2,417 research outputs found

    The National Strategy-An Overview

    Get PDF
    Over the past two decades, the use of illegal drugs in the United States has spread at an unprecedented rate and has reached into every segment of society

    A hydroclimatic assessment of the U.S. corn belt across spatial and temporal scales

    Get PDF
    The term hydroclimate is used to describe the climate of a given location as determined by the incident radiant energy (temperature) and the existence of water in its various forms on Earth. Two types of climate comprise the science of hydroclimatology: the climate as established by general global circulation patterns at specific locations on Earth (large-scale climate) and the climate established at Earth\u27s surface resulting from the daily fluxes of radiant energy and water in its various forms between the atmosphere, Earth\u27s surface, and the subsurface (local-scale climate) (Shelton 2009). This dissertation investigates different spatial and temporal scales of the U.S. Corn Belt hydroclimate and includes analysis of large- and local-scale hydroclimatic feedbacks. Large-scale hydroclimate research in this assessment investigates how general circulation patterns and teleconnections, specifically the El Ni?o-Southern Oscillation and the Arctic Oscillation, influence climate variability in the form of temperature and precipitation patterns across the U.S. Corn Belt with findings applicable to agricultural decision making. A large- and local-scale hydroclimatic assessment examines the rainfall contribution of land-falling tropical cyclones to the Eastern U.S. Corn Belt. Locale-scale hydroclimate research considers the role of land-surface feedbacks in the life cycle of land-falling tropical cyclones. Results from the assessments that comprise this dissertation show that the spatial and temporal scales at which hydroclimatic feedbacks are examined are important to the understanding of hydroclimate system interactions. It is suggested from the results of this comprehensive assessment that the newly identified, large- and local-scale hydroclimatic feedbacks be given stronger consideration in forecasts and climate projection models. Additionally, it is suggested that more hydroclimate assessments across spatial and temporal scales be completed to better prepare for and mitigate the effects of projected climate variability and climate change. A framework for climatological applications to agronomy is discussed in the first chapter, with the findings of the hydroclimatological assessments in subsequent chapters primarily applied to agronomic decision making

    Interactive autonomy and robotic skills

    Get PDF
    Current concepts of robot-supported operations for space laboratories (payload servicing, inspection, repair, and ORU exchange) are mainly based on the concept of 'interactive autonomy' which implies autonomous behavior of the robot according to predefined timelines, predefined sequences of elementary robot operations and within predefined world models supplying geometrical and other information for parameter instantiation on the one hand, and the ability to override and change the predefined course of activities by human intervention on the other hand. Although in principle a very powerful and useful concept, in practice the confinement of the robot to the abstract world models and predefined activities appears to reduce the robot's stability within real world uncertainties and its applicability to non-predefined parts of the world, calling for frequent corrective interaction by the operator, which in itself may be tedious and time-consuming. Methods are presented to improve this situation by incorporating 'robotic skills' into the concept of interactive autonomy

    Improvement of lung preservation - From experiment to clinical practice

    Get PDF
    Background. Reperfusion injury represents a severe early complication following lung transplantation. Among the pathogenetic factors, the high potassium content of Euro-Collins(R) solution is discussed. Material and Methods: In a pig model of orthotopic left-sided lung transplantation we investigated the effect of Euro-Collins solution (EC: n=6) versus low potassium dextran (LPD: Perfadex(R): n = 6). Sham-operated (n = 6) animals served as control. Transplant function, cellular energy metabolism and endothelial morphology served as parameters. In a clinical investigation, 124 patients were evaluated following single (EC: n = 31; LPD n = 37) or double (EC: n = 17; LPD n = 39) lung transplantation, whose organs where preserved with EC (n = 48) or LPD (n = 76). Duration of ischemia, duration of ventilation and stay on ICU were registered. Primary transplant function was evaluated according to AaDO(2) values. Cause of early death (30 days) was declared. Results: Experimental results: After flush with EC and 18 h ischemia, a reduction of tissue ATP content (p < 0.01 vs inital value and LPD) was noted. Endothelial damage after ischemia was severe (p < 0.05 vs control), paO(2) was significantly decreased. Clinical results: In the LPD group, duration of ischemia was longer for the grafts transplanted first (SLTx and DLTx: p = 0.0009) as well as second (2. organ DLTx: p = 0.045). Primary transplant function was improved (day 0: SLTx: p = 0.0015; DLTx: p = 0.0095, both vs EC). Duration of ventilation and stay on ICU were shorter (n.s.). Reperfusion injury-associated death was reduced from 8% (EC) to 0 (LPD). Conclusion: In experimental lung preservation, LPD lead to an improved graft function. These results were confirmed in clinical lung transplantation. Clinical lung preservation, therefore, should be carried out by use of LPD. Copyright (C) 2002 S. Karger AG, Basel

    Rotating Directional Solidification of Ternary Eutectic Microstructures in Bi-In-Sn: A Phase-Field Study

    Get PDF
    For the first time, the experimental processing condition of a rotating directional solidification is simulated in this work, by means of a grand-potential-based phase-field model. To simulate the rotating directional solidification, a new simulation setup with a rotating temperature field is introduced. The newly developed configuration can be beneficent for a more precise study of the ongoing adjustment mechanisms during temperature gradient controlled solidification processes. Ad hoc, the solidification of the ternary eutectic system Bi-In-Sn with three distinct solid phases α,β,δ is studied in this paper. For this system, accurate in situ observations of both directional and rotating directional solidification experiments exist, which makes the system favorable for the investigation. The two-dimensional simulation studies are performed for both solidification processes, considering the reported 2D patterns in the steady state growth of the bulk samples. The desired αβαδ phase ordering repeat unit is obtained within both simulation types. By considering anisotropy of the interfacial energies, experimentally reported tilted lamellae with respect to normal vectors of the solidification front, as well as predominant role of αβ anisotropy in tilting phenomenon, are observed. The results are validated by using the Jackson–Hunt analysis and by comparing with the existing experimental data. The convincing agreements indicate the applicability of the introduced method

    Processing and Transmission of Information

    Get PDF
    Contains reports on three research projects

    Bioeconomics and biodiversity in harvested metacommunities : a patch-occupancy approach

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecosphere 6, no. 11 (2015): 1-18, doi:10.1890/ES14-00503.1.We develop a coupled economic-metacommunity model to investigate the trade-off between diversity and profit for multispecies systems. The model keeps track of the presence or absence of species in habitat patches. With this approach, it becomes (relatively) simple to include more species than can typically be included in models that track species population density. We use this patch-occupancy framework to understand how profit and biodiversity are impacted by (1) community assembly, (2) pricing structures that value species equally or unequally, and (3) the implementation of marine reserves. We find that when local communities assemble slowly as a result of facilitative colonization, there are lower profits and optimal harvest rates, but the trade-off with diversity may be either large or small. The trade-off is diminished if later colonizing species are more highly valued than early colonizers. When the cost of harvesting is low, maximizing profits tends to sharply reduce biodiversity and maximizing diversity entails a large harvesting opportunity cost. In the models we analyze, marine reserves are never economically optimal for a profit-maximizing owner. However, management using marine reserves may provide low-cost biodiversity protection if the community is over-harvested.This research was supported by The Seaver Institute and the National Science Foundation (OCE-1031256) through grants awarded to J. B. Kellner and M. G. Neubert. E. A. Moberg was funded by NSF GRFP number 1122374 and MIT's Ida Green Fellowship
    • …
    corecore