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ABSTRACT 

Kellner, Olivia B. Ph.D., Purdue University, May 2015. A Hydroclimatic Assessment of 

the U.S. Corn Belt across Spatial and Temporal Scales. Major Professor: Dev Niyogi. 

 

 

 

The term hydroclimate is used to describe the climate of a given location as 

determined by the incident radiant energy (temperature) and the existence of water in its 

various forms on Earth.  Two types of climate comprise the science of hydroclimatology: 

the climate as established by general global circulation patterns at specific locations on 

Earth (large-scale climate) and the climate established at Earth’s surface resulting from 

the daily fluxes of radiant energy and water in its various forms between the atmosphere, 

Earth’s surface, and the subsurface (local-scale climate) (Shelton 2009).  This dissertation 

investigates different spatial and temporal scales of the U.S. Corn Belt hydroclimate and 

includes analysis of large- and local-scale hydroclimatic feedbacks.  Large-scale 

hydroclimate research in this assessment investigates how general circulation patterns 

and teleconnections, specifically the El Niño-Southern Oscillation and the Arctic 

Oscillation, influence climate variability in the form of temperature and precipitation 

patterns across the U.S. Corn Belt with findings applicable to agricultural decision 

making.  A large- and local-scale hydroclimatic assessment examines the rainfall 

contribution of land-falling tropical cyclones to the Eastern U.S. Corn Belt.  Locale-scale 

hydroclimate research considers the role of land-surface feedbacks in the life cycle of 

land-falling tropical cyclones.  Results from the assessments that comprise this 

dissertation show that the spatial and temporal scales at which hydroclimatic feedbacks 

are examined are important to the understanding of hydroclimate system interactions.  It 

is suggested from the results of this comprehensive assessment that the newly identified, 

large- and local-scale hydroclimatic feedbacks be given stronger consideration in
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forecasts and climate projection models.  Additionally, it is suggested that more 

hydroclimate assessments across spatial and temporal scales be completed to better 

prepare for and mitigate the effects of projected climate variability and climate change.  

A framework for climatological applications to agronomy is discussed in the first chapter, 

with the findings of the hydroclimatological assessments in subsequent chapters primarily 

applied to agronomic decision making. 
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CHAPTER 1. INTRODUCTION 

Scientific investigation of the U.S. Corn Belt hydroclimate using historical, 

observed climate data, as well as use of numerical weather prediction models, allows for 

hydroclimatic relationships across spatial and temporal scales to be better understood by 

climate scientists.  A deeper understanding of hydroclimatic relationships across the U.S. 

Corn Belt is identified in the following chapters and appendices through scientific 

investigation inclusive of climate variability, natural change, and anthropogenic 

influences.  The deeper understanding of hydroclimatic relationships found by these 

studies provides climate scientist with better adaptive and mitigative strategies to 

intervene in the current course of history that looks to place Earth in a more 

hydroclimatologically volatile state.  The goal of this hydroclimatic assessment of the 

U.S. Corn Belt is to obtain a better understanding of hydroclimatic relationships across 

spatial and temporal scales that primarily result from climate variability, and apply the 

findings to agronomic decision making. Additional results are found to be applicable to 

tropical cyclone forecasting with the goal to improve inland tropical cyclone forecasts.   

Hydroclimatology is a complex science.  It is the combination of weather, climate, 

and hydrology, and to understand the importance of hydroclimatological research and its 

applications, a brief summary of hydroclimatology is provided in the remaining sections 

of Chapter 1.  Hydroclimatic assessments of different spatial and temporal scales across 

the U.S. Corn Belt are provided in subsequent chapters. 

1.1 Weather and Climate 

Each day at different locations around the world weather occurs.  The “average” 

weather conditions the world experiences through time is defined as climate.  Weather
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and climate conditions determine the clothing people wear, agricultural production and 

food supplies, energy demand, ease of transportation, recreational activities, and 

ultimately influence the establishment of societies and economies.  Weather is the 

immediate state of the atmosphere at a given time and place, and includes variables such 

as wind, temperature, precipitation, pressure, sky cover, and atmospheric phenomena. 

Weather is responsible for billions of dollars in damages to buildings and infrastructure 

each year often as the result of extreme climate events such as droughts, floods, record 

snowfall events, highly active hurricane or wildfire seasons, and tornado outbreaks 

(Smith and Katz 2013).  Through time, weather and extreme weather events culminate to 

define a location or region’s climate.  The hydroclimatological analysis across spatial and 

temporal scales in this dissertation will investigate hydroclimatic relationships and 

interactions primarily affecting the agriculture industry, with a secondary focus on land-

surface interactions driven by climatologically anomalous environments. 

The most commonly observed weather variables that meteorologists and 

climatologists collect to monitor changes in weather and climate are precipitation: hourly, 

daily, and monthly; and temperature: daily average, maximum, and minimum for the 24-

hour day, the month, season, and year (e.g. Georgakakos et al., 1995; Dessler 2012).  

Additional variables include insolent solar radiation, cloud cover, snowfall, snow depth, 

rain free days, sunshine hours, wind speed, and direction (Kellner and Niyogi 2014). 

  Climate is most commonly defined by a region’s observed temperature and 

precipitation patterns across monthly, seasonal, and annual time scales (Dessler 2012) 

which are common climatological parameters of hydroclimate investigations (e.g. 

Grundstein and Bentley 2001).  Climate classification systems (e.g. Köppen Climate 

Classification and Holdridge Life Zone System) have been developed over time and 

applied around the world to better understand weather and climate systems (Kellner and 

Niyogi 2014).   

While primarily defined by temperature and precipitation, a climate system is 

highly complex.  The phase change of water (precipitation in its varying forms) stores or 

releases heat energy obtained from solar radiation in the climate system and across 

subsystems.  Temperature influences the rate of evapotranspiration by determining how 
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much water air can hold in vapor form.  The relationship between temperature and 

saturation vapor pressure of water determines when the phase change of water vapor to 

water occurs, leading to precipitation in various forms (Oke 1987; Stull 1988; Shelton 

2009).  With a greater understanding of moisture and energy fluxes across spatial and 

temporal scales of  climate systems having been obtained in recent decades with the use 

of remotely-sensed technologies (Kellner and Niyogi 2014), evapotranspiration and soil 

moisture values are considered additional primary variables in hydroclimatological 

analysis (e.g. Georgakakos et al., 1995, Cayan and Georgakakos 1995; and Grundstein 

and Bentley 2001). 

1.2 Large and Local Scale Climate 

Due to its complex physical and thermodynamic nature, climate is referred to as 

large-scale climate or local-scale climate.  The two types of climate are sometimes 

referred to as climate of the first kind and climate of the second kind (e.g. Shelton 2009).  

Large-scale climate focuses on weather and temperature patterns as established by 

general atmospheric circulation (i.e. Hadley, Ferrel, and Polar cells and jet streams).  

General atmospheric circulation is driven by the transmission, absorption, and reflection 

of solar radiation through Earth’s atmosphere that strikes Earth’s surface at different 

angles and intensity depending on latitude.  Due to uneven surface heating, temperature 

gradients develop within circulation cells leading to the generation of jet streams as 

defined by the hypsometric equation and thermal wind relationships (e.g. Holton 2004).  

Jet streams can be influenced by large-scale topographic features such as the Rocky 

Mountains (Holton 2004), and serve as steering currents for storm systems helping to 

further establish temperature and rainfall regimes around the globe.  Large-scale energy 

and moisture fluxes such as those seen with airmass movement are further embedded 

within general atmospheric circulation cells and jet streams. 

Local-scale climate is viewed separately from general atmospheric circulation 

patterns and primarily driven by the daily fluxes of heat and moisture between the 

overlying atmosphere (the planetary boundary layer), the land surface, and subsurface (i.e. 

surface and subsurface hydrology) (Shelton 2009).  Local-scale serves as the foundation 
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of the science of hydroclimatology.  Local-scale climate is a merger of meteorological 

and hydrological processes that govern climate at Earth’s surface (e.g. Cayan and 

Georgakakos 1995; Georgakakos et al., 1995; Shelton 2009).  While surface 

runoff/overland flow, streams, rivers, reservoirs, and lakes are a large component of 

hydrology, they are not reviewed or researched in detail in this dissertation.  While local-

scale climate is considered the foundation of hydroclimatology, it is large-scale climate 

that establishes local-scale climates around the world.  Thus, local-scale climate cannot 

be reviewed without considering large-scale climatic influences on the local-climate 

system. 

1.3 Climate, Climate Variability, and Climate Change 

The weather patterns that defined a region’s climate are relatively constant when 

observed across large time frames (e.g. hundreds of years), but a climate system does 

experience episodes of climate variability (Dessler 2012; Shelton 2009).  A climate 

system can undergo a systematic change (i.e. climate change) which influences the base-

state of the climate system and shifts the annual balance of temperature and precipitation 

(e.g. warmer/colder or wetter/drier) in a direction different than previously established 

(Glickman 2000a), or a climate system can experience episodes of climate variability.  

Climate variability and climate change result from different physical processes in the 

Earth-atmosphere system, but are most commonly caused by natural processes of the 

Earth-atmosphere system and anthropogenic drivers, respectively.  Climate variability 

occurs in a given climate when higher than normal or lower than normal temperature or 

precipitation patterns occur as a result of variability in atmospheric circulation patterns 

(i.e. teleconnections), leading to climatologically anomalous conditions.  However, 

despite the occurrence of these extreme conditions, when averaged through time, a 

systematic change in the climate system does not occur.  Recalling the definition above, 

climate change is defined as a systematic shift in temperature or precipitation patterns 

established as normal by the previous climate system resulting in a new average base 

state (Dessler 2012; Glickman 2000a).   
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1.3.1 Causes of Climate Variability and Change 

1.3.1.1 Climate “Normal” 

To better track and understand the possible natural and anthropogenic drivers of 

climate variability and change, the variable “climate normal” was developed to serve as a 

metric to which current weather conditions and observations are compared.  Climate 

normals are most commonly the average value of a given climate variable over a 30-year 

period of record.  Thirty years is the time frame chosen for climate normal computation 

because it is considered long enough to capture systematic changes in the “noise” of the 

atmospheric system found across shorter time scales, but is not a long enough time frame 

to smooth out decadal changes in climate (WMO 2014).  Quality control efforts in the 

form of algorithms to account for possible observational errors or to adjust for 

measurements being reported at different times during the day have been implemented in 

recent decades (Durre et al., 2010).  The climate normal is used to determine whether 

climate variability or climate change is occurring, and once climate variability or climate 

change processes are identified, climate scientists seek to identify the drivers of climate 

variability or change. 

1.3.1.2 Physical Drivers of a Climate System   

Physical drivers of a climate system are natural processes occurring within the 

Earth-atmosphere system or result from human (i.e. anthropogenic) interactions with the 

climate system.  Natural drivers of variability and change in a climate system include 

teleconnection patterns, solar cycles, eccentricity and tilt of the Earth on its axis, volcanic 

eruptions, natural aerosols such as seas spray from the ocean surface, pollens, or volcanic 

ash, and fluctuations in the amount of water vapor in the atmosphere.  Anthropogenic 

drivers of climate variability and change include greenhouse gas (GHG) emissions, 

combustion of fossil fuels such as coal and oil for energy, land use change (e.g. urban 

sprawl, deforestation), aerosols resulting from factory emissions and vehicle exhaust, and 

socio-economic drivers such as governmental policy related to the burning of fossil fuels 

or deforestation for agriculture (Dessler 2012; Melillo et al., 2014; Robinson and 

Henderson-Sellers 1999; Shelton 2009). 
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1.3.2 The Climate System 

A system is defined as a regularly interacting or interdependent group of items 

that form a unified whole (Merriam-Webster 2014).  In this case, a climate system (the 

unified whole) is comprised of numerous geophysical spheres of science (components 

forming the unified whole): the hydrosphere (surface and subsurface hydrology), the 

atmosphere, the lithosphere (soils, rocks, and topography), the biosphere (vegetation, 

biota, and human life), and the cryosphere (frozen water/ice which impact surface albedo) 

(Shelton 2009).  Each of these spheres is itself a separate physical system, but each 

system is linked to one or more of the others systems through the common molecule of 

water.  Water passes through each of these subsystems in a climate system in its various 

physical forms: solid, liquid, or gas. As previously mentioned, the phase change of water 

through climate systems is a result of solar radiation.  Solar radiation is the primary driver 

of the phase changes of water within and between these systems, and is the primary 

driver of convective transport across spatial and temporal scales (Shelton 2009; Dessler 

2012). 

1.3.2.1 Radiation and Earth’s Energy Balance 

The sun emits black body radiation in various wavelengths that strike Earth 

providing heat to the Earth’s surface and atmosphere through visible and non-visible 

wavelengths of energy.  The amount of solar radiation entering the Earth-atmosphere 

system has been relatively constant through time with observations of approximately 

1367 W/m
2
 at the top of the atmosphere and 287 W/m

2
 on average at Earth’s surface 

(Oke 1987; Stull 1988).  However, values of incident solar radiation and the amount of it 

absorbed at the surface can vary at a given location based on cloud cover, latitude and 

longitude, land cover type, and surface albedo (Farmer and Cook, 2013; Oke 1987; 

Robinson and Henderson-Sellers 1999; Stull 1988).  On a given day or even over a 

season, Earth’s radiation budget is typically not balanced.  This results in uneven heating 

of Earth’s surface initiating and driving convective processes (Farmer and Cook, 2013; 

Oke 1987; Shelton 2009; Stull 1988).  The study of radiation-driven water movement 

through the atmosphere and the hydrosphere (and its terrestrial components of overland 
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flow, runoff, rivers, streams, and subsurface water flow) comprises the study of 

hydroclimatology (Shelton 2009).  Subsystems of the hydrosphere and atmosphere are 

further linked by energy exchanges and moisture fluxes through Earth’s surface and 

subsurface (i.e. the lithosphere) (e.g. Georgakakos et al., 1995).   

1.3.2.2 Climate System Interactions 

While the term “climate system” is singular, hundreds of climate systems exist 

globally spanning different spatial and temporal scales (Farmer and Cook, 2013; Shelton 

2009).  A climate system(s) can be part of a larger climate system.  The Earth’s climate 

system is considered a closed system, but climate systems spanning different spatial and 

temporal scales on Earth are open systems that regularly interact with each other.  An 

example of an open climate system is the local urban climate established by the city of 

Indianapolis.  The urban climate of Indianapolis contributes towards the state of Indiana’s 

overall climate because its daily temperature and precipitation are used in calculations for 

state seasonal and annual climate normals.  Expanding to an even larger spatial extent, 

Indiana’s climate contributes to the overall climate of the Midwest United States.  

1.3.2.3 Spatial and Temporal Scales of Climate Systems 

The spatial and temporal scales of meteorology readily apply to the field of 

hydroclimatology (Shelton 2009).  Meteorological spatial and temporal scales include the 

microscale, the mesoscale, the synoptic scale, and the planetary scale (Orlanski 1975).  

The microscale ranges from less than one meter to one kilometer (km) and temporally 

encompasses phenomena that last seconds to minutes.  Weather phenomena at the 

microscale include turbulent eddies and boundary layer phenomena.  The mesoscale 

spatially ranges from one km to tens of kms (up to 100 km) and includes weather 

phenomena lasting several minutes to hours (thunderstorms and tornadoes).  The synoptic 

scale includes weather systems such as low-pressure systems that span 100 km to 1000 

kms and last several days to a week.  The planetary scale includes those atmospheric 

processes that span spatial scales of 1000s of kms and last several weeks to months.  The 

strength and orientation of the jet stream(s) as a series of troughs and waves are examples 
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of the planetary scale (Orlanski 1975).  The translation of the spatial and temporal scales 

of meteorology to that of applied hydroclimatology is not overly complex.  

Microclimates are climates such as those that exist on the surface of a leaf or 

around the body of an animal and changes in temperature and moisture are monitored 

over seconds to minutes. Mesoscale climates are typically captured by average daily 

maximum and minimum temperatures, precipitation, and hours of sunlight.  Spatially, 

mesoscales climates would span several counties in a state (i.e. roughly 50-100 square 

miles).  The mesoscale also includes the daily radiation balance of incoming (K↓) and 

outgoing shortwave (K↑) radiation (via scattering, reflection from clouds) and incoming 

(L↓) (via backscattering, reflection, or absorption and reemission from clouds) and 

outgoing (L↑) longwave radiation between the Earth’s surface and the atmosphere 

(quantified by the equation: Rn = K↓ – K↑ + L↓ – L↑).  The daily radiation balance 

between the surface and the atmosphere is inclusive of energy and moisture fluxes such 

as latent heat (LE), sensible heat (H), and ground heat flux (G) and is quantified by the 

equation Rn = LE + H + G (Farmer and Cook, 2013; Oke 1987; Stull 1988).  In regards to 

the hydroclimate, atmospheric phenomena such as tornadoes, sea-breeze fronts, and 

atmospheric boundaries within the boundary layer (their return frequency, intensity, and 

duration) are part of mesoscale hydroclimate system (Shelton 2009).   

Synoptic scale hydroclimatology encompasses weather and climatic processes 

across spatial scales of several hundred miles and includes high and low pressure systems, 

hurricanes, and monsoons and the associated climatological rainfall established by the 

recurrence of these atmospheric phenomena in a given area.  Hydroclimatological 

averages of temperature and precipitation spanning several weeks to months and seasons 

bridges the gap between the synoptic and planetary scales in hydroclimatology.  Drought 

resulting from prolonged atmospheric ridging results in warmer than normal surface 

temperatures because of minimal cloud cover, increased sensible heat flux, and little 

evapotranspiration.  This scenario is a prime example of synoptic and planetary scale 

hydroclimatology interacting with each other.   

The jet stream is the primary atmospheric component of the planetary scale of 

hydroclimatology, and it is the main driver of climate variability.  The strength and 
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orientation of the jet stream results from global temperature gradients and from 

teleconnection patterns.  Teleconnections further influence temperature and precipitation 

regimes of locations downstream (e.g. Cayan and Georgakakos 1995; Robinson and 

Henderson-Sellers 1999). Teleconnections are identified weather phenomena occurring in 

parts of the world separated by large distances that influence weather elsewhere 

(Glickman 2000b).  Examples include the El Niño Southern Oscillation, Pacific North 

American pattern, the North Atlantic Oscillation, and the Madden-Julian Oscillation 

(Shelton 2009; Robinson and Henderson-Sellers 1999). Climate change will occur over 

the time span of years, thus is not part of the meteorological spatial and temporal 

classification scheme.  However, how hydroclimatological parameters change at the 

different spatial and temporal scales through time helps determine if climate change is 

occurring (Dessler 2012; Shelton 2009). 

1.3.3 Climate System Components and Interactions 

 Climate systems interact with each other across all five spheres through sub-

system interactions that vary spatially and temporally (Shelton 2009).  Because each of 

the five spheres encompasses the movement of energy, mass, and momentum through 

them via various processes, a climate system is a highly intricate.  The lithosphere 

moderates the flow of water on and through the land surface, which either recharges 

ground water or is utilized by vegetation.  Vegetation is a representation of the biosphere, 

which transpires, releasing water vapor back into the atmosphere.  The flow of water over 

the land surface, through the land surface into the ground, and back into the atmosphere 

encompasses the hydrosphere.  All of these cyclical processes are driven by solar 

radiation that in addition to those moderators of solar radiation previously discussed, is 

also impacted by the cryosphere.  Ice and snow cover, glaciers, sea ice, and permafrost all 

play a large role in planetary albedo and Earth’s radiation balance (Farmer and Cook, 

2013; Shelton 2009).  

