9,268 research outputs found

    A Family History of Lethal Prostate Cancer and Risk of Aggressive Prostate Cancer in Patients Undergoing Radical Prostatectomy.

    Get PDF
    We investigated whether a family history of lethal prostate cancer (PCa) was associated with high-risk disease or biochemical recurrence in patients undergoing radical prostatectomy. A cohort of radical prostatectomy patients was stratified into men with no family history of PCa (NFH); a first-degree relative with PCa (FH); and those with a first-degree relative who had died of PCa (FHD). Demographic, operative and pathologic outcomes were analyzed. Freedom from biochemical recurrence was examined using Kaplan-Meier log rank. A multivariate Cox logistic regression analysis was also performed. We analyzed 471 men who underwent radical prostatectomy at our institution with known family history. The three groups had: 355 patients (75%) in NFH; 97 patients (21%) in FH; and 19 patients (4%) in FHD. The prevalence of a Gleason score ≥8, higher pathologic T stage, and biochemical recurrence (BCR) rates did not significantly differ between groups. On Kaplan-Meier analysis there were no differences in short-term BCR rates (p = 0.212). In this cohort of patients undergoing radical prostatectomy, those with first-degree relatives who died of PCa did not have an increased likelihood of high-risk or aggressive PCa or shorter-term risk of BCR than those who did not

    Redshift determination in the X-ray band of gamma-ray bursts

    Full text link
    If gamma-ray bursts originate in dense stellar forming regions, the interstellar material can imprint detectable absorption features on the observed X-ray spectrum. Such features can be detected by existing and planned X-ray satellites, as long as the X-ray afterglow is observed after a few minutes from the burst. If the column density of the interstellar material exceeds ~10^{23} cm^{-2} there exists the possibility to detect the K_alpha fluorescent iron line, which should be visible for more than one year, long after the X-ray afterglow continuum has faded away. Detection of these X-ray features will make possible the determination of the redshift of gamma-ray bursts even when their optical afterglow is severely dimmed by extinction.Comment: 15 pages with 5 figures. Submitted to Ap

    On the Sensitivity of 3-D Thermal Convection Codes to Numerical Discretization: A Model Intercomparison

    Get PDF
    Fully 3-D numerical simulations of thermal convection in a spherical shell have become a standard for studying the dynamics of pattern formation and its stability under perturbations to various parameter values. The question arises as to how does the discretization of the governing equations affect the outcome and thus any physical interpretation. This work demonstrates the impact of numerical discretization on the observed patterns, the value at which symmetry is broken, and how stability and stationary behavior is dependent upon it. Motivated by numerical simulations of convection in the Earth\u27s mantle, we consider isoviscous Rayleigh-Bénard convection at infinite Prandtl number, where the aspect ratio between the inner and outer shell is 0.55. We show that the subtleties involved in development mantle convection models are considerably more delicate than has been previously appreciated, due to the rich dynamical behavior of the system. Two codes with different numerical discretization schemes: an established, community-developed, and benchmarked finite element code (CitcomS) and a novel spectral method that combines Chebyshev polynomials with radial basis functions (RBF) are compared. A full numerical study is investigated for the following three cases. The first case is based on the cubic (or octahedral) initial condition (spherical harmonics of degree ℓ =4). How variations in the behavior of the cubic pattern to perturbations in the initial condition and Rayleigh number between the two numerical discrezations is studied. The second case investigates the stability of the dodecahedral (or icosahedral) initial condition (spherical harmonics of degree ℓ = 6). Although both methods converge first to the same pattern, this structure is ultimately unstable and systematically degenerates to cubic or tetrahedral symmetries, depending on the code used. Lastly, a new steady state pattern is presented as a combination of order 3 and 4 spherical harmonics leading to a five cell or a hexahedral pattern and stable up to 70 times the critical Rayleigh number. This pattern can provide the basis for a new accuracy benchmark for 3-D spherical mantle convection codes

