resequenced 16 genomes of the model tree Populus trichocarpa and genotyped 120 trees from 10 subpopulations using 29 213 single-nucleotide polymorphisms.\ud •Significant geographic differentiation was present at multiple spatial scales, and range-wide latitudinal allele frequency gradients were strikingly common across the genome. The decay of linkage disequilibrium with physical distance was slower than expected from previous studies in Populus, with r² dropping below 0.2 within 3–6 kb. Consistent with this, estimates of recent effective population size from linkage disequilibrium (N[subscript e] ≈ 4000–6000) were remarkably low relative to the large census sizes of P. trichocarpa stands. Fine-scale rates of recombination varied widely across the genome, but were largely predictable on the basis of DNA sequence and methylation features.\ud •Our results suggest that genetic drift has played a significant role in the recent evolutionary history of P. trichocarpa. Most importantly, the extensive linkage disequilibrium detected suggests that genome-wide association studies and genomic selection in undomesticated populations may be more feasible in Populus than previously assumed

    Prospects For Gulf of Mexico Environmental Recovery and Restoration

    Get PDF
    Previous oil spills provide clear evidence that ecosystem restoration efforts are challenging, and recovery can take decades. Similar to the Ixtoc 1 well blowout in 1979, the Deepwater Horizon (DWH) oil spill was enormous both in volume of oil spilled and duration, resulting in environmental impacts from the deep ocean to the Gulf of Mexico coastline. Data collected during the National Resource Damage Assessment showed significant damage to coastal areas (especially marshes), marine organisms, and deep-sea habitat. Previous spills have shown that disparate regions recover at different rates, with especially long-term effects in salt marshes and deepsea habitat. Environmental recovery and restoration in the northern Gulf of Mexico are dependent upon fundamental knowledge of ecosystem processes in the region. PostDWH research data provide a starting point for better understanding baselines and ecosystem processes. It is imperative to use the best science available to fully understand DWH environmental impacts and determine the appropriate means to ameliorate those impacts through restoration. Filling data gaps will be necessary to make better restoration decisions, and establishing new baselines will require long-term studies. Future research, especially via NOAA’s RESTORE Science Program and the state-based Centers of Excellence, should provide a path to understanding the potential for restoration and recovery of this vital marine ecosystem

    Host-linked soil viral ecology along a permafrost thaw gradient

    Get PDF
    Climate change threatens to release abundant carbon that is sequestered at high latitudes, but the constraints on microbial metabolisms that mediate the release of methane and carbon dioxide are poorly understood1,2,3,4,5,6,7. The role of viruses, which are known to affect microbial dynamics, metabolism and biogeochemistry in the oceans8,9,10, remains largely unexplored in soil. Here, we aimed to investigate how viruses influence microbial ecology and carbon metabolism in peatland soils along a permafrost thaw gradient in Sweden. We recovered 1,907 viral populations (genomes and large genome fragments) from 197 bulk soil and size-fractionated metagenomes, 58% of which were detected in metatranscriptomes and presumed to be active. In silico predictions linked 35% of the viruses to microbial host populations, highlighting likely viral predators of key carbon-cycling microorganisms, including methanogens and methanotrophs. Lineage-specific virus/host ratios varied, suggesting that viral infection dynamics may differentially impact microbial responses to a changing climate. Virus-encoded glycoside hydrolases, including an endomannanase with confirmed functional activity, indicated that viruses influence complex carbon degradation and that viral abundances were significant predictors of methane dynamics. These findings suggest that viruses may impact ecosystem function in climate-critical, terrestrial habitats and identify multiple potential viral contributions to soil carbon cycling
    corecore