1.3.3.1 Large-scale Climate: General Atmospheric Circulation 

As previously discussed, climate systems and associated subsystems interact with 

each other across spatial and temporal scales.  General atmospheric circulation is driven 
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by the Hadley, Ferrel, and Polar circulation cells, which result from the uneven 

distribution of solar radiation and subsequent heating of the atmosphere across Earth’s 

surface.  Landmass location (northern vs. southern hemisphere), landmass size, 

surrounding ocean size, and different angles at which solar radiation strikes Earth’s 

surface result in convection currents that drive circulation from the tropics (regions of 

excess heat) to the poles (regions that are heat deficient).  Between these convectively 

driven circulation cells, jet streams form due to the presence of baroclinicity (sharp 

contrasts in temperature and moisture between circulation cells) as described by the 

thermal wind and the hypsometric equation.  Earth’s rotation on its axis further 

contributes to the evolution of general atmospheric circulation patterns as it leads to the 

formation of planetary wave features embedded within jet streams.   

1.3.3.2 Local-scale Climate: Land Surface Interactions 

Land surface interactions are documented across spatial and temporal scales, with 

larger spatial scale land surface interactions being able to influence large-scale climate 

(i.e. atmospheric flow and circulation).  Vegetated land surfaces are often cooler and 

more humid than a bare soil land surfaces.  The different temperature and moisture 

properties of these land surface types impacts the structure of the planetary boundary 

layer (PBL) which can further impact atmospheric processes in the PBL (Oke 1987; Stull 

1988).  An example of land surface interactions at large spatial scales is the general 

understanding (as established through years of research) that sufficient rainfall (occurring 

on mesoscale to synoptic scales) over time and space results in cooler and wetter ambient 

conditions while drier conditions over time and space (mesoscale to synoptic scale) result 

in a feedback of drier, hotter conditions which can lead to drought (e.g. Wolfson et al., 

1987; Georgakakos et al., 1995; Grundstein and Bentley 2001; Pal and Eltahir 2003).  It 

has been recognized that prolonged drought of large spatial extent can contribute to 

intensified high pressure systems and shifts in the jet stream (planetary scale), 

manifesting into the established large-scale climate (e.g. Pal and Eltahir 2003).  Detailed 

discussion of land surface interactions at more finite spatial and temporal scales is in the 

following sections.  
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1.3.3.3 Large- and Local-scale Climate Merger 

In addition to land surface interactions at larger spatial scales, as just discussed, a 

simple example of how large-scale and local-scale climate merge is exemplified by 

coastal climates.  Because land has a lower heat capacity than water, the land surface 

heats faster during the day (greater sensible heat flux) than ocean waters which results in 

a sea breeze (winds move from the ocean towards inland).  At night, once the land 

surface cools (sensible heat flux becomes lower than that over the ocean), the ocean is 

now warmer than the land due to water’s high heat capacity and a land breeze is 

generated.  The moderation of ocean temperatures occurs over weeks to months, while 

the daily radiation balance impacts land temperature over several hours (Farmer and 

Cook, 2013; Robinson and Henderson-Sellers 1999; Shelton 2009).  This relationship 

between land and water is why coastal climates are often described as moderate climates.  

Coastal climates experience variation in a 24-hour period but experience little variation 

over long time frames.  Specific types of coastal climates, such as the Mediterranean 

climate, are a result of local scale coastal climates being influenced by the general 

circulation established by the Ferrell circulation cells and the Westerlies (large-scale 

climate).  

1.3.3.4 Climate System Land Surface Components 

The feedbacks between climate systems and sub-systems are determined by solar 

radiation and land surface properties that govern the surface radiation balance.  Such land 

surface properties include vegetation type, height, and density, topography, soil type and 

associated hydraulic and thermodynamic properties, and albedo.  All of these factors 

influence the transfer of heat, moisture, and momentum between the atmosphere, the land 

surface, and the sub surface (Farmer and Cook, 2013; Oke 1987; Shelton 2009; Stull 

1988).  The dynamic interactions of heat and moisture through the land surface are 

ultimately governed by the state of soils, making a soil’s hydraulic and thermodynamic 

characteristics one of the primary hydroclimatological parameters driving local-scale 

climate (e.g. Georgakakos and et al., 1995), and at large enough spatial and temporal 

scales, large-scale climates as previously discussed.   
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1.3.3.4.1 Vegetation 

 Vegetation is part of the biosphere in the climate system model and is a 

characteristic and a component of the Earth’s land surface.  Vegetation is important to 

climate systems in that it absorbs radiation to use for photosynthesis and releases 

moisture in the form of water vapor as it transpires to prevent overheating.  Transpiration 

releases water vapor into the overlying atmosphere, cooling temperatures and raising the 

moisture content of air.  Vegetation is also reflective to certain wavelengths of radiation, 

and vegetation disturbs surface air flow, contributing to the evolution of turbulent eddies.  

Vegetation density (amount of vegetation per unit area) can affect how much water vapor 

is released in a given area, how much radiation is absorbed or reflected, and effects how 

much rainfall reaches the soil.  Vegetation stands with a thick canopy will not allow 

rainfall to reach soils while a less dense canopy allows for rainfall to hit the surface, 

infiltrate and percolate through the soil to feed plants or recharge the ground water (Oke 

1987; Noilhan and Planton 1989; Shelton 2009).   

1.3.3.4.2 Topography 

 Topography is a word used to describe the height, shape, and slope of the land 

surface and is part of the lithosphere.  Mountains and valleys are types of topography and 

all topography can influence climate.  Mountains moderate airflow, result in orographic 

lift and subsequent rainfall and rain shadow regions, and depending on axial orientation, 

strongly influence the surface energy balance (Farmer and Cook 2013; Robinson and 

Henderson-Sellers 1999; Shelton 2009).  A mountain range that runs north to south will 

heat up early in the morning on the east facing slopes driving convective over-turning in 

the boundary layer nearby.  Valleys are typically cooler than mountains and hold larger 

amounts of moisture due to a decrease in direct solar radiation and subsequent 

evapotranspiration.  Valleys also channel airflow and are common sources of valley 

winds.  

1.3.3.4.3 Soils 

Also part of the lithosphere, soils are a crucial component in understanding the 

behaviors of the hydrosphere and atmosphere.  Soil properties such as texture, porosity, 
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permeability, thermal properties such as heat capacity, conductivity, and thermal 

diffusivity strongly influence how solar radiation and moisture are transferred between 

the land surface and atmosphere which influences evapotranspiration, conduction, and 

convection rates.  Additionally, these properties influence the amount of soil moisture 

recharge, rate of water infiltration, and surface runoff (Oke 1987; Chow et al., 1988; Stull 

1988). 

Soil texture describes the size of the soil grain and is most commonly classified as 

sands (coarsest), silts, or clays (finest).  Porosity describes the open space between soil 

particles which is determined by soil texture.  Porosity determines the rate of water 

infiltration at the land surface and also determines ground water movement.  Permeability 

describes how fast water moves through a type of soil.  Those soils with high porosity 

(large pore spaces) are good hydraulic conductors.   

Thermal properties of soil such as heat capacity, thermal conductivity, and 

thermal diffusivity determine how fast radiative heat is transferred through soil (Chow et 

al., 1988; Shelton 2009).  Soil heat capacity is a function of the mineral organic content 

(what the soil particle is made of) and water content of the soil.  Sand has the highest heat 

capacity while clay has the lowest heat capacity.  Thermal conductivity of soils is a 

function of soil texture (particle size) and moisture.  Thermal conductivity has different 

relationships for each soil type; however, most soils follow an exponential increase in 

thermal conductivity based on soil volumetric water content.  Sand has the highest 

thermal conductivity and clay has the lowest.  Thermal diffusivity of soils describes the 

rate of transfer of heat through the soil medium (or rate of ground heat flux) (Chow et al., 

1988).  How fast heat is transferred to and from the soil can impact vegetation growth 

(such as with corn), and if the land surface is bare, how fast the atmospheric boundary 

layer becomes unstable due to a high sensible heat flux.  While hydraulic and thermal 

characteristics of soil can be considered a separate subsystem within the hydrologic cycle, 

soils have a large influence on vegetation (the biosphere) and the overlying atmospheric 

profile, and further interaction with the atmosphere and hydrosphere can occur (e.g. 

Grundstein and Bentley 2001).  
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1.3.3.4.4 Albedo 

Albedo is the term used to describe the ratio of total incoming solar radiation to 

the amount of radiation that is reflected back the atmosphere (Dessler 2012; Oke 1987; 

Stull 1988).  Simply stated albedo is essentially Earth’s reflectivity.  Albedo is largely 

determined by characteristics of the surface struck by solar radiation.  Atmospheric 

radiation is transmitted through the atmosphere whereupon striking a cloud or the land 

surface, it can be further transmitted, reflected, scattered, or absorbed (Dessler 2012; Oke 

1987; Stull 1988).  Scattering and absorption are properties of albedo (reflection), as a 

surface with a high albedo will act to reflect and scatter the solar radiation further 

whereas surfaces with low albedo will absorb the solar radiation and retain that energy as 

heat.  Albedo thus plays a direct role in the partitioning of heat fluxes at the land surface.  

Clouds can be highly reflective based on their composition or may absorb solar radiation 

(Dessler 2012; Oke 1987; Stull 1988).  Land surface types such as concrete, granite, 

limestone, light-colored soils such as white sand, and water have a high albedo.  Low 

albedo surfaces include asphalt, red and brown brick, and dark, wet soils with high 

organic content (Oke 1987; Lobell and Asner 2002).   Vegetation primarily has lower 

albedos ranging from 10% to 30% because it absorbs solar radiation for photosynthetic 

processes (Oke 1987, Ahrens, 2006). 

1.3.3.4.5 Land Surface Interactions 

 The intricate study of heat, moisture, and momentum fluxes between the 

subsurface, the land surface, and the atmosphere nearest to Earth’s surface is local-scale 

climate.  Focused study of local-scale climate is referred to land surface interactions, and 

is a crucial part of hydroclimatology (Shelton 2009).  Land surface feedbacks related to 

meteorological processes such as convection and precipitation may result from 

discontinuities in land surface type.  When the land surface changes from one type to 

another, such as a forest to open grassland, the differing radiative and moisture balances 

(sensible and latent heat fluxes) and momentum fluxes (resulting from changes in surface 

roughness and wind direction and speed) from these surfaces can generate different 

atmospheric environments above them (e.g. Mahmood et al. 2011) in the PBL that can 
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lead to the development of non-classical mesoscale circulations such as land-breezes (e.g. 

Mahfouf et al. 1987; Segal and Arritt 1992) and help trigger convection (Baidya and 

Avissar 2000; Clark and Arritt 1995; Desai et al. 2006; Pielke 2001).  A change in the 

land surface type across a spatial area is referred to as land surface heterogeneity and is a 

topic of meteorological and hydroclimatological studies.  Soil moisture and albedo can 

contribute to land surface heterogeneity as well.  Large urban areas are often categorized 

as having their own climate due to high sensible heat fluxes from high albedo surfaces, 

high thermal conductivity, and low latent heat fluxes due to lack of vegetation (Oke 

1987).  An urban center in the middle of a vast expanse of agricultural farmland or 

relatively flat terrain could also serve as an example of land surface heterogeneity. 

1.3.4 Hydroclimatology as a Comprehensive Science 

Through the discussion of weather, climate, and water laid forth in previous 

sections, hydroclimatology can be more precisely defined as the science of the cycling of 

water through the climate system.  It incorporates the disciplines of hydrology (surface 

and sub-surface) and meteorology/climatology into one science to understand the transfer 

of water between the atmosphere and the land surface as driven by solar radiation, land 

surface characteristics (vegetation cover and type, land use type, soils, topography, 

proximity to water bodies, etc.), and atmospheric circulation across spatial and temporal 

scales of millimeters to kilometers and seconds to weeks (Shelton 2009).  Solar radiation 

drives atmospheric circulation which contributes to local weather patterns and the 

establishment of local climate systems through time (e.g. Farmer and Cook 2013; Shelton 

2009). 

1.3.4.1 History 

 While the earth is 4.6 billion years old, understanding Earth’s hydroclimatological 

past is extremely difficult due to the vast temporal void of weather and climate records 

chronicled by humans with instrumentation. Efforts for standardized record keeping of 

weather and climate data began approximately in the last 150 years.  This short time 

frame limits scientific ability to detect changes in hydroclimates.  Even with paleoclimate 

and proxy data sources, human understanding of Earth’s hydroclimatological history 
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remains limited (Farmer and Cook 2013; Shelton 2009).  Despite having such a limited 

climatic dataset, recent scientific developments in instrumentation and computation have 

advanced understanding of weather and climate.  Precision measurement of climate 

variables at microscale level, the development and use of satellite and remote sensing 

platforms for enhanced observation, measurement, and assimilation into forecast models, 

and improvements in numerical weather and climate prediction models has provided for a 

better understanding of Earth’s hydroclimate and the possible future scenarios of Earth’s 

hydroclimate(s) under climate change (Shelton 2009).   

1.3.4.2 Future 

 Weather and climate models are computer programs comprised of numerous 

algorithms that execute mathematical diagnostic and prognostic differential equations 

when provided with input data (weather data).  Models of this nature are deterministic 

modeling systems.  While forecast accuracy of these systems has improved through time 

and are currently able to capture past cycles of climate variability (i.e. hind-casting) and 

forecast near real-time severe weather events, high accuracy of current weather and 

climate models remains a challenge because weather and climate systems are dynamical, 

chaotic systems.  This leaves levels of uncertainty and unknowns, especially when 

forecasting future climate scenarios.  Despite model uncertainty, global and regional 

climate models concede that under a warming climate scenario, changes will occur in the 

spatial and temporal distribution of rainfall.  For the Midlatitudes, rainfall events are 

expected to become more intense, be of shorter duration, and have longer dry periods 

between events (IPCC 2014; Melillo et al., 2014).  This shift in the hydroclimate has 

implications to water supplies, storm water runoff drainage systems, urban structures and 

development, agriculture, and recreation (IPCC 2014; Melillo et al., 2014).    

Despite having an understanding of how large-scale and local-scale climate 

interact with each other, the projected shifts in temperature and precipitation under future 

climate change scenarios will further impact the environments and behaviors of currently 

established hydroclimates. Urban sprawl and changes to land use and land cover are 

additional anthropogenic sources of climate modification to consider in future 

hydroclimates (IPCC 2014).  Urban sprawl and changes in land use or land cover will 
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introduce new land surfaces possessing different radiative/thermodynamic and 

hydrodynamic properties.  This leads to changes in heat and moisture fluxes between the 

overlying atmosphere and land surface which can further influence rainfall and 

convection (IPCC 2014; Shelton 2009).  Under such future circumstances/scenarios, 

climate scientists expect shifts in temperature and precipitation away from climate 

normals currently established around the world (IPCC 2014).  Specifically focusing on 

the Midlatitudes, temperatures are expected to warm, with overnight low temperatures 

becoming warmer and daytime high temperatures becoming higher.  Projections of 

precipitation are not as certain as temperatures.  However, with warmer air temperatures 

the amount of water in the atmosphere is expected to increase (Melillo et al., 2014; IPCC 

2014).  This leads to the consensus of heavier rainfall events with longer dry periods 

between rainfall events (which have already been documented in parts of the U.S. – e.g. 

Kunkle et al., 2013). 

1.4 Conclusion 

Meteorology, climatology, and hydrology are sister sciences, which when analyzed 

as a comprehensive science, is known as hydroclimatology.  Climatology is the science 

of collecting, analyzing, and interpreting past weather data through spatial and statistical 

analyses (Glickman 2000c; Shelton 2009) to understand what has occurred in the past, 

what is currently happening in relation to the past, and what may happen in the future if 

certain climatological parameters change in time.  Meteorology is the science of 

observing current weather and predicting weather into the future.  Hydrology is the 

science of studying water, which is input into the hydrologic system through weather. As 

commented by Adolf von Harnack, “We study history in order to intervene in the course 

of history.” This is a statement that encapsulates the purpose of this hydroclimatological 

assessment of the U.S. Corn Belt across spatial and temporal scales. Through the 

scientific investigation of the hydroclimate system with historical, observed climate data 

discussed in the following chapters, thermodynamic and hydrodynamic climate system 

relationships are better understood across spatial and temporal scales.  With a deeper 

understanding of past and current hydroclimate relationships through detailed 
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consideration of climate variability, natural change, and anthropogenic influences, 

climate scientist can provide better adaptive and mitigative strategies to intervene in the 

current course of history that looks to place Earth in a more hydroclimatologically 

volatile state. 

 The following seven chapters investigate hydroclimatological relationships 

present primarily in the agricultural and agronomic industries.  Each chapter begins with 

an introduction to the hydroclimatological relationship(s), elements, and parameters 

discussed in that chapter, which is then followed by a comprehensive discussion of the 

hydroclimatological element at hand.  A comprehensive discussion of agroclimatology 

comprises Chapter Two.  Hydroclimatic variability resulting from teleconnections and 

the associated impacts to historic corn yields is discussed in Chapter Three.  The extreme 

hydroclimate event of drought and its impacts to agricultural production systems in the 

context of the 2012 drought is examined in Chapter Four.  Chapter Five investigates the 

role of land-falling tropical storm systems to warm season rainfall across the Midwest 

and the possible use of tropical cyclone forecasts in agricultural planning and mitigation 

of climate variability.  Hydroclimate extremes in the form soil moisture surpluses 

(wettest seasons on record) and deficits (driest seasons on record or droughts), and the 

land surface interactions of these anomalous land surface conditions to land-falling 

tropical storm systems are investigated in Chapter Six using remotely sensed datasets, 

operational datasets, and numerical weather prediction datasets.  A synthesis of findings 

with future research directions is provided in Chapter Seven. 
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CHAPTER 2.  AGROCLIMATOLOGY 

2.1 Introduction 

Agriculture is a fundamental component of human societies and economies.  The 

domestication of wild flora and fauna over thousands of years provided a pathway for the 

development of societies, development of technology, industrialization, and tremendous 

growth in human population.  Agriculture around the world sustains lives and drives 

global economies.  Domesticated plants and animals that comprise agriculture depend on 

water and temperature for sustainment, to reproduce, and to survive in different climates 

around the world.  Agronomy is the science and technology developed over centuries that 

is used to produce food (plants and livestock), fuel, and clothing.  Agroclimatology is the 

combined sciences of weather and climate (large-scale and local-scale climates) with 

agronomy.  The research and developed technologies revolving around improved 

agricultural production in regards to weather (severe storms, blizzards, and hurricanes), 

climate (changes in the return frequency of severe storms, blizzards, hurricanes), climate 

variability (increased/decreased magnitude of floods, drought, blizzards and hurricanes), 

and climate change (shift in the frequency of occurrence in the climate system) are the 

founding drivers of agroclimatology and its applications.   This chapter discusses the 

history, advancement, and application of agroclimatology over the last approximately 100 

years.
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Abstract 

This chapter provides a broad introduction to agroclimatology.   Agricultural 

productivity is intricately related to climate and a region’s soil types, hydrologic cycle, 

and meteorology.  Because of this, agronomy and climate are disciplines that are linked 

together in the science of agroclimatology: the applied science of water, soil, and crop 

management incorporating the knowledge of regional weather and climate information 

such as precipitation and temperature with an aim to improve crop yields.   The 

interlinked roles of the disciplines of soil science, surface hydrology and the hydrologic 

cycle, agronomy (i.e., crop management and biomass), and meteorology and climatology 

on agroclimatology are introduced.  A brief history of agroclimatology, discussion of 

agroclimatology and technologies associated with it today, the importance of 

agroclimatology, along with the projected path of agroclimatology into the future is 

discussed. 