    Magnetic Surfaces in Stationary Axisymmetric General Relativity

    Full text link
    In this paper a new method is derived for constructing electromagnetic surface sources for stationary axisymmetric electrovac spacetimes endowed with non-smooth or even discontinuous Ernst potentials. This can be viewed as a generalization of some classical potential theory results, since lack of continuity of the potential is related to dipole density and lack of smoothness, to monopole density. In particular this approach is useful for constructing the dipole source for the magnetic field. This formalism involves solving a linear elliptic differential equation with boundary conditions at infinity. As an example, two different models of surface densities for the Kerr-Newman electrovac spacetime are derived.Comment: 15 page

    Outer jet X-ray and radio emission in R Aquarii: 1999.8 to 2004.0

    Full text link
    Chandra and VLA observations of the symbiotic star R Aqr in 2004 reveal significant changes over the three to four year interval between these observations and previous observations taken with the VLA in 1999 and with Chandra in 2000. This paper reports on the evolution of the outer thermal X-ray lobe-jets and radio jets. The emission from the outer X-ray lobe-jets lies farther away from the central binary than the outer radio jets, and comes from material interpreted as being shock heated to ~10^6 K, a likely result of collision between high speed material ejected from the central binary and regions of enhanced gas density. Between 2000 and 2004, the Northeast (NE) outer X-ray lobe-jet moved out away from the central binary, with an apparent projected motion of ~580 km s^-1. The Southwest (SW) outer X-ray lobe-jet almost disappeared between 2000 and 2004, presumably due to adiabatic expansion and cooling. The NE radio bright spot also moved away from the central binary between 2000 and 2004, but with a smaller apparent velocity than of the NE X-ray bright spot. The SW outer lobe-jet was not detected in the radio in either 1999 or 2004. The density and mass of the X-ray emitting material is estimated. Cooling times, shock speeds, pressure and confinement are discussed.Comment: 23 pages, 8 figure

    Microbial Community Response to Terrestrially Derived Dissolved Organic Matter in the Coastal Arctic

    Get PDF
    Warming at nearly twice the global rate, higher than average air temperatures are the new \u27normal\u27 for Arctic ecosystems. This rise in temperature has triggered hydrological and geochemical changes that increasingly release carbon-rich water into the coastal ocean via increased riverine discharge, coastal erosion, and the thawing of the semipermanent permafrost ubiquitous in the region. To determine the biogeochemical impacts of terrestrially derived dissolved organic matter (tDOM) on marine ecosystems we compared the nutrient stocks and bacterial communities present under ice-covered and ice-free conditions, assessed the lability of Arctic tDOM to coastal microbial communities from the Chukchi Sea, and identified bacterial taxa that respond to rapid increases in tDOM. Once thought to be predominantly refractory, we found that similar to 7% of dissolved organic carbon and similar to 38% of dissolved organic nitrogen from tDOM was bioavailable to receiving marine microbial communities on short 4 - 6 day time scales. The addition of tDOM shifted bacterial community structure toward more copiotrophic taxa and away from more oligotrophic taxa. Although no single order was found to respond universally (positively or negatively) to the tDOM addition, this study identified 20 indicator species as possible sentinels for increased tDOM. These data suggest the true ecological impact of tDOM will be widespread across many bacterial taxa and that shifts in coastal microbial community composition should be anticipated

    Anisotropy of Growth of the Close-Packed Surfaces of Silver

    Full text link
    The growth morphology of clean silver exhibits a profound anisotropy: The growing surface of Ag(111) is typically very rough while that of Ag(100) is smooth and flat. This serious and important difference is unexpected, not understood, and hitherto not observed for any other metal. Using density functional theory calculations of self-diffusion on flat and stepped Ag(100) we find, for example, that at flat regions a hopping mechanism is favored, while across step edges diffusion proceeds by an exchange process. The calculated microscopic parameters explain the experimentally reported growth properties.Comment: RevTeX, 4 pages, 3 figures in uufiles form, to appear in Phys. Rev. Let
    corecore