2.3 Introduction  

Agroclimatology can be considered as the study of local climate (determined by 

water, soil, and radiation in a given area, along with biomass and daily weather) and that 

local climate’s interaction with agriculture and crop production for food, fiber, fuel, and 

availability of feed for livestock.  Agroclimatology can help answer questions such as: 

how do temperature and precipitation patterns affect agricultural productivity?  

Agroclimatology can have many foci: climatic influences on crop production, availability 

of feed for livestock, crop modification to help plants withstand climate extremes, 

resilience of pests, and sustaining yields in the face of an increasing world population, the 



24 

 

influence of the microscale environment on crop yield, and agroclimatic modeling [1, 2].  

An emerging feature of the agroclimatic sciences has seen studies completed to 

understand the effect of climate change on agriculture, as well as the impact of 

agriculture on regional climates [3, 4, 5, 6]. 

2.3.1 Agroclimatology in the Beginning 

The relation between world agricultural regions and global climatic patterns is 

well appreciated. It is also linked to a region’s culture with seasonal festivals and events 

which celebrate the beginning and end of growing seasons.  Agroclimatology is a 

relatively young science rooted in systematic weather observations of temperature and 

precipitation undertaken by many regional and national weather agencies such as, but not 

limited to, the United States’ National Weather Service, the Met Office of the United 

Kingdom, and the India Meteorological Department.  Large-scale weather and climate 

events such as the Dust Bowl (~1920s, 1930s, and 1950s) that struck the United States 

have also contributed to the growth and evolution of agroclimatology as a practical 

science [1, 2, 7].  Agroclimatology, can however, be traced back to the domestication of 

native plants in societies that began thousands of years ago with a series of trial and error 

with local flora. This primitive science of plant domestication sometimes led to the 

collapse of societies due to weather and climate shifts that led to prolonged drought and 

crop failures (i.e., Anasazi of North America, the collapse of Polynesian society on Easter 

Island, and Mesopotamia that spanned modern day Turkey, Syria, Iran, and Iraq) [8] 

showing the need for a detailed understanding of weather, climate, and food production.  

Successes in crop domestication through recognition of weather and climate patterns led 

to the establishment of distinctive crop growing regions such as the Fertile Crescent in 

the Mediterranean region due to its mild climate, and the U.S. Corn Belt due to its 

suitable glacial till soils and adequate rains.  These two locations are examples of the 

many suitable crop growing regions around the world where agricultural economies are 

well rooted. 

Regular weather observations began with the development of the telegraph and 

railroad networks around the world during the Industrial Revolution (mid to late 1800s) 
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which eventually led to the development of the national weather observation 

organizations across developed countries that kept record of daily weather data across the 

country.  Daily weather observations were then shared via telegraph allowing for the 

development of daily weather maps that have grown through the century into the modern 

weather maps meteorologists and climatologists use today [9].  As meteorology grew in 

the late 1800s, the development of regional weather climatologies from archived weather 

data of observed temperature and precipitation around the world began as well [2, 10].  

Building from these climatic data sets, climate systems were developed as a practical 

guide for sustaining flora and fauna.  The Köppen Climate System (1918) and the 

Holdridge Life Zones System (1947) are examples of two climate classification systems 

that characterize specified regions/climate zones based on temperature and precipitation 

(Köppen) or on precipitation, potential evapotranspiration, and humidity (Holdridge).  

These climate systems provide a quick overview of the region’s agricultural potential.   

2.3.2 Agroclimatology Today 

 In the early 1920s, the initial step of implementing agroclimatology as a 

practicing science was made by the United Kingdom Royal Meteorological Society with 

an expression of the need to study the effect of weather phenomena on crop growth and 

total yield [7].  Research investigating the impacts between climatic variables and crop 

yields began with simple regression analysis.  These analyses eventually expanded over 

subsequent decades to simple statistical and empirical crop models by the 1970s and 

1980s [1, 2, 7]. The development of remote-sensing technologies after World War II and 

into the 1970s and 1980s resulted in research programs and instruments capable of direct 

measurements of soil and moisture fluxes in the field (in situ) without human interference 

(remotely-sensed data).  Microsensors, automated weather stations, and remote-sensing 

technologies opened up a new dimension of detail in agroclimatology.  The collection of 

meteorological, biophysical, and biogeochemical variables is now available in an 

unprecedented manner and this data is used to study and develop plant/climatic 

relationships.  Some examples include assessing the effect of nitrogen levels on plant 

productivity or the effect of leaf area index on evapotranspiration and water demand in 
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local areas, each of which is used to understand crop sustenance.   This has allowed for 

much more detailed research and discoveries between crops and locally observed 

weather/climate patterns to take place [1, 2, 11].  Through the 1980s, crop modification, 

decision support systems and tools, and more detailed research have energized the 

development of crop models.  Availability of observed weather patterns and observed 

surface data at micro to county-level scales has led to a broader understanding of 

hydrologic cycles within crop-climate analysis.  Today’s crop production models can 

simulate crop physiology and productivity reasonably well and have advanced to 

incorporate climate change scenarios providing insight to the possible impacts of varying 

weather and climate conditions on crop yields.  In other words, while simple and 

statistical relations between climatic patterns and crop response continue to be important, 

there is a growing ability to develop more sophisticated, predictive tools that appear to 

adequately mimic complex agroclimatic interactions at multiple scales.  

Current efforts to improve crop production amidst shifting climate patterns and 

dynamic economies include the efforts of international research scientists and crop 

models working in sync on projects such as the Agricultural Model Intercomparison and 

Improvement Project (AgMIP) and the Decision Support System for Agrotechnology 

Transfer (DSSAT) [12,13].   Community efforts such as  AgMIP consist of specialized 

teams comprised of experts in agronomy, economics, and climate, devoted to the detailed 

study of specific crops, collaborating and comparing more than multiple crop-specific 

(such as maize, wheat, rice, and sugarcane) models for crop response to carbon dioxide 

(CO2), temperature, and other environmental factors.  The research framework model for 

such collaborative assessments is to conduct studies at different locations to represent 

variation in crop production around the world and seek to find answers to questions such 

as: are models similar when responding to climate forcing parameters such as increased 

CO2; is the accuracy of ensemble model prediction better than individual model 

prediction; and does the detail of input data into the model affect how the model responds?   

The end goals of such efforts are to increase capacity through new adaptation strategies 

and methods for major agricultural regions in the developing and developed world.  A 

number of crop models such as DSSAT, which is a compilation of crop simulation 
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models founded on soil-plant-atmosphere dynamics for more than 28 crops, are now 

routinely available.  The models simulate crop growth when given soil and 

meteorological input parameters to help assess the impacts of climate variability and 

change from farm-level to regional agricultural areas (Figure 2.1).  

2.3.3 Importance of Agroclimatology 

 Agroclimatology is important for numerous reasons.  Understanding weather and 

climatic impacts to crops and soils is important in order to feed increasing world 

populations.  It is also important in turn to economic/commodity markets, livestock 

production (a large majority of livestock feed is developed from corn), and to climatic 

risk assessment.  Agroclimatology also becomes important in cost-benefit analysis when 

considering irrigation, fertilizers, tile drainage systems, cropping systems, and yield [14]. 

The United States is the world’s largest producer of corn. Extreme climatic events 

such as the 2012 drought can greatly influence crop production/yield, drastically impact 

commodity prices, and impact the agricultural sector of the economy.  The 2012 drought 

across a large portion of the United States is a recent example of an extreme climatic 

event that dropped yield estimates of corn to 123.4 bushels per acre, the lowest since 

1995.  While not immediately felt in food prices by consumers, the effect of low yields 

can take a year to trickle through production and increase the cost of consumables.  

Feedlots paid lower prices for feed cattle in 2013 as a result of the higher cost of feed in 

2013 caused by reduced availability of pasture and decreased yield from the 2012 

drought.  The decrease in available pasture results in cattle being fed over a longer term 

with feed, but at lower weights because of the higher cost of feed in 2013.  It is 

speculated that this will lead to greater production declines by 2014 which will increase 

cattle prices for almost two years after the drought occurred [15].  

Climatic risk assessment determines the risk (i.e., potential) of crop failure or 

success due to weather and climate variability over a growing season or over several 

growing seasons.  Risk is often determined from analysis of past growing seasons and 

potential future weather and/or climate scenarios as computed by crop models and expert 

projections.  Usually once a climatic risk assessment has been completed, a cost-benefit 
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analysis is undertaken by producers based on the assessment of global vulnerabilities.  

Decisions include choice of when to plant amidst balance of late frost risk at the 

beginning of the season, pest issues during the growing season, and having enough 

radiation/temperature (degree days) to complete maturity through harvest.  Decisions 

related to crop insurance, fertilizers, and pesticide purchases are agronomically as well as 

economically important, and weather plays a dominant role in ensuring profitability.  

Thus agroclimatology plays an important role in helping manage weather and climate 

risks for producers and stakeholders, and in turn better mitigating and adapting to climate 

change and variability. 

2.4 Agroclimatology Today: Some Important Variables 

2.4.1 Agroclimatology in the 21
st
 Century 

 Agroclimatology today focus more readily on providing guidance in the form of 

weather and climate products, aiming to develop resilience in crops to climatic extremes, 

pests, diseases, and weeds to improve crop growth and production at local and regional 

scales [1].  Although agroclimatology is specifically focused on studying the impacts of 

weather/climate patterns on crop production and soils, it is a multidisciplinary field 

comprised of, but not limited to knowledge from agronomists, soil scientists, biologists, 

hydrologists, meteorologists, climatologists, physical geographers, human geographers, 

sociologists, and economists [2].  Embedded within the agroclimatic notion is the societal 

need to provide decision support for current agriculture practices and weather 

catastrophes such as droughts or late frosts [16].   

 Agroclimatology is connected to several sub-sciences: soils, hydrology, weather 

and climate, and agronomy.   Different soil types possess distinctive hydraulic and 

thermodynamic properties that influence the growth rate of plants and the movement of 

water and nutrients through the soil and on the land surface. Surface and subsurface 

hydrology are affected not only by the type of soil but the type and amount of vegetation 

present over that soil.  The density of a plant biomass on the surface influences the 

amount of rainfall reaching soils and the amount of radiation reaching the land surface.  

Plant roots can also affect infiltration and runoff rates.  Weather and climate affect 
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agronomic productivity mainly through precipitation, temperature, and radiation for plant 

photosynthesis and growth.     

Multi-scale coupled soil-vegetation-atmosphere transfer (SVAT) processes 

regulate the hydrologic, energy, and nutrient transfer balance in agricultural landscapes 

(Figure 2.2).  These transfer processes cascade across different scales that ultimately 

impact the crop yield and profitability.  Crop transpiration and photosynthesis regulates 

the nutrients used by the plant via the gross primary production (GPP) and the net 

primary productivity (NPP) of the agroclimatic system.  The NPP, or yield, is linked with 

transpiration through the plant canopy and evaporation from the soil surface.  The soil 

surface is the fundamental level where the carbon/nutrient and water link is established, 

but can be scaled beyond the leaf, plant, and to larger regional scales of total 

biomass/vegetation in a field.  Thus, a detailed understanding of SVAT processes often 

becomes essential in providing agroclimatic guidance [17].  

Changes in regional agricultural crop cover and greenness / phenology lead to 

changes in regional dewpoints and temperatures from the evapotranspiration from plants 

and/or irrigation.  The spatial extent and greenness of crop cover can result in increased 

moisture in the atmosphere and lowering of the surface air temperature [18, 19].  This in 

turn can lead to changes in regional convective potential, cloud cover, and in some cases 

rainfall (Figure 2.3).  Understanding these linkages is difficult, yet this is where 

agroclimatological assessments tend to help by providing a framework and understanding 

how a particular region would be expected to behave in a statistical/climatological sense.  

The fundamentals of such statistical/climatological relationships lie in the understanding 

of variables that are important for agricultural principles.  Some of the climatic variables 

that are analyzed include temperature (maximum, minimum, average), rainfall 

characteristics (distribution, intensity), and solar radiation.  Additional variables such as 

sunshine hours, humidity, winds, soil temperature, soil moisture, and evaporation are also 

needed, but generally difficult to measure with high spatio-temporal resolution or fidelity 

and are estimated from different models [20, 21]. 
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2.4.2 Primary Agroclimatological Parameters 

2.4.2.1 Weather and Climate 

Weather can be defined by daily precipitation, temperature, and other dynamic 

(wind) and thermodynamic (humidity) weather patterns.  Weather characterization ranges 

from temporal and spatial scales of seconds to decades and millimeters to thousands of 

kilometers.  The most common temporal and spatial scales for daily weather are: 

microscale (areas less than 1 km, seconds to minutes), mesoscale (1-100 km, several 

hours to a day), synoptic scale (100-1000 s km, days to a week), and planetary scale 

(1000 s km and lasts up to several weeks) [22, 23].  The average weather and its 

variability over a period of time delineate a specific area’s climate [10].  The climate of a 

region is typically defined by the average and variance of temperature and precipitation, 

which is influenced by topography, proximity to water bodies, size of the given landmass, 

or any geographical feature including urban areas.  Mountain ranges can lead to regional 

climate zones with higher precipitation climates on the windward side, while more arid 

and temperate climates are found downwind [10, 24].  Coastal climates are moderated 

daily and seasonally by ocean waters and currents due to the higher specific heat capacity 

of water and resulting land/sea breezes [10, 22].  Urban climates impact local 

temperatures, wind patterns, and boundary layer depths because of differences in surface 

layer energy and heat balances.  A lack of vegetation and prolific extent of impervious, 

highly reflective and/or highly absorbent land-cover types generate this type of localized 

climate [22, 23, 25]. 

 The average (and variation) over 30 years of recorded weather patterns such as 

daily rainfall, high and low temperature, and mean temperature is generally used to 

define a region’s (climate zone, state, or multi-state region) set of climate “normals” [26].  

These climate normals are used extensively in agriculture to determine the baseline and 

the ensuing anomaly for any given season.  In the United States, climate divisions 

(typically nine per state) are determined to help the broader applications community be 

aware of temperature and precipitation patterns/and shifts at regional and state scales. 

Sometimes additional information on frost depth, soil temperatures, and average soil 



31 

 

moisture are available through the 30-year climatological summaries (Figure 2.4). For 

many regions within the United States, the climate divisions are also aligned with the 

United States Department of Agriculture’s crop reporting districts and assist climate – 

crop yield assessments.  

2.4.2.2 Soils 

The basic soil classifications are based on particle size.  Soils are typically 

classified as gravel (greater than 2.00 mm), sand (0.05-2.00 mm), silt (0.002 to 0.05 mm), 

or clay (less than 0.002 mm).  The amount of quartz and carbon content of a given soil 

type is also included as a characteristic in some models to clarify the surface layer soil 

type from the underlying soil layers. Each basic soil type has specific thermal and 

hydraulic characteristics that influence temperature and moisture content of that specific 

soil.  Soil heat capacity (amount of heat required to produce a given change of the 

temperature of the body which is largely influenced by the presence of water), thermal 

conductivity (how fast heat is transferred through soil), and hydraulic conductivity (how 

fast water is transferred through soil), are just a few of many parameters that govern how 

suitable a subsurface climate may be for a specific crop [27]. 

The land-surface (soil and vegetative surface) response is governed by solar 

radiation.  Shortwave radiation is absorbed and continually reemitted by the land surface, 

with a peak of absorption and emission during the afternoon, and a dominant outward 

flux of longwave radiation in the form of sensible and ground heat flux back to space in 

the night [20, 22, 23].  Land surface radiation absorption or reflection characterized by a 

ratio of absorbed to emitted shortwave radiation called albedo (α).  Typical values of 

albedo are 0.05-0.40 for dark and wet to light and dry soils, 0.18-0.25 for agricultural 

crops, 0.15-0.20 for deciduous forests, 0.05-0.15 for coniferous forests, 0.0.-0.10 (small 

zenith angle) to 0.10-1.0 (large zenith angle) for water, and 0.40 (old) to 0.95 (fresh) for 

snow [23]. 

The values of incident net radiation (NR) are quantified through the radiation 

balance equation which is the sum of incoming shortwave radiation (SW↓), outgoing 

longwave radiation (LW↑), sensible heat (H) (thermal heat transfer from the ground to 

overlying air via conduction and convection), latent heat (E) (heat released into the air as 
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water vapor condenses back into water), and ground heat (G) (thermal heat energy 

transferred from the ground) [20, 22, 23].  All together, these variables help quantify the 

surface radiation budget in relation to surface albedo that is primarily governed by 

surface characteristics:  

SW↓ (1-α) + LW↑ = NR  

H + E + G = NR 

Data to understand energy fluxes is typically available from research field sites (e.g., 

Fluxnet, fluxnet.ornl.gov [28]).  Data availability is limited because specialized 

measurements of surface sensible heat flux, latent heat flux, ground heat flux, carbon 

dioxide flux, moisture flux, evaporation/transpiration, surface temperature, soil moisture, 

and soil temperatures are challenging to obtain and require sophisticated equipment that 

needs ample care and maintenance.  These data are typically used to develop and test 

newer plant-yield, environmental response relationships.  Crop modelers develop 

empirical equations that can be applied in models and regional-scale analysis.  In recent 

years, satellite platforms such as the NASA Moderate Resolution Imaging 

Spectroradiometer (MODIS) aboard Terra and Aqua, Atmospheric Infrared Sounder 

(AIRS), and the Advanced Microwave Scanning Radiometer-Earth Observing System 

(AMSR-E) have also greatly contributed to the understanding of the Earth’s surface and 

atmospheric radiation balances [29, 30, 31].  Near real-time analysis of leaf area index 

(LAI), normalized difference vegetation index (NDVI), enhanced vegetation index, 

evapotranspiration, surface temperature, and moisture stress index are some of the 

measurements these satellite platforms provide for research and application into crop 

models, along with near real-time information pertinent to irrigation and harvest (e.g., 

[32]).  Surface flux data along with satellite data has been assimilated into weather 

forecast, climate, and crop growth models, achieving a higher level of understanding of 

weather/climate and crop production forecasts [33, 34]. 

2.4.2.3 Water 

Agroclimatic decisions are acutely linked to hydroclimatology.  Surface and 

ground water are readily coupled with the Earth’s surface because they impact crop 

growth and evapotranspiration into the overlying atmosphere (which determines surface 
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moisture flux).  Moisture flux of the land surface is controlled by the saturation and 

temperature of the overlying air, wind speeds, turbulent eddies, and intensity of sunlight 

reaching the surface in the form of shortwave radiation [8, 11, 20, 21, 22, 35].  Radiation 

reaching the Earth’s soil surface contributes to the evaporation rate of water from the soil 

and is further impacted by vegetation.  Plant physiology plays a large role in surface 

moisture flux: stomata (microscopic pores or openings on the leaves of plants) opens  and 

closes based on environmental conditions such as carbon dioxide availability, soil 

moisture, atmospheric saturation, wind, and sunlight, releasing moisture into the 

atmosphere along with water vapor and oxygen exchange [ 20, 22, 35].  Moisture flux is 

a quantitative measure of soil moisture that moves up through the soil, through the plant, 

and evaporates out of the soil and transpires from the plant [22, 23, 27, 35].  Soil 

moisture excess or deficits in the form of floods or droughts (along with temperature) 

have a direct impact on plant health and yield.  The timing of water stress is also 

important in determining the crop response to the impact of stress.  Crops two to three 

weeks after planting are typically more vulnerable than two months into the growing 

season.     

2.4.2.4 Crop Management (Vegetation/Biomass) 

 Climate variables such as base temperature, growing degree days, average frost 

days, first frost day, and last frost day help determine crop progress.  Temperature 

becomes an important driver of crop development and is typically used as a resource 

available to the plant.  This is quantified as growing degree days (GDDs) which are used 

to determine phenology such as when the seeds of row crops will germinate and grow in 

conjunction with determining pest development rates within the soil. 

GDD = ((Tmax – Tmin)/2) - Tbase 

The base temperature for corn is commonly 10°C, and typically after 10 consecutive 

GDDs (base time for corn), seeds germinate and grow [20, 35].  Base temperature will 

vary by crop. 

The last spring frost consideration is also crucial to seed germination and plant 

growth.  If a seed is planted before the last frost, farmers risk plant loss because the seed 

will fail to germinate.  As a result, climatologies of important crop management variables 
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have been developed: 1) the first and last frost dates (e.g., in the Midwest U.S. in states 

such as Indiana, temperatures below 32° and 28°F are used as the baseline temperatures), 

2) snowfall amounts, 3) temperatures above 95°F, 4) rainfall,  5) evapotranspiration loss, 

etc.  Climatologies also exist for high impact weather events such as high winds that can 

impact spray operations, hail that can cause crop losses, and heavy rain that can result in 

erosion and/or flood and surface ponding in fields. Developing a climatology of a specific 

variable includes taking the actual values and anomalies and averaging them with quality 

control procedures such as duration of measurement, time of day the measurement is 

observed, and site specific location information such as proximity to trees, buildings, 

concrete, and elevation to develop the desired climatology.  These climatologies are taken 

either at a station level (like the U.S. Cooperative Observer Network) if observations 

exist, or at climate division levels over a 30 year period (e.g., 1981-2010).  Additional 

weather networks exist across different spatial and temporal scales that contribute to the 

development of climatologies and provide real-time weather data to producers and 

forecasters.  Many states have what are called “mesonetworks” that are comprised of 

weather observation stations in counties across a given state.  These stations can provide 

hourly readings of temperature, precipitation, winds, evapotranspiration estimates, and 

pressure in addition to daily maximum and minimum temperatures, and 24 hour 

rainfall/precipitation totals.  In the United States, these data are typically available from 

respective state climate offices.  

Extreme climatic events such as floods or droughts during the 1930s, 1950s, 

1980s, and most recently 2012 contribute greatly to reduced yield, crop profitability, and 

world market stability.  Forecasting climate extremes such as floods and drought still 

remains highly uncertain despite advancements in weather and climate modeling.  Global 

features such as the El Niño Southern Oscillation (ENSO) are a large determining factor 

in North American weather regimes [10].  When compounded across seasons or even 

years, ENSO related weather patterns can manifest and lead to anomalous events such as 

the 2012 drought [36].   

Current agroclimatic research is aligned towards characterizing droughts and their 

impacts on crop yields, including linking the interplay between agriculture – droughts – 
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economic decisions and impacts.  Drought is more than a lack of rainfall, and a number 

of indices have been applied to assess it. Drought impacts are characterized on the basis 

of timing (e.g., middle of the growing season well after planting), intensity, duration, 

spatial extent, and location (e.g., urban versus rural regions).  Drought indices include 

basic analysis such as percentage of normal and quantitative meteorological measures 

such as the Standardized Precipitation Index (SPI) and Palmer Drought Severity Index 

(PDSI) [37].  

Development of climatologies include weather and climate variables such as 

evapotranspiration, annual precipitation, total sunshine hours, plant hardiness zones, and 

mean freeze-free period for agricultural applications (Figure 4).  These climatologies 

provide a baseline value to compare to current weather and climate patterns, letting 

agricultural producers and stakeholders know if seasonal weather patterns are trending 

above or below normal.  This could allow producers to better prepare for a change in 

their projected yield for the season, and hopefully mitigate loss if sufficient time is still 

present to act accordingly.  For example, the Useful to Usable (U2U) climate information 

project sponsored by the USDA is developing an agricultural climatology for the U.S. 

Corn Belt region that includes the ENSO phase at the climate division level for cereal 

crop producers [38].  This climatology can provide guidance to farmers related to 

irrigation, fertilizer application, planting, and harvest-reducing crop vulnerability to 

changing weather patterns [14]. 

2.4.3 Agroclimatology in the Future 

 An important question going forward is how can societies, economies, and 

countries sustain and continue to expand food supplies for a continually growing world 

population.  This problem is further compounded with shifts in climate patterns, 

particularly temperature and precipitation across the world [1, 2, 39, 40].  Agronomic 

decisions and productivity is thus linked to environmental and economic sustainability.  

Climate projections indicate a high probability of the subtropics becoming drier while the 

midlatitudes will have continued shifts in temperature, rainfall, cloud cover, and related 

climatic patterns [41].  The agricultural community has been working with adaptation 
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approaches which at a macroscale will need to address the current distribution of arable 

land for agriculture and the increased demand for more hybrid crops to withstand 

wetter/drier climates. New soil diseases can pose a threat in regions experiencing changes 

in seasonal temperatures as growing seasons become longer and the time a field lays 

fallow shortens [42, 43].  Understanding these climate-pathogen relationships in a 

changing climate regime will likely become increasingly important. 

 In addition to the demand for hardier crops to surpass the challenges of a 

changing climate, the demand for biofuels will likely continue to rise as governments 

continue to mandate reduction of greenhouse gas emissions.  Current research in this area 

includes determining the best crop rotation cycles to protect soil nutrients while also 

maximizing the use of crops and crop waste such as corn and corn stalks, oil seeds, crop 

residue, and woody biomass for the production of bioenergy and ethanol.  However, 

growing crops for bioenergy and ethanol instead of food for populations, leads to societal 

questions that are also at the forefront of the climate change debate.   In essence, future 

challenges facing agroclimatology include better decision-making tools, data acquisition, 

availability and uniformity (spatial and temporal), links between economic and regional 

decision makers, the development of more accurate and detailed crop and forecast models, 

and a more detailed understanding of climate change.  These challenges require 

collaboration between different disciplines. 

2.5 Conclusion 

Agroclimatology is at an interesting juncture, becoming central to today’s most 

challenging questions in a world of continued population growth, increasing food demand, 

and climate change. Technological advancements such as multiscale remote-sensing data, 

vegetation and moisture stress mapping, land data assimilation systems linked with crop 

models, and high resolution crop, weather and climate datasets and models will likely 

play an important role in the understanding and evolution of agroclimatology.  Weather 

and climate data collection, assessment and mitigation of extremes such as floods and 

droughts, and climate and crop modeling will continue into the future as agroclimatology 

grows as a science.  In addition, feedbacks of agricultural climates at field and regional 
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scales need to be further researched to grasp the full understanding of heat and moisture 

fluxes between soils, the overlying boundary layer, vegetation, and the feedback into crop 

yields.    

Despite large technological advancements in data collection and analysis, and a 

more detailed understanding of the agroclimatic system than ever before, questions 

regarding the future vulnerability of agro-climate systems still remain unanswered.  

Collaborative research and efforts to mitigate the effects of climate change need to be 

aggressively supported and addressed to allow for continued food production, 

development of bioenergies, and human survival in a world currently experiencing 

climate variability and change [2].  Changes in temperature and precipitation as projected 

using climate change studies will impact crops and non-crop species.  As summarized by 

a recent USDA synthesis report [43], the projected variability in precipitation and 

location shifts will require changes in water management practices (which will further 

feedback into the local climate system).  Projected changes in temperature indicate the 

northward advance of frost-free days, opening the doors to additional regions for crop 

growth but also creating an environment that would be potentially conducive for invasive 

weeds and pests [43].   

There are at least two enduring challenges that impact current monitoring and 

modeling efforts in agroclimate. The first is due to scale disparity: 1) field measurements 

are often “point” data while effects are often regional scale in nature and not well 

captured, and 2) if remotely-sensed/satellite data are used for assessing the regional view, 

the dominant impact of local-scale decisions and micro features which can influence crop 

yields are not captured. Combination approaches involving assimilation of multiscale 

products into a gridded assessment are currently underway and may likely alleviate the 

uncertainty due to this problem [44, 45]. The second challenge can be linked to capturing 

the diversity in agronomic practices. For example, most studies consider the relationship 

between climate and crop patterns for a “typical” crop and the variations between hybrids 

are poorly assessed.  Similarly, variability in farm-scale practices such as planting date, 

presence of tilling, crop cover, and distances between crop rows, fertilizer use, and pest 

risk are also poorly captured and cause uncertainty in current assessments. Additional 
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challenges due to socioeconomic choices and economic tradeoffs are also difficult to 

capture. 
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2.7 Tables 

Table 2.1: Common soil and vegetation parameters in land surface models embedded 

within some crop models and weather/climate models (Adapted from Noilhan and 

Planton, 1989 [21]). 

Primary Parameters: Dominant types of vegetation and/or land cover (USGS/NLCD 

classifications): 

 

1) Vegetation type: cultivated or hay/pasture land (more detailed in crop models), forest 

type: deciduous, evergreen, mixed, shrubs 

 

2) Dominant type of soil texture (USDA textural classification): 

Sand   Loamy sand  

Sandy loam  Loam 

Sandy clay loam Silty clay loam 

Clay loam  Sandy clay 

Silty clay  Clay 

 

3) Meteorological parameters: 

Daily Tmax and Tmin  Net solar radiation 

Precipitation   Relative Humidity 

Evapotranspiration  Soil Moisture 

 

Secondary Parameters (estimated or prescribed): 

Saturated volumetric moisture content Wilting point volumetric water content  

Soil thermal coefficient at saturation  Depth of the soil column 

Fraction of vegetation    Minimum surface resistance 

Leaf Area Index (LAI)   Roughness length 

Albedo      Emissivity 

Soil thermal conductivity   Soil thermal diffusivity 

Soil hydraulic conductivity   Soil hydraulic diffusivity 

Soil heat capacity    Soil bulk density 

Moisture flux resistance 
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2.8 Figures 

 

Figure 2.1: General narrative chart of the growth of agroclimatology. 
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Figure 2.2: The soil-vegetation-atmosphere-transfer model (SVAT) represents the 

continuous feedback of radiative energy between the atmosphere, biosphere (crop), 

lithosphere (soil/land surface), and water in all its physical states: solid – ice crystals of 

clouds; liquid – raindrops; and gas – water vapor/evapotranspiration.  Primary 

components and associated parameters include 1) soil: water retention, soil hydraulic 

conductivity, bulk density, water content, water potential, temperatures, infiltration, and 

evaporation; 2) canopy (vegetation/biomass): Leaf Area Index (LAI), physiology of the 

plant, leaf and plant density, seasonality, and evapotranspiration; 3) atmosphere: air 

temperature, humidity, wind speed, and solar radiation; and 4) hydrological cycle: 

evaporation, condensation, precipitation, infiltration, ground water flow, surface runoff, 

and ponding.   
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Figure 2.3: Examples of agricultural impacts on physical climate. 

 

Agriculture 

 Plant growth and 
greening 

 Increased 
evapotranspiration 
with larger leaf area 
and more sunlight 

Evaporation = lower 
temperatures and 
higher dewpoints 

Increased convection 
potential from higher 
water content in air 



47 

 

 

Figure 2.4: Examples of climatology maps collected from the National Climatic Data 

Center’s Climate Maps of the United States database (CLIMAPS).  Maps are developed 

from the 1961-1990 period of record from official weather and climate station sites 

unless otherwise noted. (A) Annual mean relative humidity in percent, (B) annual mean 

dewpoint temperature in degrees Fahrenheit, (C) annual mean daily average temperature 

in degrees Fahrenheit, (D) annual mean total sunshine hours, (E) annual mean total 

precipitation in inches, and (F) median length of freeze-free period in days. 
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CHAPTER 3. CLIMATE VARIABILITY AND THE U.S. CORN BELT: ENSO 

AND AO EPISODE-DEPENDENT HYDROCLIMATIC FEEDBACKS TO CORN 

PRODUCTION AT REGIONAL AND LOCAL SCALES  

3.1 Introduction 

Climate variability is an intrinsic part of global circulation and regional climates.  

Temperature and precipitation events representative of climate variability are captured in 

the extreme values of temperature and precipitation that primarily reside in the tails of a 

normal distribution.  The range of values present in the tails of the distribution may 

increase or decrease through time but not actually effect the mean value of the sample 

distribution.  Climate variability is driven by natural atmospheric circulation processes 

and anthropogenic drivers.  Variability can occur on time frames of several weeks to 

several months and even over several decades.  It is, however, much different that climate 

change.  Climate change is a systematic change in the climate system through natural 

and/or anthropogenic causes that shift the mean of the sample distribution, and in turn 

shift/change the extreme values that comprise climate variability. 

As discussed in Chapter 2, weather and climate are innate to agricultural production.  

Understanding the variability of temperature and precipitation as related to 

teleconnections (natural global and regional circulation features that affect the occurrence 

of weather in regions downstream of the teleconnection feature) helps agricultural 

produces (i.e. farmers) better prepare for extreme weather events associated with climate 

variability that can negatively impact yields.  The research described in the following 

chapter serves to improve producers’ understanding of the weather and climate system 

allowing them to make more informed decisions and improve profitability in light of 

climate variability and change.
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3.2 Climate Variability and the U.S. Corn Belt: ENSO and AO Episode-dependent 

Hydroclimatic Feedbacks to Corn Production at Regional and Local Scales 

Full Citation:  Kellner, Olivia, and D. Niyogi, 2015: Climate variability and the U.S. 

Corn Belt: ENSO and AO episode-dependent hydroclimatic feedbacks to corn production 

at regional and local scales. Accepted April 2015, Earth Interactions. 

 

Abstract 

 

 An El Niño Southern Oscillation (ENSO) and Arctic Oscillation (AO) 

climatology (1980-2010) is developed and analyzed across the U.S. Corn Belt using state 

climate division weather and historic corn yield data using ANOVA and correlation 

analysis.  Findings provide insight to agro-climatic conditions under different ENSO and 

AO episodes and are analyzed with a perspective for potential impacts to agricultural 

production and planning, with findings being developed into a web-based tool for the US 

Corn Belt. 

This study is unique in that it utilizes the Oceanic Niño Index and explores two 

teleconnection patterns that influence weather across different spatio-temporal scales.  It 

is found that the AO has a more frequent weak to moderate correlation to historic yields 

than ENSO when correlated by average sub-growing season index values.  Yield 

anomaly and ENSO/AO episode analysis affirms the overall positive impact of El Niño 

events on yields compared to La Niña events, with neutral ENSO events in between as 

found in previous studies.  Yields when binned by AO episode present more uncertainty.  

While significant temperature and precipitation impacts from ENSO and AO are felt 

outside of the primary growing season, correlation between threshold variables of 

episode-specific temperature and precipitation and historic yields suggests that 

relationships between ENSO and AO and yield are present during specific months of the 

growing season, particularly August.  Overall, spatial climatic variability resulting from 

ENSO and AO episodes contributes to yield potential at regional to sub-regional scales, 

making generalization of impacts difficult - highlighting a continued need for fine-scale 

resolution analysis of ENSO and AO signal impacts on corn production. 
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3.3 Introduction 

Agricultural production in the United States contributes to 40% of the world’s 

supply of corn (USDA 2013).  Crop yield potential for a given growing season is largely 

dependent on temperature and precipitation (Kellner and Niyogi 2014), stressing the 

importance of understanding climate variability and projected climate change impacts in 

order to continue successful agricultural production in the future (Rosenzweig 2001; 

Rosenzweig et al. 2013; Pielke 2013).  Research efforts have led to a better understanding 

of crop production under climate variability and change through analysis using historic 

weather, climate, and crop data (e.g., Carlson et al. 1996; Hansen et al. 1998; Legler et al. 

1999; Phillips et al. 1999; Niyogi et al. 2014).  Efforts to disseminate this useful 

information in a usable manner have been implemented across the world (e.g., the 

Agricultural Model Intercomparison and Improvement Project (AgMIP), Rosenzweig et 

al., 2012), while others more specifically focus on production in a designated region, 

such as the Useful to Usable (U2U)
 1

 project for the North Central Region (i.e., U.S. Corn 

Belt) in the United States (Takle et al. 2014).  The U2U project is comprised of teams of 

researchers that focus specifically on developing improved weather and climate tools 

(such as this ENSO/AO climatology) to address producers’ needs for more usable and 

useful weather and climate information to make more informed decisions (e.g., Crane et 

al. 2010; Meza et al. 2008).  The efforts of the U2U research group aim to improve 

current and future growing season profitability and to help farmers mitigate and adapt to 

future climate variability and change. 

Climate variability can be broadly described as weather conditions a region 

experiences outside what is considered climatologically normal, but that does not result 

in a systematic change to the climate system mean state.  Initial evidence suggests 

climate variability more readily impacts agricultural production than climate change since 

agricultural production moves at a pace greater than climate change (Riley 2002).  

Agricultural production practices last 6-12 months (depending on the crop) with climate 

                                                 
1
 Useful to Usable: Transforming Climate Variability and Change Information for Cereal Crop 

Producers. USDA - National Institute of Food and Agriculture (NIFA) Agriculture and Food Research 

Initiative Competitive Grant no. 2011-68002-30220. Aclimate4u.org 
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variability following a similar time period of several weeks, years, or decades (depending 

on the climate index/teleconnection).  Climate change is projected to occur over a much 

longer period of time.  Examples of key drivers of climate variability (Goddard et al. 

2001) include the El Niño Southern Oscillation (ENSO), the Arctic Oscillation (AO), the 

North Atlantic Oscillation (NAO), and the Madden-Jullian Oscillation (MJO).  Examples 

of climate change include the drying trends expected in the subtropics and the projected 

shifts in the intensity (heavier) and duration (over a shorter period of time) of rainfall 

events in the Midlatitudes over the next 50-80 years that are expected to produce longer 

dry spells of weather in between rainfall events (IPCC 2013).   

This paper focuses specifically on the historic behavior of ENSO and AO in the 

United States Corn Belt for the years 1980-2010 and the impacts these teleconnections 

and their resulting climate variability have had on corn yield.  ENSO and AO are chosen 

in that ENSO is a longer-range (months to years) teleconnection index with long-term 

predictability and the AO is a short-term teleconnection (several weeks) with greater 

forecast uncertainty.  These two time frames encompass exploring the impacts of 

growing season variability (ENSO) and sub-growing season variability (several weeks – 

AO).  The working hypothesis of this study is that both growing season and sub-season 

variability driven by ENSO and sub-growing season variability driven by AO impact 

corn yields through positive and negative relationships dependent on teleconnection and 

episode, and both temporal scales of teleconnections need to be considered in producer 

decision making during the growing season.  The initial impetus for the development of 

this climatology is the expressed need from producers (or other applied users) for more 

usable and useful weather and climate data analyses and decision support tools (DSTs) 

for a given growing region (i.e., “my county”) (e.g. Arbuckle et al. 2013; Takle et al. 

2014).  This also builds on the work of Mase and Prokopy (2014) who discuss current 

producers’ understanding and viewpoints of weather and climate data in decision making.  

This climatology reviews and highlights the applicability of weather and climate data to 

agricultural decision making when an ENSO or AO outlook is issued.  

While ENSO impacts to U.S. and global yields have been a topic of research for 

decades (e.g., Adams et al. 1999; Brunner 2002; Carlson et al. 1996; Hollinger et al. 2001; 
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Legler et al. 1999; Mauget and Upchurch 1999; Rosenzweig 2001) several variations 

exist among these studies that result in a further need for ENSO analysis and impact on 

agricultural production.  Needs for further study are driven by the following reasons: 1) 

study domains of previous research have varied in scope (global, continental United 

States, North Central Region, Great Plains and Midwest) and are not local scale; 2) 

previous research has varied in temporal methodology (e.g., yearly signal, growing 

season signal, 3- month intervals of the growing season), and statistical analysis (e.g., 

regression, binning, quartile analysis, ANOVA, deviation inconsistency with random 

sampling) which can overwhelm producers unfamiliar with science and statistics; 3) 

published studies vary in ENSO classification such as using sea surface temperature (SST) 

anomalies, the Southern Oscillation (SO), the Southern Oscillation Index (SOI), or the 

Multivariate ENSO Index (MEI).  This results in varying conclusions on teleconnection 

feedbacks and crops (e.g., Hollinger et al. 2001; Mauget and Upchurch 1999) causing 

confusion regarding the exact impact information to producers and crop advisors; 4) past 

research uses  historic weather and crop data of various spatial resolution with a majority 

of the studies using state-level yield analysis and not yield at crop reporting district-level 

removing localized feedbacks; and 5) past research tends to focus on more than one crop 

such as corn and soybeans (e.g., Hollinger et al. 2001) or corn and winter wheat (e.g., 

Mauget and Upchurch 1999), instead of focusing on one crop specifically.  

To alleviate the variations amongst prior studies as described, this study is 

developed to be comprehensive and simple for end-users in the following ways: the study 

domain is chosen specifically to be of service to the primary corn production region in 

the United States (North Central Region).  The climatology herein will be developed into 

a map-based, visual online decision support tool for cereal producers in the region 

through the U2U project team so that the producers and crop advisers may apply the 

useful weather and climate information of this climatology into their decision making 

process.  This study is unique in that multiple temporal resolutions of ENSO episode are 

investigated.  These include the annual ENSO signal [event based on the Oceanic Niño 

Index (ONI) definition of consecutive three-month running mean of sea surface 

temperature (SST) in the Niño 3.4 region (5
o
N-5

o
S, 120

o
-170

o
W)], the growing season 
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ENSO signal (April-October), a sub-growing season ENSO signal [first three months of 

production (AMJ) and three months of summer important to yield potential (JJA)], and a 

monthly ENSO signal. This study also applies a more fine-scale spatial resolution of 

weather data by incorporating specific National Weather Service (NWS) Cooperative 

Observer Program (COOP) site locations and aggregated weather data at the climate 

division level to analyze with more finite historic crop data at the crop reporting district 

level (instead of state level data like some past studies).  The use of historic corn yields at 

crop reporting district level provides more localized feedback analysis.  The analysis of 

corn production alone provides a detailed investigation of the mostly widely produced 

and utilized crop in the United States.  Regarding the AO climatology and impacts to 

agriculture, it has yet to be adequately researched.  Thus, the following climatology of the 

two separate teleconnections adds further analysis to ENSO/yield research and brings 

forth new findings of AO relationships to yield suggesting it may have more influence on 

yield production than ENSO.   

3.4 Data and Methodology 

3.4.1 Data 

The data for this climatological analysis is retrieved from the Applied Climate 

Information System (ACIS) through the Midwest Regional Climate Center (MRCC) cli-

MATE user interface
2
.  Climate division data for the North Central Region (domain of 

the U2U research project: North Dakota, South Dakota, Nebraska, Kansas, Missouri, 

Iowa, Minnesota, Wisconsin, Illinois, Indiana, Michigan, and Ohio) is retrieved and 

analyzed for the years 1980-2010.  Observed weather data is used in an effort to maintain 

the true integrity of observed weather datasets, as reanalysis data is subjected to data 

algorithms for automated quality control processes and development of spatial 

homogeneity that by design may reduce the impact of meso- and microclimates resulting 

from local features shown to influence production (e.g., Kravchenko and Bullock 2000). 

                                                 
2
 Data is from the DRD964x climate observations dataset as it was collected prior to the dataset (nClimDiv) 

currently available and in use in ACIS (NCDC 2014). The ACIS system is inclusive of in-situ observations 

reported to federal, regional, state, and local weather networks and can be found at: http://rcc-

acis.unl.edu/index.php 
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Observed weather data is also used rather than gridded reanalysis because of producers 

mentioning having high confidence in observed weather data and a stronger connection to 

observed weather data. 

While the time frame of 1980-2010 seems short for statistical analysis and raises 

the issue of uncertainty in results, 30 years of temperature and precipitation data have 

been deemed by the World Meteorological Organization (WMO) as a sufficient amount 

of time to capture longer climatic trends while simultaneous filtering out variability and 

anomalies (e.g. Trewin 2007; Wright 2012).  This suggests that climate variability and 

anomalies can be detected across shorter time frames, as discussed in the results section.  

It is recognized that the process of categorizing years by ENSO or AO episode for 

analysis further reduces the number of years (n) in each group (a breakdown of 

categorization for each analysis is provided for each teleconnection in supplemental 

materials); however, since variability is expressed as being detectable in the 31 years of 

data reviewed, it is felt that the sizes of the subgroups are sufficient to capture statistical 

significance.  It is further noted that statistical significance and sample size are 

interlinked (Ellis and Steyn 2003). With a small n for subgroups of ENSO and AO, 

significance is kept high at a 90% CI.  Furthermore, the number of climate divisions 

reviewed (106) and the number of climate divisions showing statistically significant 

relationships of temperature or precipitation by month due to ENSO or AO episode 

agrees with previous findings spanning longer time frames (highlighted in previous 

section) suggesting that 30 years is sufficient for variability detection from 

teleconnections.  Loikith and Broccoli (2014) use a similar time fame to investigate 

modes of climate variability as well finding significant results in the 30-year data set.  In 

the context of agronomic processes there is also a tradeoff between climatic time period 

and the agronomic crop yield which have technological influences.  It is felt that because 

of this, the 30 year time period provides a good compromise of time to include both the 

climatic time period and use of more recent technology. 

Historic yield data is obtained for the same years from the USDA’s National 

Agricultural Statistics Service by crop reporting district level.  The years 1980-2010 are 

selected for the following purposes: 1) The latest climatic normal period for comparison 
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is 1981-2010 and 2) the time frame is mostly post-Green Revolution (e.g., Fuglie 2012; 

Pingali 2012) with gains in production attributable to increases in total factor productivity 

allowing for easier detection of climate variability signals in crop production.   Note that 

the crop yield data (reported in bushels per acre) showed significant autocorrelation 

(tested using the Durbin-Watson Statistic (Montgomery et al., 2006)).  Therefore, the 

crop yields are detrended with a one year lag linear regression analysis to account for 

autocorrelation in this time series dataset.  The regression model used to detrend the crop 

yield data uses the 2010 predicted yield as the benchmark yield.  This accounts for 

technological improvements in agriculture that have positively influenced yield and 

makes any weather or climate impacts on annual yields more apparent. 

ENSO and AO data are obtained from the National Oceanic Atmospheric 

Administration (NOAA)’s Climate Prediction Center (CPC).  ENSO data can be found at: 

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml 

and AO data can be found at: 

(http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ 

monthly.ao.index.b50.current.ascii.table). The Oceanic Niño Index (ONI) is used for 

ENSO events which is based on the three-month running mean of sea surface temperature 

(SST) in the Niño 3.4 region (5
o
N-5

o
S, 120

o
-170

o
W) centered on the 30-year base periods 

which are now updated every five years. Since the time of data collection for this project, 

some months and years classified as El Niño, La Niña, or neutral have changed due to 

efforts made to classify ENSO events on a moving 30-year base period (Lindsey 2013).  

The data is the representative of historic ONI episodes when collected in 2011/2012.  

Classification of months as El Niño, La Niña, or neutral episodes in this climatology are 

based on the three-month running mean of SSTs as classified in the historic ONI data 

using values of 0.5 or greater and -0.5 or less as warm (El Niño) and cold (La Niña) 

thresholds, respectively, with neutral events ranging from -0.4 to 0.4.  Events are not 

further classified by -0.5 and +0.5 deviations into weak, moderate, or strong events for 

ease of use when product users are exploring the climatological data through the online 

tool interface.  The same classification scheme is applied to the AO.  The Arctic 

Oscillation is monitored through the application of an Empirical Orthogonal Function to 
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monthly mean sea level (1000-hPa) north of 20˚N and is characterized by the departure of 

atmospheric pressure from normal of one sign (positive or negative) in the Arctic to 

departure of atmospheric pressure of one sign (positive or negative) centered over the 

Midlatitudes (37-45˚).  It is normalized through application of the standard deviation of 

the monthly index based period from 1979-2000 (Climate Prediction Center 2005).  

Seeing as the computational methodologies of ENSO and AO monthly values are 

departures from a base state and have been normalized through base-period centering 

(ENSO) and standard deviation of the monthly index from a base period (AO), the 

possibility of autocorrelation between consecutive months should be minimized and no 

further adjustments have been made to the dataset. 

3.4.2 Methodology 

3.4.2.1 ENSO/AO Climatology 

To develop the ENSO/AO climatology, the monthly-averaged observed 

precipitation and monthly-averaged observed mean temperature by climate division is 

collected for the Corn Belt using cli-MATE. Separation of months into ENSO and AO by 

episode (warm, cold or neutral for ENSO and positive, negative, or neutral for AO) is 

completed manually based on historic data as classified through the ONI.  The average 

value of monthly-observed mean temperature or monthly-observed precipitation by 

teleconnection and type of episode is determined to develop a general climatology of 

average observed monthly precipitation and monthly mean temperature by teleconnection 

episode classification.  The data are analyzed using Analysis of Variance (ANOVA) 

approach at a 90% confidence interval (CI).  Because ENSO and AO are each grouped 

into three different types of episode classifications, a simple t-test cannot be completed, 

as the population of each group is no longer equal.  ANOVA analyzes the means of the 

three groups, determining through analysis of the each group’s variance if the means of 

each group are equal or not.  Simply stated, ANOVA is a generalization of the t-test to 

more than two groups (Devore 2003).  Where ANOVA supports rejection of the null 

hypothesis (all means of the group are equal), the difference between the means among 

ENSO or AO episodes is large enough to suggest statistical significance between the 
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different mean temperatures and observed precipitation experienced during different 

ENSO and AO episodes.  During months where ANOVA findings are found to be 

significant, the variable with significance (temperature or precipitation) is suggested to be 

considered with more weight during agroclimatic decision making.  The average monthly 

mean temperature is investigated in this climatology instead of the average monthly 

maximum temperature and average monthly minimum temperature because growing 

degree day computation uses mean temperature in its formulation.  While it is understood 

that mean temperature can fail to capture extreme maximum and minimum temperatures 

(e.g. Schlenker and Roberts 2009), keeping the climatology simple but still usable to 

agricultural decision making is the main goal of this project.  Furthermore, since 

ANOVA compares groups of data creating discontinuous samples, autocorrelation of 

temperature and precipitation data is typically not a factor. 

3.4.2.2 ENSO/AO Extremes Climatology 

The monthly climatic summaries used for analysis of extreme data (number of 

days/month where Tmax ≥ 90°F, Tmax ≤  32°F, Tmin ≤ 32°F, Prcp ≥ 0.1 inch, and Prcp ≥ 1.0 

inch) are gathered from the National Climatic Data Center (NCDC) Image and 

Publication Center (IPC) Local Climatological Data (LCD) repository.  All sites (specific 

locations, not CRDs) within the U2U 12-state domain with available data for the years 

1980-2010 are queried.  Spatially, the 62 cities span the Corn Belt in a broadly uniform 

manner, thus no spatial interpolation is undertaken.  The annual summary for each year 

1980-2010 is reviewed and data for the number of days per month is collected.  These 

months are then further separated by ENSO/AO episodes and undergo ANOVA analysis 

at the 90% CI.  While all sites have temperature data from 1980 onward, precipitation 

data broken down at number of days per month with observed precipitation greater than 

or equal to 0.10 and 1.0 inch are only available from 1993 (Kansas and Nebraska) or 

1996 (all other states) onward.  Thus, ENSO/AO monthly episode analysis had to be 

limited to a shorter number of years.  The variables of Tmax ≥ 90°F, Tmax ≤ 32°F, and Tmin 

≤ 32°F are selected to assess teleconnection episode categorization (ENSO or AO) on 

heat stress, freeze, and frost damage, respectively, while Prcp ≥ 0.1 inch and Prcp ≥ 1.0 

inch are selected to assess precipitation (0.10 inch has been deemed enough to break 
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through the vegetation canopy) and heavy precipitation events (1.0 inch breaks the 

vegetation canopy and provides sufficient soil moisture recharge in the top layer of soil), 

a similar approach to agroclimatic analysis in Negri et al. (2005). 

3.4.2.3 ENSO/AO Climatology and Yield Analysis by Crop Reporting District 

Teleconnections result in climate variability influencing weather patterns across 

the United States.  The influence of climate variability teleconnections in the form of 

weather can influence the potential yield of planted crops for a given growing season 

because of the dependence of crop yields on temperature and precipitation during 

phenological development (Elmore 2013; Hanway 1963; Neilson 2012; Neilson 2013a).  

Instead of only analyzing the impact of teleconnection episode for an entire growing 

season, three separate time frames are assessed: 1) average ENSO and AO episode 

categorization for the growing season (April – October); 2) average ENSO/AO episode 

categorization during the beginning months of the growing season (April, May, and June); 

and 3) average ENSO/AO episode categorization during the months of crop silking, 

grain-fill, and beginning of maturity (June, July, and August) (Neilson 2013b).  The 

average episode classification of each teleconnection for each year spanning the specified 

time period is correlated to the historic, detrended yield time series at crop district level 

for each state in the Corn Belt to test for potential teleconnection influence on crop yield.  

Two-tailed significance is tested at the 90%CI for each crop reporting district.   

3.5 Results 

3.5.1 Climatology 

The results of ENSO and AO climatology development by the state climate 

division level is expected to provide information of monthly-averaged observed 

precipitation and monthly average observed mean temperature for forecasters and 

agriculture producers.  ENSO and AO climatologies and spatial impacts are analyzed 

separately; however, it is known that the two teleconnections can act synergistically.  The 

intent of this separated analysis is to highlight the impact of each teleconnection on 

climate and agricultural production.  Most climate divisions show distinct differences 
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between teleconnection episodes.  A composite analysis of the two teleconnections will 

be completed after initial testing of the online decision support tool and will be discussed 

in a future study.  The developed climatology values are not represented as above or 

below climatological normal because the computation of climatological normal values 

includes all episodes of each teleconnection.  The average values of the three possible 

episode classification are compared to each other (negative, neutral, or positive).  

Seasonal climatologies for winter (December, January, and February), spring (March, 

April, and May), summer (June, July, and August), and fall (September, October, and 

November) are developed as well and are provided as supplemental material for 

conciseness. 

3.5.1.1 Teleconnection Impacts to Temperature and Precipitation - ANOVA 

The spatial distribution of temperature and precipitation across the Corn Belt is 

impacted by the different ENSO and AO episodes as classified in this study. Some 

climate divisions in a state are impacted significantly (90% CI) while others are not.  

Impacts from each teleconnection are broadly similar, affecting temperature and 

precipitation patterns during the seasonal transition months of spring and early summer 

and the seasonal transition months of late summer into early fall except with ENSO 

which has a large impact on mean temperatures during the month of December.  Findings 

show more detailed information on the spatial distribution of ENSO and AO impacts 

across the Corn Belt rather than a general state or regional application of findings that 

may be too broad in scope as found in prior work which has utilized more spatially coarse 

data sets (such as state-level data). This can potentially enhance smaller-scale spatial 

variability of weather and climate patterns that may be present with specific 

teleconnections being missed by larger-scale analysis.  These findings provide more of a 

localized climatology instead of a regional climatology to end users.   

The figures referred to in the following sections provide a map detailing ANOVA 

significance for one month of mean temperature or average observed precipitation data 

for simplicity.  Each parameter analyzed and discussed results in numerous maps.  A 

comprehensive review of maps showing the different teleconnection episodes and 

impacts to temperature and precipitation will be available through the online decision 
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support tool user interface (http://agclimate4u.org).  The detailed development, usability, 

and applicability of this interface for improved agronomic decision making will be the 

focus of a future paper. 

3.5.1.1.1 El Niño Southern Oscillation 

Monthly mean temperatures are impacted by ENSO primarily in August, October, 

and December (fall and winter months).  These impacts are concentrated in climate 

divisions in the states of Illinois (December), Indiana (August, October, December), 

Michigan (August, October, and December), Wisconsin (August, October, and 

December), Minnesota (August, October, and December), Iowa (August and December), 

North Dakota (December), South Dakota (December), Nebraska (December), and 

Missouri (October and December).  July mean temperatures are also episode-dependent, 

but spatially do not impact a cohesive sub-region of the domain (Figure 3.1).  These 

temperature relationships likely result from the shift of the Polar Jet Stream farther north 

of the U.S. Corn Belt during El Niño events allowing warmer air to advect northward into 

these regions. During a La Niña event, the Polar Jet Stream is more meridional due to 

blocking high pressure over the north-central Pacific Ocean, resulting in a trough over the 

eastern half of the United States (Climate Prediction Center 2005 and references therein).  

The most notable precipitation impacts due to ENSO are during the month of 

September across the Ohio River Valley (parts of Illinois, Indiana, Ohio, and far 

southeast Michigan) which may share a link to the number of land-falling tropical 

cyclones that migrate across the region during different ENSO episodes. The probability 

of two or more hurricanes making landfall in the United States during an El Niño year is 

28% where as in a neutral or La Niña year it is 48% and 66%, respectively (Bove et al. 

1998).  Furthermore, findings from Kellner et al. (2015, submitted) show that land-falling 

hurricanes that impact the Midwest occur most frequently in the month of September and 

occur most frequently during neutral ENSO events, followed by La Niña years.  

Precipitation is impacted as well in February across northern Michigan (CDs 1-6) along 

with northeast and central Indiana (CDs 3-6).  March precipitation is episode-dependent 

across western Iowa (CD 1, 4, and 7) and much of Nebraska (minus CD 7), northwest 

Kansas (CDs 1 and 2), and CD 8 in South Dakota (Figure 3.2). 
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3.5.1.1.2 Arctic Oscillation 

ANOVA results show significant ENSO related impacts on average monthly 

observed mean temperatures in the months of March, April, July, August, October, 

November, and December in climate divisions and states in the Corn Belt.   The AO 

statistically influences March mean temperatures in Illinois, Indiana, Ohio, Michigan, 

southeast Wisconsin (CD 3, 5-9), western Kansas (CDs 1, 4, and 7), and southeast 

Missouri (CDs 2, 5, and 6).   April mean temperatures are significantly influenced by the 

AO in northern Illinois, northeast Indiana, far northwest Ohio, Michigan, Wisconsin, 

Minnesota, Iowa, North Dakota, and most of South Dakota (CDs 1- 3 and 6 -9).  Summer 

months appear to be impacted by the AO as well.  The difference between the average 

mean temperatures by AO episode during the month of July is found to be statistically 

significant in the states of Ohio (CDs 2, 3, 6, 7, and 10) and Michigan (CDs 4-10).  

August mean temperatures are significantly impacted by the AO across the northern 

climate divisions of the Corn Belt: CDs 1-3 in Illinois, CDs 1-5, 7, and 8 in Wisconsin, 

all of Minnesota, CDs. 1, 2, and 4-7 in Iowa, all of North Dakota, CDs 1-3, 7, and 9 in 

South Dakota, and finally eastern Nebraska (CDs 3, 6, and 9).  During fall months, 

October, by far, experiences the largest spatially different mean temperatures by AO 

episode, with a statistical significance in average observed mean temperature by episode 

impacting all or portions of states in the Corn Belt. November mean temperatures are 

impacted in Illinois (CDs 4, 5, and 7), Indiana, Ohio, and southern Michigan. December 

mean temperatures are impacted in Illinois, Indiana, Ohio, southern Michigan, and the 

southeast half of Missouri (Figure 3.3).   

Precipitation patterns are also influenced by the AO, however not to the spatial 

and temporal scale of mean temperatures.  The AO primarily impacts average observed 

precipitation during the spring and fall months of March, April, October, and December 

in states across the Corn Belt.  March precipitation is significantly impacted across 

southwest Ohio (CDs 1, 4-8, and 10), southwest to northeast through central Wisconsin 

(CDs 3, 5, 7, and 8) and northeast Minnesota (CDs 3 and 6).  April impacts skirt the 

northern climate divisions of Michigan (CD 1), Wisconsin (CD 2), and Minnesota (CDs 1, 

2, and 5).  October precipitation is found to be significantly impacted across southern 
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Indiana (CDs 5-9) and much of Ohio (minus CDs 3, 6, and 7).  This southwest to 

northeast orientation of observed precipitation significance across Indiana and Ohio is 

suggestive of a possible shift in the Polar Jet Stream/mean storm track due to changes in 

AO pressure oscillations.  States having precipitation significantly influenced by the AO 

during the month of December include Kansas (CDs 1-3, 5, 6, 8 and 9), northwest 

Missouri (CDs 1 & 3), Indiana (CDs 1, 2, 8 and 9), Ohio (CDs 5 and 8), and northeast-

central Illinois (Figure 3.4).   

3.5.1.2 Teleconnection Episodes and Historic Crop Yields - Correlation 

Agroclimatology shows that temperature and precipitation are the primary 

meteorological variables that impact corn growth and phenological development, with the 

potential for temperatures having slightly more of an impact than precipitation over the 

length of the growing season (e.g., Kellner and Niyogi 2014).  However, precipitation is 

highly important, especially during the grain-fill period, thus it cannot be considered less 

of a contributor to yield production compared to temperature (Niyogi and Mishra 2012).  

Knowing that teleconnections influence climate variability, it is important to review the 

impacts of ENSO and AO on historic corn yield.  AO is found to have a stronger impact 

than ENSO on the detrended yield time series for the period 1981-2010.  Because the 

detrending methodology introduces a one-year lag, the regression analysis is completed 

for the years 1981-2010, while ANOVA analysis and the climatology development 

includes the years 1980-2010. 

3.5.1.2.1 El Niño Southern Oscillation  

ENSO has minor impact on the one year lag detrended yield time series when 

analyzed through correlation analysis (90% CI) at the crop reporting district level (CRD) 

for the three different time frames considered across the growing season.  A more 

detailed analysis of the ENSO impacts on the observed and agroclimatic model simulated 

crop yields for the study domain is reported in Niyogi et al. (2013 and 2014). 
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3.5.1.2.2 Arctic Oscillation 

The AO is found to have a larger impact on the detrended yield time series using 

correlation analysis.  Significance is found at 90%, CI across states, across several of the 

different time frames analyzed in this study, and across more than one CRD in a state. 

This highlights the role of the AO in short-term climate variability and its possible 

impacts on agricultural production across the US Corn Belt.  For the months of April – 

October and June, July, and August, all relationships are negatively correlated.  For the 

months of April, May, and June, the relationship is positively correlated.  Table 3.1 

provides all states, time frames, and statistically significant findings between the average 

AO episode for the specified time frame and detrended yield time series at the 90% CI.  

Relationships as presented in Table 3.1 indicate that the more positive the AO signal, the 

lower the yield and the more negative the AO signal, the higher the yield for late summer 

and the growing season.  A positive relationship between AO and yield exists in spring 

meaning that a positive AO would result in higher yields and a negative AO would result 

in reduced yields.  The negative relationship found during the months of June, July, and 

August suggest 1) a positive AO signal results in decreased yield or a negative AO results 

in increased yields.  The work of Hu and Feng (2010) identify that a negative AO episode 

in summer results in more summer rainfall due to the stronger transverse circulation in 

the Polar Jet and that a positive AO episode in summer results in less rainfall in the 

Central United States.  The findings of Hu and Feng (2010) and the June, July, and 

August AO episode relationship with crop yields identified by this climatology support 

each other in that increased rainfall during silking and grainfill periods could likely 

contribute to result in historically higher yields.  Table 3.2 highlights those states with 

climate divisions that have the highest average amount of observed precipitation during 

warm season months while the AO is in a negative episode. 

3.5.1.2.3 AO and ENSO Crop Anomaly Analysis 

 Detrended yield time series values are taken as an anomaly above or below the 

CRD mean for the 1981-2010 period to assess whether historic crop yields, when 

grouped into ENSO or AO episodes, are above or below mean historic trend similar to 
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Hansen et al. (1998).  For simplicity, anomalies of the detrended yield time series are 

binned into annual ENSO events (either El Niño, La Niña, or neutral as previously 

defined), average ENSO episode by growing season (April – October), and average AO 

signal for the growing season.  While ENSO events have been named as “years” (i.e., the 

1997-1998 El Niño year/event), the AO is not classified as such because the 

teleconnection varies on a weekly to monthly timescale.  Thus, the AO anomalies are 

only binned by the average AO signal for the growing season.   

Results for ENSO years/episodes generally agree with those of previous findings 

(e.g., Carlson et al. 1996; Hollinger et al. 2001; Mauget and Upchurch 1999; Rosenzweig 

2001 and those studies mentioned therein) in that El Niño years experience higher than 

average yields in much of Missouri, Kansas, Minnesota, the southern two-thirds of Ohio, 

Iowa, central Michigan, Wisconsin, Nebraska, North Dakota and South Dakota.   

However, Indiana and Illinois have seen larger yields during ENSO neutral episodes.  

During a La Niña episode, all of these states and/or regions of these states experience 

lower than average yields.  A slight difference is present in the northern two-thirds of 

Michigan and Wisconsin, Minnesota, North Dakota and South Dakota.  These states 

experience lowest yields during ENSO neutral episodes.   

Analysis of detrended yield time series crop anomalies for the average growing 

season ENSO episode changes yield anomalies so that in Illinois, Indiana, and Ohio, 

yields are lowest during El Niño episodes and highest during ENSO neutral episodes.  

Michigan and Wisconsin do not shift much except in the northern two-thirds of the state 

which experiences lowest yields during an ENSO neutral or La Niña event.  Minnesota 

shifts so that lowest yields to occur during La Niña episodes instead of during neutral 

episodes.    Growing season analysis for Iowa changes so that higher yields occur during 

ENSO neutral events.  Kansas reveals no favored ENSO phase for higher or lower than 

normal years.  Missouri shows lowest yields occurring during El Niño episodes in most 

CRDs and highest yields occurring during La Niña or neutral episodes.  Growing season 

yield anomalies in the Dakotas become more variable with no trend except that an ENSO 

neutral to El Niño episode predominantly reduces yield.  The yield anomaly for Nebraska 

when reviewed by growing season shows that lowest yields occur during El Niño 
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episodes and highest yields occur while in an ENSO neutral episode during the growing 

season.   

AO anomalies of detrended yield time series show much larger variability above 

or below trend.  However, results remain inconclusive due to the AO signal being 

predominantly neutral through the time period (1 year AO negative and 2 years AO 

positive) and the fact that much larger than normal yields occurred during the two AO 

positive years and greatly reduced yields occurred during the one AO negative year.  This 

creates a large bias towards neutral episode events and the anomalous yields in AO 

negative and positive years.  Table 3.3 provides a summary by state and crop reporting 

district ENSO and AO yield anomalies by episode of each teleconnection for the growing 

season.  Differences between crop anomalies when looking at annual AO episode values 

versus growing season values are that a positive or negative AO episode results in 

reduced yields and largest yields occur during AO neutral episodes.  

It is seen in this analysis of growing season versus annual episode that the time frame in 

which the detrended yield time series is analyzed by ENSO and AO episodes determines 

detrended yield time series crop anomalies.  The authors wish to express that these 

findings are not of magnitude to warrant making a prognostic decision of above or below 

normal yields based on the average growing season or average annual forecast of ENSO 

or AO episode.  Rather, the general trends of above or below normal yields based on 

identified weather conditions could continue be considered more heavily in the decision 

making process. The quantitative yield anomalies will also be dictated by agronomic 

practices such as planting dates, seed characteristics, and technology. Therefore, while 

ENSO or AO signatures may not translate or often times not be the dominant drivers for 

the quantitative statistically significant anomaly, we assert the qualitative trends are still 

useful. One such example of a qualitative trend is the strong La Niña (warmer and drier 

conditions) that contributed to the anomalously warm spring of 2012 and earlier than 

normal planting dates.   
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3.5.2 Extremes Climatology 

Takle et al. (2014) highlight climatic conditions throughout the year and the 

needed weather and seasonal forecast content that affects corn production.  Among these 

weather conditions are soil moisture, extreme heat, frost damage, growing degree days, 

extreme weather, and early freezes before harvest [McKeown et al. (2006) and Elmore 

(2013) provide a general review of such conditions].  The goal of developing this 

‘extremes’ climatology for ENSO and AO episodes is to investigate the occurrence of 

such events as related to a given episode so that producers can be better acquainted about 

the potential likelihood of occurrence of warmer day time maximum temperatures (heat 

stress), increased likelihood of experiencing a frost or freeze event (damage to newly 

planted crops), or increased/decreased frequency of heavy rainfall events (applications of 

nitrogen, irrigation).  The variables Tmax ≥ 90°F, Tmax ≤ 32°F, Tmin ≤ 32°F, Prcp ≥ 0.10 

inch, and Prcp ≥ 1.0 inch show statistically significant findings at the 90% CI with 

ANOVA across spatial scales spanning locations either broadly across the Corn Belt or 

impacting as few as one location in the Corn Belt.  These extremes are impacted by both 

teleconnections with both similar and as well as different statistical relationships.  Only 

those impacted CDs with neighboring impacted CDs (essentially a sub-region) are 

included in discussion for brevity. 

3.5.2.1 EL Niño - Southern Oscillation 

3.5.2.1.1 Extreme Event Frequency-ANOVA 

El Niño Southern Oscillation episodes do appear to impact the average number of 

days per month of extreme precipitation amounts and temperatures occurring in the Corn 

Belt.  Precipitation is impacted significantly (90% CI, ANOVA) during the months of 

April (Prcp ≥ 1.0 inch), July (Prcp ≥ 0.10 inch), September (Prcp ≥ 0.10 inch and Prcp ≥ 

1.0 inch.), and November (Prcp ≥ 0.10 inch).  Temperatures are impacted significantly in 

March (Tmin ≤ 32°F), September (Tmax ≥ 90°F), October (Tmax ≤ 32°F), and December 

(Tmax ≤ 32°F).  Figures 3.5 and 3.6 show the regional, sub-domain-scale distribution of 

these variables. 
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3.5.2.1.2 Extreme Event Frequency Impacts to Historic Yield-Correlation 

To determine if the average frequency of monthly extreme events during a given 

ENSO episode impacts detrended yield time series, correlation is completed between 

yields and the average number of days per month an extreme event occurs by ENSO 

episode.  The number of days per month Tmax ≥ 90°F shows a moderate, positive 

relationship during the month of May in an El Niño episode and a negative impact in 

during an El Niño August.  March and October during all ENSO episodes are the primary 

months having moderate to strong negative relationships between detrended yield time 

series and the average number of days per month Tmax ≤ 32°F (indicating reduction in 

yield the more days per month that experience freezing temperatures).  This highlights 

the vulnerability of freezing temperatures impacting field conditions during early spring 

(delayed planting dates) and also potentially impact harvest in fall through frost or freeze 

damage.  Tmin ≤ 32°F results in moderate to strong negative relationships during all 

ENSO episodes.   

Positive, moderate to strong correlations exist between the average number of 

days per month Prcp ≥ 0.10 inch during an El Niño June (less average observed 

precipitation compared to the other two episodes) and a neutral August when correlated 

to historic detrended yield time series.  A neutral ENSO episode in August has the 

strongest correlation to yields having on average one more day per month Prcp ≥ 0.10 

inch across the Corn Belt.  The average number of days per month where Prcp ≥ 1.0 inch 

when correlated to detrended yield time series has weak, positive correlations to La Niña 

Aprils and weak to moderate positive correlations during La Niña Augusts.  

3.5.2.2 Arctic Oscillation 

3.5.2.2.1 Extreme Event Frequency-ANOVA 

Statistically significant impacts of the Arctic Oscillation are seen at sub-regional 

scales across the Corn Belt as well.  The number of months impacted by each type of 

extreme event is greater than ENSO.  Precipitation is impacted significantly during the 

months of February, March, April, June, and September when analyzed for the number of 

days per month Prcp ≥0.10 inch and the month of March when analyzed for number of 
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days per month Prcp ≥1.0 inch. Extreme temperatures are impacted by the AO in months 

preceding planting dates or after crops begin maturing: Tmax ≥ 90°F (September), Tmax ≤ 

32°F (January, April, October, November, and December), and Tmin ≤ 32°F (March, April, 

October, November, and December).  Figures 3.7 and 3.8 show maps of these findings. 

3.5.2.2.2 Extreme Event Frequency Impacts to Historic Yield-Correlation 

Like ENSO, correlation of extreme events by episode of each teleconnection to 

detrended yield time series is completed to see if a relationship is present between the 

average number of days per month a given parameter occurs and yield.  Only statistically 

significant relationships (95% CI) are discussed.  Correlation analysis shows that a 

negative AO in August and a neutral AO in May are important months to consider the 

number of days Tmax ≥ 90°F.  A negative AO in August has a negative, weak correlation 

(less days Tmax ≥ 90°F, higher the yield), and a neutral May has a positive relationship in 

that more days with Tmax ≥ 90°F, the higher the yield.  The months of April, May, and 

September all show moderate to strong negative correlations with Tmin ≤ 32°F with no 

AO phase taking dominance over other episodes.  However, May (all phases) has the 

strongest relationship with the number of days Tmin ≤ 32°F.  The relationship apparent 

through analysis is that the larger the number of days in May Tmin ≤ 32°F, the lower the 

yield – or – the less number of days Tmin ≤ 32°F, the higher the yield. 

Analysis of historic detrended yield time series and precipitation highlights no 

relationship between historic yields and the average number of days per month Prcp ≥ 

0.10 inch. The average number of days per month Prcp ≥ 1.0 inch has the strongest, 

positive correlations during the months of April, May, and July.  A neutral episode during 

the month of April has a moderate to strong positive relationship and a positive episode 

in May has a weak to moderate positive relationship between the number of days per 

month Prcp ≥ 1.0 inch and yield.   
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3.5.3 Relating Climatological Findings to Agronomic Decision Making and Yield 

Impacts 

ANOVA for meteorological season is completed (spring: March, April, and May; 

summer: June, July, and August; fall: September, October, and November; and winter: 

December, January, and February) and briefly discussed in terms of teleconnection 

episodes (AO: positive, negative, or neutral; ENSO: El Niño, La Niña, or neutral) and 

which episode leads to the wettest or driest and warmest or coldest conditions during that 

season.  Findings are then briefly discussed in terms of impacts to agronomic decision 

making.  Specific climate divisions and data can be viewed in the supplemental material.  

A more detailed spatial and temporal analysis (maps and bar graphs by month and 

episode) of ENSO and AO influences to weather patterns and how these weather patterns 

may in turn affect agronomic decision making will be discussed in more detail in a follow 

up paper.  This paper is intended to prepare and analyze the meteorology/climatological 

data that can be used for the development of an online tool to help agricultural 

stakeholders make more informed decisions. 

The statistically significant spatial and temporal influence of the AO on mean 

temperatures and precipitation across the domain during the seasons of spring, summer, 

and fall are broad in scope for mean temperatures and more focused into sub-regions of 

the domain for precipitation.  The difference of average mean temperatures and mean 

observed precipitation between episodes is also greater when binned into AO episodes 

than ENSO episodes.   

3.5.3.1 ENSO Seasonal Impacts and Agronomic Decision Making 

3.5.3.1.1 Mean Temperatures 

Compared to AO, ENSO episodes impart less spatial and temporal influences to 

weather patterns across the U.S. Corn Belt.  Spring shows no statistically significant 

relationships for mean temperatures through ANOVA analysis.  Summer temperatures 

are warmest during La Niña summers across Minnesota, Wisconsin, Michigan, Iowa, 

northern Illinois, and the northern two-thirds of Indiana.  This suggests that during 
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summer in these locations, crops may be more likely to experience heat stress, which may 

reduce yield (as discussed in previous studies).  Provided rainfall is below normal during 

this time, evapotranspiration rates may be enhanced, putting crops under moisture stress 

which may be alleviated through irrigation scheduling.  A few climate divisions in far 

east Nebraska, central and southeast Kansas, and Missouri (CDs 1 and 6) are on average 

warmest during neutral ENSO episodes in summer.  However, average temperatures are 

within several tenths of a degree to the La Niña average temperature.  During summer 

mean temperatures are coolest during an El Niño episode for the same locations.  Cooler 

temperatures could be indicative of less heat stress on crops, likely boosting yield if 

adequate GDDs are met (as also discussed in previous studies).  Fall, like spring, shows 

no statistically significant relationships between ENSO episodes and mean temperature.   

3.5.3.1.2 Average Observed Precipitation 

 Statistically significant relationships for precipitation are not present during 

spring and are minimal during summer (3 of 106 climate divisions).  Fall has statistically 

significant precipitation relationships focused around the Great Lakes region in northwest 

and central Indiana, southern Michigan, and north-central and northeast Ohio.  During an 

ENSO neutral episode, these CDs are on average the wettest during the fall, and are driest 

during La Niña episodes.  In this region, farmers may consider delayed harvest during 

ENSO neutral events due to wet fields and delayed dry-down of crops.  A La Niña 

episode may allow a producer to plan for earlier harvest due to drier conditions. Figure 

3.9 provides a flow chart example of how this climatology and embedded information 

may be used in a decision making process and the DST is being developed. 

3.5.3.2 Arctic Oscillation Seasonal Impacts and Agronomic Decision Making 

3.5.3.2.1 Mean Temperatures 

As related to agricultural decision making, spring is warmest across the domain 

when the AO is in a neutral episode.  The coldest mean temperatures in spring occur 

during a negative AO episode across the southern two-thirds of the domain and across the 

roughly northern one-third of the domain during a positive AO episode.  Thus, a neutral 

AO episode would provide for possibly earlier planting dates while a negative AO in the 
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spring could delay planting by several weeks.  Summer mean temperatures are coolest 

across the domain when the AO is in a negative episode, and predominantly warmest 

when the AO is neutral, except in the far northwest and western edge of the domain.  An 

AO neutral episode in summer may provide greater chance of heat stress on crops (and 

possible need for compensative irrigation), while cooler temperatures with a negative AO 

during the summer may inhibit temperatures needed for full crop development potential.  

Fall temperatures are coldest across the domain except for North and South Dakota when 

the AO is negative (possibility for earlier frosts) and warmest when the AO is in a neutral 

episode (better dry down conditions with little delay in harvest dates).   

3.5.3.2.2 Average Observed Precipitation 

The AO results in statistically significant precipitation relationships 

predominantly located over the central portions of the domain during the spring and the 

periphery of the domain during the fall.  During the spring, precipitation is highest during 

a neutral AO across the central part of the domain (roughly Minnesota, Wisconsin, west-

central Michigan, Iowa, southeast Nebraska, and northwest Missouri) which may lead to 

delayed planting due to increased soil moisture and soil compaction that inhibits field 

work days. The least amount of precipitation occurs during a negative AO in the 

aforementioned states.  ANOVA of summer precipitation by AO episode results in only 

two of 106 CDs having noteworthy relationships.   Fall precipitation is influenced by the 

AO predominantly during positive AO episodes and negative AO episodes, with wettest 

and driest conditions nearly opposite of each other.  Western North Dakota and the far 

north-central region of the domain are driest in fall when the AO is positive (more 

suitable for timely crop dry-down and harvest) and wettest when the AO is neutral 

(delayed dry-down and harvest).  Those climate divisions in Indiana and Ohio near-to 

(Ohio CDs 4 and 5) and bordering the Ohio River are wettest during a positive AO 

episode (delayed dry-down and harvest) and driest in a neutral AO episode (timely crop 

dry-down and harvest). 
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3.6 Conclusions 

 Climate change projections indicate shifts in regional/global climate and 

increased climate variability.  This ENSO and AO climatology explores the weather and 

climate information applicable to producers in the U.S. Corn Belt/ North Central region 

that will be implemented into a decision support tool for agricultural producers to make 

more informed agronomic decisions. Climate variability in the form of precipitation and 

mean temperature is analyzed for each teleconnection across the U.S. Corn Belt with 

analysis completed for historic detrended corn yield time series down to the climate 

division/crop reporting district level.  ENSO and AO are studied because of the temporal 

impacts of each teleconnection. It has been noted that ENSO impacts weather over 

several months whereas AO impacts weather patterns for several weeks.  No gridded or 

reanalysis datasets are used in this study to maintain the integrity of historically-observed 

weather data and the agricultural producers’ preference to utilize station data rather than 

gridded products.   Findings of significance occur from single climate divisions/crop 

reporting districts, to sub-regional (i.e., smaller regions within a 12-state domain), and 

near-regional spatial scales.   

 This climatology explores the common climatological variables of mean 

temperature and precipitation while also exploring extreme events.  Analyzing two 

temporally different teleconnections and finding similar, yet unique feedbacks highlights 

the importance of understanding climatological feedbacks across the Corn Belt.  ANOVA 

analysis of ENSO and AO episodes by climate division shows the significance (or non-

significance) of shifts in temperature and precipitation patterns as associated with ENSO 

and AO with AO impacts emerging more frequently (e.g., by month) throughout the year 

in this analysis.  Previously discussed studies tend to highlight seasonal changes.  

ANOVA of extreme events (Tmax ≥ 90°F, Tmax ≤ 32°F, Tmin ≤ 32°F, Prcp ≥ 0.1 inch, and 

Prcp ≥ 1.0 inch) by ENSO/AO episode provides similar results.  These findings show a 

need for more detailed information on the sub-regional spatial distribution of ENSO and 

AO impacts across the Corn Belt rather than a general state or regional application of 

findings which appears too broad in scope or value for agronomic decision making.  
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The most significant impacts of ENSO and AO (according to ANOVA) occur 

during the  spring, fall, and winter months which lie outside the primary months of the 

production/growing season (April – October) suggesting indirect impact to crop 

production/yield.  Correlation of each teleconnection and episode across different time 

frames (April-June, June-August, and April-October) to historic detrended yield time 

series at Crop Reporting District level shows that the AO affects historic yield (either 

positively or negatively). The consistent relationship with AO is that a more positive the 

AO phase in spring the higher the yield.  For summer and the growing season, the more 

positive the AO Phase, the lower the yield and the more negative the AO phase, the 

higher the yield. Evaluation of historic detrended yield time series above or below trend 

when grouped by ENSO episodes agree with prior studies in that yields are historically 

greater than average during El Niño years and less than average during La Niña years.  

Historic yields when binned by the average ENSO episodes during the growing season 

results in similar findings.  The average AO episode during the growing season shows 

inconclusive results due to a majority of seasons being in a neutral episode.  While the 

quantitative yield anomalies found in this climatology are also dictated by agronomic 

practices such as planting dates, seed characteristics, and technology, it is felt that the 

general trends of above or below normal yields based on identified weather conditions 

could be considered in the decision making process.  Therefore, while ENSO or AO 

signatures may not translate or often times not standout as the dominant drivers for the 

quantitative statistically significant anomaly, we assert the qualitative trends could still be 

useful for the agronomic decision making at local scales. The monthly frequency of 

extreme temperatures and precipitation when correlated to historic detrended yield time 

series demonstrate that month-specific teleconnection episode and impacts to daily 

rainfall and temperature is important to production as well and can be of value in decision 

making. 

As part of the U2U project, the goal of this climatology is to investigate the 

hydroclimate of the U.S. Corn Belt. The data herein is currently being developed into an 

online decision support tool for cereal producers and other applied users so that they will 

be able to make more informed production decisions in the light of climate variability and 
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change. The climatology by design is simple in scope (averaging of observed weather 

variables, using only 30 years of weather, climate, and crop data, and basic statistical 

analysis) so that applied users can understand and use the data. This climatology is also 

intended to convey the importance of understanding spatial and temporal relationships of 

teleconnections such as ENSO and AO and how they impact agro-climatic patterns 

affecting yield potential in a growing season.  It is clear through the different spatial and 

temporal agro-climatic impacts of AO episodes (broad in scope for mean temperatures 

and more focused into sub-regions of the domain for precipitation) and ENSO episodes 

(impacts are more concentrated across the central portions of Corn Belt) on seasonal 

mean temperatures and precipitation that further investigation could benefit from 

analyzing additional teleconnections that influence Midlatitude weather regimes so that 

an optimal understanding of climate variability can be communicated to producers.  

Findings further show that the AO imparts greater variability (mean observed 

precipitation and average observed mean temperature) between episodes than ENSO. The 

findings herein and planned analysis with development into an online tool will allow for 

better mitigative and adaptive efforts by producers that will help maximize yield as the 

world shifts towards climate uncertainty. The primary goal of this paper is to develop the 

data and climatological framework that can be translated into useful information for 

stakeholders. 

The sub-regional impacts found in the climatology show the need for higher-

resolution analysis of ENSO and AO impacts in order to help provide a predictive 

potential at finer scales (i.e., county level) when the ENSO or AO episode is known in 

advance.  ENSO forecasts and discussions are readily issued by agencies around the 

world (Zebiak et al. 2014) potentially providing sufficient lead time for users to make 

informed decisions provided the forecast is issued in a timely manner and verifies (Takle 

et al. 2014).  Because the AO is a teleconnection influencing weather and climate 

variability across shorter time frames, its predictability is less certain and is only forecast 

about two weeks out.  This limits applicability by users to make informed decisions for 

the longer term, but still provides applicability in short term decision making such as 

increased likelihood of a frost or freeze event or episodes of heat stress over the next 14 
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days.   With the goal of this climatology and DST to result in more effective decision 

making by the user in light of climate variability and change by using existing data and 

models (agclimate4u.org), the uncertainty associated with timely forecast issuance for 

climate variability indices is not reduced or removed through this climatology and 

associated DST.  Rather the climatology and DST is developed so that climate variability 

is better understood by users to make more informed decisions with current weather and 

climate data when it is made available.  
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3.8 Tables 

Table 3.1:  Correlation (90% CI) of average teleconnection episode 1981-2010 to 

detrended historic yields by growing season and sub-growing season intervals.  “+” 

denotes a positive correlation and “-“denotes a negative correlation.  Correlation of 

average ENSO episode and historic yields for specified time frames resulted in no 

relationships of significance. “NA” refers to those climate divisions in which crop yield 

data was not complete for the 1981-2010 period. 
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Table 3.2: Difference between average warm season rainfall for each AO episode at state 

climate division level to the average observed warm season rainfall for the respective 

state climate division.  Bold numbers denote those states and climate divisions having the 

highest average observed warm season precipitation shown as a positive departure from 

the mean during a negative AO episode.  Negative values indicate that the average warm 

season rainfall for that AO episode is below the warm season normal. 

Above/Below Normal Average Observed Warm Season  

Rainfall (Apr. - Sept.) by AO Episode (1980-2010) 

CD 1 2 3 4 5 6 7 8 9 10 

ND 

Positive -0.15 -0.22 -0.23 -0.08 -0.18 -0.07 -0.15 -0.21 -0.12 

 
Negative -0.20 -0.25 -0.16 -0.05 -0.05 -0.16 0.13 0.06 -0.08 

Neutral 0.11 0.16 0.13 0.04 0.08 0.07 0.02 0.05 0.07 

SD 

Positive -0.30 -0.25 -0.06 -0.17 -0.22 -0.28 0.14 -0.10 -0.14 

 
Negative 0.30 0.04 -0.30 0.37 0.24 0.26 -0.13 0.15 0.05 

Neutral 0.02 0.07 0.11 -0.05 0.00 0.02 -0.01 -0.01 0.04 

NE 

Positive -0.23 -0.05 0.09 

 

-0.07 -0.34 -0.09 -0.17 -0.64 

 
Negative 0.20 0.10 -0.22 -0.01 -0.06 0.19 -0.16 0.15 

Neutral 0.02 -0.01 0.04 0.03 0.14 -0.03 0.11 0.18 

KS 

Positive -0.30 -0.36 -0.73 -0.05 -0.34 -0.61 0.01 -0.11 -0.50 

 
Negative 0.24 0.02 0.29 0.06 0.22 0.39 0.08 0.36 0.69 

Neutral 0.03 0.12 0.17 0.00 0.05 0.10 -0.03 -0.07 -0.03 

MO 

Positive -0.65 -0.30 -0.52 -0.29 -0.16 0.31 

    
Negative 0.23 0.17 0.54 0.63 0.30 -0.19 

Neutral 0.16 0.06 0.02 -0.09 -0.03 -0.05 

IA 

Positive 0.03 -0.26 -0.31 -0.16 -0.26 -0.61 -0.64 -0.61 -0.61 

 
Negative -0.36 -0.48 -0.19 -0.17 -0.04 0.47 0.25 0.13 0.39 

Neutral 0.10 0.24 0.17 0.11 0.11 0.07 0.15 0.18 0.10 

MN 

Positive -0.01 0.07 -0.06 0.03 0.11 -0.02 0.15 0.05 0.05 

 
Negative -0.28 -0.53 -0.45 -0.37 -0.59 -0.66 -0.15 -0.32 -0.42 

Neutral 0.09 0.14 0.16 0.10 0.14 0.21 -0.01 0.08 0.11 

WI 

Positive -0.05 -0.05 -0.17 0.06 -0.02 -0.10 -0.24 -0.05 0.19 

 
Negative -0.62 -0.37 -0.24 -0.47 -0.36 -0.28 -0.24 -0.30 -0.27 

Neutral 0.20 0.13 0.13 0.12 0.12 0.12 0.16 0.11 0.01 

IL 

Positive -0.31 -0.01 -0.35 -0.11 -0.10 -0.05 -0.05 -0.04 0.07 

 
Negative 0.40 0.16 0.10 -0.13 -0.05 -0.12 -0.02 0.52 0.28 

Neutral -0.01 -0.05 0.09 0.08 0.05 0.05 0.02 -0.14 -0.11 

IN 

Positive -0.19 0.03 -0.04 0.03 0.06 -0.10 0.12 0.02 -0.02 

 
Negative 0.01 -0.11 -0.04 -0.06 -0.03 -0.01 0.20 0.46 0.32 

Neutral 0.06 0.02 0.03 0.01 -0.01 0.04 -0.10 -0.15 -0.09 

OH 

Positive 0.01 0.00 0.02 0.05 0.02 -0.10 -0.04 0.03 0.10 0.12 

Negative 0.10 0.22 0.12 -0.20 -0.07 0.09 0.18 0.23 0.18 0.14 

Neutral -0.04 -0.07 -0.04 0.04 0.02 0.01 -0.04 -0.08 -0.09 -0.08 

MI 

Positive -0.25 -0.17 -0.14 -0.01 0.12 0.04 0.02 -0.07 0.14 0.04 

Negative -0.15 0.12 -0.04 -0.11 -0.27 -0.27 -0.01 -0.13 -0.05 0.19 

Neutral 0.14 0.02 0.06 0.04 0.04 0.07 -0.01 0.06 -0.03 -0.07 
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Table 3.3: Tables of crop anomaly (detrended minus the detrended mean) values in 

bushels per acre by teleconnection and episode for the growing season (April-October). 

“ND” stands for no data.  (a) For the Arctic Oscillation (AO) “N” denotes negative 

episode (≤-0.5), “P” denotes positive episode (≥0.5), and “Neu” denotes a neutral episode 

(-0.4 to 0.4). (b) For ENSO “L” denotes cold episode (≤-0.5), “E” denotes warm episode 

(≥0.5), and “N” denotes a neutral episode (-0.4 to 0.4). Positive values indicate yields 

greater than the mean and negative values indicate yields less than the mean at crop 

reporting district level. 

Growing Season 

  ENSO AO   ENSO AO 

State CRD E L N Pos. Neg. Neu. State E L N Pos. Neg. Neu. 

IL 

10 -8.5 -9.1 7.7 -10.4 -27.8 1.8 

MO 

-1.9 -3.0 2.1 -49.1 -50.1 5.5 

20 -11.4 -1.2 6.1 -8.2 -18.9 1.3 -1.6 0.1 0.8 -33.9 -39.9 4.0 

30 -8.4 -7.1 6.9 -51.8 -25.5 4.8 0.4 -2.7 0.8 -49.5 -9.7 4.0 

40 -11.7 -4.1 7.4 -25.5 -12.5 2.3 -5.3 3.7 1.3 -29.0 -33.2 3.4 

50 -10.1 -3.3 6.3 -18.5 -16.6 2.0 -2.6 2.0 0.6 -32.4 -21.5 3.2 

60 -9.0 -2.7 5.5 -31.8 -7.2 2.6 -6.9 0.8 3.2 -30.2 -25.8 3.2 

70 -9.9 -1.0 5.3 -28.9 -1.1 2.2 1.3 -0.7 -0.4 -22.2 -23.2 2.5 

80 -8.7 -1.4 4.9 -32.0 -6.6 2.6 -7.3 -5.3 5.6 -33.3 -18.0 3.1 

90 -10.5 -0.1 5.3 -29.2 0.5 2.1 -9.2 0.3 4.5 -28.3 -26.8 3.1 

State CRD E L N Pos. Neg. Neu. State E L N Pos. Neg. Neu. 

IN 

10 -6.8 -5.5 5.5 -16.1 -15.0 1.8 

IA 

-5.2 -2.7 3.6 -18.6 -78.8 4.3 

20 -8.7 -9.2 7.8 -13.7 -11.0 1.4 -2.9 -1.4 2.0 -21.4 -86.9 4.8 

30 -6.1 -8.3 6.2 -18.3 -13.1 1.8 -0.2 -10.5 4.1 -6.7 -72.4 3.2 

40 -11.7 -3.3 7.1 -19.4 -5.6 1.6 -0.7 -3.4 1.6 -25.5 -73.3 4.6 

50 -6.5 -5.4 5.3 -23.3 0.3 1.7 1.5 -7.9 2.2 -10.9 -74.4 3.6 

60 -7.9 -3.9 5.4 -27.8 -5.9 2.3 -6.6 -14.5 8.7 -12.3 -60.6 3.2 

70 -13.9 -0.3 7.0 -24.3 -7.7 2.1 1.9 -3.3 0.3 -26.3 -70.5 4.6 

80 -14.0 -2.4 7.9 -30.4 5.0 2.1 -1.1 -4.2 2.1 -37.7 -65.7 5.2 

90 -12.4 -0.8 6.5 -32.2 -0.9 2.4 -5.4 -11.1 6.9 -53.3 -57.1 6.1 

State CRD E L N Pos. Neg. Neu. State E L N Pos. Neg. Neu. 

OH 

10 -8.6 -3.4 5.6 -13.8 -31.0 2.2 

KS 

-1.7 3.0 -0.3 -8.3 -13.7 1.1 

20 -9.7 1.4 4.4 -15.9 -37.9 2.6 -1.4 -7.5 3.5 -5.8 0.3 0.4 

30 -10.4 2.2 4.3 -18.9 -35.3 2.7 -3.1 2.4 0.6 -18.6 -22.6 2.2 

40 -10.9 2.3 4.6 -35.0 -13.5 3.1 -4.2 -2.4 3.0 1.4 -18.4 0.6 

50 -4.7 2.2 1.5 -30.2 -22.4 3.1 1.4 -3.1 0.5 -14.7 -12.7 1.6 

60 -8.7 -0.4 4.5 -16.1 -20.2 1.9 0.9 0.9 -0.8 -12.8 -17.7 1.6 

70 -4.2 -0.3 2.2 -29.8 -18.4 2.9 -7.8 0.3 3.8 -58.5 -43.3 5.9 

80 -3.3 -3.0 2.8 -21.6 -22.6 2.4 -3.7 1.2 1.4 -24.9 -30.8 3.0 

90 -6.3 1.6 2.5 -24.0 -13.6 2.3 -0.3 8.7 -3.1 -18.9 -25.1 2.3 
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Table 3.3 continued 

Growing Season 

  ENSO AO   ENSO AO 

State CRD E L N Pos. Neg. Neu. State E L N Pos. Neg. Neu. 

MI 

10 0.5 11.7 -4.6 -10.1 -29.0 1.8 

ND 

ND ND  ND  ND  ND  ND  

20 2.4 -3.0 -0.1 -10.9 -3.2 0.9 -8.1 3.2 2.8 -14.5 -49.1 2.9 

30 -1.8 4.1 -0.6 -15.1 -12.7 1.6 -4.5 -2.7 3.3 -29.5 -29.5 3.3 

40 7.1 3.0 -4.7 -3.0 12.3 -0.2 -6.7 4.5 1.6 -19.4 -47.1 3.2 

50 0.9 4.8 -2.2 -7.1 5.3 0.3 -8.8 -2.2 5.2 -13.9 -40.0 2.5 

60 4.0 -2.8 -1.0 4.4 6.9 -0.6 -5.5 -2.5 3.7 -18.3 -40.2 2.8 

70 5.9 -6.7 -0.4 11.5 -1.0 -0.8 ND  ND  ND  ND  ND  ND  

80 0.9 -2.8 0.6 12.3 -1.0 -0.9 -7.1 8.0 0.6 -1.6 -31.3 1.3 

90 -2.7 -3.7 2.7 15.0 -9.2 -0.8 -2.6 -2.9 2.4 4.1 -53.1 1.7 

State CRD E L N Pos. Neg. Neu. State E L N Pos. Neg. Neu. 

WI 

10 7.5 -4.9 -1.9 8.0 -34.1 0.7 

SD 

-4.1 3.3 0.8 -13.0 -32.4 2.2 

20 5.6 -4.7 -1.0 -7.7 -61.5 2.8 -3.2 4.5 -0.1 -1.9 -14.6 0.7 

30 1.8 1.6 -1.5 -8.3 -36.7 2.0 -3.9 -4.8 3.7 5.4 -56.6 1.7 

40 6.4 -8.8 0.1 5.7 -28.0 0.6 3.2 -6.2 0.7 3.6 -9.9 0.1 

50 2.9 -1.0 -1.1 -1.7 -26.1 1.1 -0.8 1.4 -0.1 -23.5 -15.8 2.3 

60 4.2 0.2 -2.2 -8.1 -43.5 2.2 -6.8 -1.2 3.9 -29.1 -64.8 4.6 

70 3.2 -11.4 2.7 9.3 -24.4 0.2 2.4 -4.9 0.7 -16.1 -16.3 1.8 

80 -2.7 -9.6 5.0 0.5 -21.0 0.7 -5.0 -7.6 5.3 -15.2 -1.1 1.2 

90 -2.4 -5.4 3.2 4.9 -13.2 0.1 -12.3 -4.2 7.7 -27.2 -39.0 3.5 

State CRD E L N Pos. Neg. Neu. State E L N Pos. Neg. Neu. 

MN 

10 -3.5 -2.8 2.8 -21.8 -47.8 3.4 

NE 

-2.1 -0.5 1.2 -21.0 -44.4 3.2 

20  ND ND  ND  ND  ND  ND  -4.0 -4.4 3.6 -15.0 -3.9 1.3 

30   ND  ND  ND  ND  ND  ND  -10.7 -5.0 7.2 -30.5 -33.0 3.5 

40 -0.4 -9.9 3.9 3.8 -66.5 2.2 -5.5 -3.8 4.2 -19.7 -26.8 2.5 

50 1.9 -11.7 3.5 -6.4 -64.0 2.8 -2.7 -1.2 1.8 -24.0 -50.4 3.6 

60 7.5 -10.8 0.3 -0.7 -35.2 1.4 -0.3 1.1 -0.3 -16.3 -23.6 2.1 

70 -2.3 -7.2 3.9 -9.6 -90.8 4.1 -3.5 0.0 1.8 -16.9 -47.2 3.0 

80 -0.6 -9.7 3.9 -10.3 -73.7 3.5 -4.3 0.6 1.9 -21.8 -45.7 3.3 

90 2.6 -11.6 3.1 8.5 -60.2 1.6               

 

. 
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3.9 Figures 

 

Figure 3.1: An example of a map highlighting climate divisions where average monthly 

mean temperatures in August are found to be significantly impacted (ANOVA, 90% CI) 

by ENSO episode 1980-2010. 
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Figure 3.2: Same as Figure 1 except displaying average monthly observed precipitation 

for the month of September. 
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Figure 3.3:  A map highlighting climate divisions where average monthly mean 

temperatures in August are found to be significantly impacted (ANOVA, 90% CI) by AO 

episode 1980-2010. 

 

 



88 

 

 

Figure 3.4: Same as Figure 3 except displaying average monthly observed precipitation 

for October. 
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Figure 3.5: An example of a map highlighting climate locations and state climate 

divisions the cities reside in which the average number of days per month extreme 

precipitation event of Prcp ≥ 1.0 inch for the month of April is found to be significantly 

impacted (ANOVA, 90% CI) by ENSO episode 1996-2010.  Orange squares denote the 

cities where findings are significant.  Dark blue climate divisions house those cities.  The 

light blue climate divisions are spatially interpolated (neighbored by two state climate 

divisions with noted significance) for aesthetics. 
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Figure 3.6: An example of a map highlighting climate locations where the average 

number of days per month the extreme temperature event of Tmax ≥ 90°F is found to be 

significantly impacted (ANOVA, 90% CI) by ENSO episode 1980-2010.  Yellow circles 

denote those cities where findings are significant.  Dark red climate divisions house those 

cities.  Orange climate divisions are spatially interpolated (neighbored by two state 

climate divisions with noted significance) for aesthetics. 
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Figure 3.7: An example of a map highlighting climate locations where the average 

number of days per month in April that precipitation events of Prcp ≥ 0.10 inch are found 

to be significantly impacted (ANOVA, 90% CI) by AO episode 1996-2010.  Orange 

squares denote the cities where findings are significant.  Dark blue climate divisions 

house those cities.  The light blue climate divisions are spatially interpolated (neighbored 

by two state climate divisions with noted significance) for aesthetics. 
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Figure 3.8: An example of a map highlighting climate locations where the average 

number of days per month the extreme temperature event of Tmin ≤ 32°F (greater 

likelihood for frost/freeze events) is found to be significantly impacted (ANOVA, 90% 

CI) by AO episode 1980-2010. White circles denote the cities where findings are 

significant.  Dark green/teal climate divisions house those cities.  The light blue climate 

divisions are spatially interpolated (neighbored by two state climate divisions with noted 

significance) for aesthetics. 
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Figure 3.9:  A flow chart presenting an example of the agro-climatic decision making 

process that can be adopted using the information available from the ENSO and AO 

climatology.  The top chart highlights a springtime decision making scenario and the 

bottom chart highlights a mid-growing season scenario.  Historic Oceanic Niño Index 

data can be found at 

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml. 
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CHAPTER 4. ASSESSING DROUGHT VULNERABILITY OF 

AGRICULTURAL PRODUCTION SYSTEMS IN CONTEXT OF THE 2012 

DROUGHT 

4.1 Introduction 

Climate variability lead to extreme weather and climate events when 

teleconnections, global circulation patterns, and high and low pressure systems align in 

such a way that anomalously dry (or wet) and/or warmer (colder) conditions occur in a 

given area for a prolonged period of time.  Drought conditions at the land surface (local-

scale climate) can evolve from a manifestation of teleconnections, global circulation 

patterns, and high and low pressure cells (large-scale climate).  Drought is defined as a 

rainfall deficit in a given area based on that area’s established climate as determined 

through its historic record.  Drought type varies depending on the context in which one is 

viewing the water shortage: agricultural, hydrological, meteorological, and 

societal/economical. A lack of rainfall at the surface leads not only to a rainfall deficit, 

but leads to changes in vegetation, soil moisture, surface albedo, and surface 

temperatures (local-scale climate).  Changes to these parameters cause changes in 

temperature and radiation fluxes between Earth’s surface and the PBL.  The lack of water 

and changes in temperature and radiation fluxes impart a large stress on agricultural 

systems.  This chapter investigates feedbacks between the hydroclimatic state of drought, 

focusing more specifically on livestock forage and production and market impacts.  The 

drought of 2012 is the most recent historical drought to have a significant impact on 

agricultural production in the United States and is used as an example to understand.
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4.2 Assessing Drought Vulnerability of Agricultural Production Systems in the Context 

of the 2012 Drought 

As Published in Forages and Pasture Symposium: Assessing drought vulnerability of 

agricultural production systems in context of the 2012 drought.   

 

Full Citation: Kellner, Olivia and D. Niyogi, 2014: Assessing Drought Vulnerability in 

Agricultural Production Systems in the Context of the 2012 Drought. Journal of Animal 

Science, DOI:10.2527/jas.2013-7496. 2014. 

 

Abstract 

Weather and climate events and agronomic enterprise are coupled via crop 

phenology and yield, which is temperature and precipitation dependent. Additional 

coupling between weather and climate and agronomic enterprise occurs through 

agricultural practices such as tillage, irrigation, erosion, livestock management, and 

forage. Thus, the relationship between precipitation, temperature, and yield is coupled to 

the relationship between temperature, precipitation, and drought. Unraveling the different 

meteorological and climatological patterns by comparing different growing seasons 

provides insight into how drought conditions develop and what agricultural producers can 

do to mitigate and adapt to drought conditions. The 2012 drought in the United States 

greatly impacted the agricultural sector of the economy. With comparable severity and 

spatial extent of the droughts of the 1930s, 1950s, and 1980s, the 2012 drought impacted 

much of the U.S. crop and livestock producers via decreased forage and feed. This brief 

summary of drought impacts to agricultural production systems includes 1) the basics of 

drought; 2) the meteorology and climatology involved in forecasting, predicting, and 

monitoring drought with attribution of the 2012 drought explored in detail; and 3) 

comparative analysis completed between the 2011 and 2012 growing season. This 

synthesis highlights the complex nature of drought in agriculture production systems as 

producers prepare for future climate variability. 
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4.3 Introduction 

This commentary synthesizes the meteorological conditions and impacts of the 

2012 drought and the associated intricate relationship between weather, climate, and 

agriculture. While 2012 has a long list of significant weather events, arguably the most 

notable event was the drought of 2012. The 2012 drought peaked in July with over two-

thirds of the United States experiencing drought conditions comparable to droughts of the 

1930s, 1950s, and 1980s. The large loss in corn resulted in increased feed prices and 

increased prices for meats and animal-based products late in 2012, with further price 

increases felt into 2013 and likely 2014 (Crutchfield, 2013). 

The magnitude, scope, and impact of the 2012 drought continue to be hard to 

define, predict, and assess. Drought occurs at different spatial, temporal, and 

socioeconomic scales depending on weather patterns and water demand for a given area. 

Drought can be far reaching and have indefinable impacts on economies, environments 

and ecosystems, and societies. Agricultural management decisions such as irrigation, 

planting dates, and cropping patterns can also affect drought intensity and evolution. The 

World Meteorological Organization (Geneva, Switzerland) recognizes hydrological, 

agricultural, and meteorological droughts, which are classified by 4 characteristics: 

intensity, duration, spatial extent, and timing. Each type of drought results from climate 

variability (i.e., departure from normal but within average climate) such as decreased 

precipitation, higher temperatures, lower relative humidity, and increased sunshine 

(Figure 4.1). 

This paper analyzes the 2011 and 2012 growing seasons, as related to drought. 

The meteorology and climatology behind the differences in temperatures and rainfall 

between the seasons, along with the role of climate indices, is discussed. Atmospheric 

patterns, variability, and crop impacts are reviewed. A brief examination of future climate 

projections, with suggestions on planning for short and long term drought, is included. 
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4.4 Drought 

4.4.1 Drought Indices 

Drought is currently monitored through several indices developed over the last 

several decades. A common drought index is the Palmer Drought Severity Index (PDSI), 

which measures drought based on temperature and precipitation. The index considers 

precipitation as well as the state of the soil through ground water supply. The demand (or 

withdrawal) of water from the ground is dependent on the temperature of the overlying 

air, evapotranspiration, and requirement and demand of water from vegetation (if present). 

These variables are difficult to quantify due to the physical complexities of the hydraulic, 

radiative, and biologic processes involved. The PDSI is generally effective for assessing 

and monitoring long-term drought. A variant index focusing on hydrology, the Palmer 

Hydrological Drought Index (PHDI), is also used in some midwestern states. The PDSI 

and PHDI differ in that the PHDI more specifically focuses on long-term hydrological 

(versus long-term meteorological) conditions such as ground water, reservoir levels, lake 

levels, and river levels. For the short term (i.e., weeks to months), drought is better 

monitored through the Standardized Precipitation Index (SPI; McKee et al., 1993). This 

index uses precipitation anomaly as a metric for drought. Droughts can be classified as 

“flash droughts,” which have rapid onset but only last for a short time span or droughts 

can be classified as slow onset, which almost seem to “creep” up on regions through time 

(Charusombat and Niyogi, 2011). The 2012 drought was complex in nature, with dry 

conditions and impacts accumulating through time to high levels by the end of summer 

2012 (Figure 4.2). The U.S. Drought Monitor (USDM; http://droughtmonitor.unl.edu) 

collates a number of such drought indices (e.g., rainfall anomaly, SPI, PDSI), local 

impacts (on ground conditions and media reports), and community feedback to develop a 

blended drought map. The USDM drought map is considered the “gold standard” for 

drought status and is the basis for disaster declarations including becoming eligible for 

federal aid. Charusombat and Niyogi (2011) provide an overview of several drought 

indices with applicability for specific drought detection and drought prediction in the 

Midwest. 



98 

 

4.4.2 Understanding the Difference between the 2011 and 2012 Growing Seasons 

 Annual temperatures as a departure from normal for the year 2011 compared to 

2012 are shown in Fig. 3. There is a high spatial correlation between warmer 

temperatures and drought (Figure 4.3). Across the Midwest and Ohio River Valley, 

temperatures in 2011 were mostly near normal or 0.5 to 1.1°C (i.e., 1 to 2°F) above 

normal. In 2012, the average departure from normal ranged from 0.5 to 2.8°C above 

normal (1 to >5°F above normal). Percentage of normal observed precipitation for each 

year shows a strikingly contrasting picture; 2011 shows 100% of normal precipitation or 

greater across much of Illinois, southeast Missouri, and all of Indiana, Ohio, Kentucky, 

and Michigan. In 2012, the U.S. Corn Belt was at 50 to 90% of normal precipitation for 

the year, with only regions in far northeastern Minnesota and those regions affected by 

lake effect snowfall events residing at or slightly above normal (Figure 4.4). While the 

annual summary provides a broader perspective in climatic context, reviewing the 

seasonal analysis highlights a dramatically dry and hotter 2012 growing season as 

compared with the cooler and wetter 2011 growing season. 

The 2012 growing season fell subject to drought conditions because of a warmer 

than normal spring (i.e., March through May) with near-normal to normal rainfall across 

much of the central plains. March 2012 became the warmest March on record at 4.8°C 

(8.6°F) above average. April 2012 finished as the fourth warmest month of April on 

record and May 2012 as the second warmest month of May on record. For the continental 

United States, the average temperature for the season was 13.4°C (56.1°F), 2.9°C (5.2°F) 

above the 20th century average (NOAA National Climatic Data Center, 2012). These 

meteorological conditions resulted in significantly earlier planting dates across much of 

the region leading to earlier crop emergence (which led to increased evaporation and 

transpiration in the atmosphere), only to be affected by hot and dry weather a short while 

later during the meteorological summer months of June through August. The summer’s 

average temperature for the continental United States was the second warmest on record 

at 23.2°C (73.8°F), 1.5°C (2.6°F) above the 20th century average. Alongside these 

record-breaking temperatures, normal precipitation nearly ceased east of the Rocky 

Mountains through the Great Plains and into the Midwest. Drought conditions peaked in 
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July when 61.8% of the spatial area of the continental United States was classified as 

experiencing moderate drought according to the PDSI, comparable to the size of the 

droughts during the 1950s. For the summer period, precipitation for the continental 

United States came 26.2 mm (approximately 1 inch) below average (14th driest summer 

on record; NOAA National Climatic Data Center, 2012). The hot, dry weather led 

quickly to high evaporation, transpiration, and dry soils impacting pasture lands and crop 

yields. The lack of rainfall and extreme heat during the crucial grain-fill period of July 

further exacerbated the decreased yield potential for the 2012 growing season. Hoerling 

et al. (2014) note that in a time series of crop yield from 1866 to the present, the 2012 

growing season yield fell well below recent crop yield trends. Hoerling et al. 

(2014) further note that when coupled with the climatic impact of the 2012 drought, the 

yield impact is historic, with no year since 1866 experiencing such a large loss in crop 

yield. 

Early planting and warm temperatures also created an environment suitable for 

the development of other biotic and abiotic stresses such as Aspergillus ear rot, which is 

associated with the mycotoxin aflatoxin. While concentrations of aflatoxin are acceptable 

in harvested yields, it is monitored by the USDA, which mandates that to prevent 

carryover into milk, silage and other feed components developed from a contaminated 

harvest should contain no more than 20 ppb of aflatoxin (Stewart, 2012; USDA, 2009). 

Milk coming from animals fed silage with aflatoxin must have aflatoxin residues less 

than 0.5 ppb to be considered safe for human consumption (Stewart, 2012). The 

possibility of early planting leading to a much more intense drought because of increased 

transpiration and soil moisture loss earlier in the season needs to be analyzed further and 

provides one more feature to the complexity of understanding the attributable factors and 

causal processes leading to droughts. 

Normal weather patterns provide sufficient rainfall that will break through a crop 

plant canopy, infiltrate the soil, and keep the ground water supply adequately charged 

through the growing season. The 2012 drought resulted from a deficit in soaking rainfall 

and is classifiable as all 3 types of drought: hydrological, meteorological, and agricultural. 

This drought is not considered an extension of the southern Great Plains drought as 
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weather and climate regimes in the southern Great Plains are separate from those across 

the central Great Plains and the Midwest. The meteorological cause of the 2012 rainfall 

deficit was atmospheric blocking (i.e., the jet stream pushing too far north or weather 

system propagation slowing down and became stationary over several weeks) that led to 

high pressure being the predominant weather pattern resulting in minimal rain-producing 

weather systems. When rain did occur in the late spring and summer of 2012, rainfall was 

brief, heavy, and localized in nature resulting in some relief with “normal” rainfall 

amounts recorded. However, the majority of the Corn Belt did not receive sufficient rain 

for ground water recharge as shown in Figure 4.5 for the Midwest. The development of a 

high-resolution drought trigger tool (HIRDTT) by collaborators at Texas A&M 

University, North Carolina State University, and Purdue University with the use of the 

National Oceanic and Atmospheric Administration’s National Weather Service’s 

Multisensor Precipitation Estimation and SPI data provides detailed drought assessment 

of drought at sub-county scales. Figure 4.5 shows a HIRDTT map of with small areas of 

drought amelioration from brief convective thunderstorm events, although these storms 

did not provide sufficient rainfall to pull regions out of drought status. The spatial 

variability in the drought conditions at sub-county scale is apparent in this map. 

4.4.3 Meteorological and Climatological Feedback for the 2012 Drought 

Drought of the magnitude seen in 2012, 1988, 1950s, and 1930s has large impacts 

on crop yield that trickle down to silage production and animal feed and into other parts 

of the economy. Large-scale impacts such as these have led to intensive research by 

climatologists to determine if there is a climatic signal that can be identified ahead of 

time to predict droughts of such magnitude. Historical droughts have been studied by 

analysis of tree rings and sediment in lake beds across the United States. Findings 

by Cook et al. (2007), for example, show that over the last 1,000 yr., North America 

suffered from “mega droughts” (i.e., lasting several decades) during the drier CE 900 to 

1300 period. Droughts then shifted to periods of shorter duration (i.e., several years to a 

decade) with the present time still experiencing shorter-term droughts. Therefore, 

compared with North America’s past, CE 1300 to the present has been “wetter” in nature 
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despite the noted droughts of the 1930s and 1950s. Therefore, while the Cook et al. 

(2007) historical analysis helps understand climatology, it is important to note that short-

term agricultural decisions are often dictated by short-term weather conditions. Thus, the 

2012 drought caught farmers off guard because a warmer than normal March with near-

average precipitation allowed for earlier planting dates; however, the atmosphere quickly 

transitioned to persistent drought conditions through the late spring and summer. 

4.4.4 Causes of Drought 

Drought can be a natural part of the Earth’s climate. The role of climate 

variability or the role of climate change to a specific event, such as the 2012 drought, 

continues to be a difficult factor to address. Indeed, studies summarized in the 

recent Intergovernmental Panel on Climate Change (2013) assessment highlight a 

potential for larger rainfall variations in the future from global warming. These variations 

in rainfall can cause extended periods of dry weather that, depending on local and 

prevailing factors, can lead to drought conditions. Variability such as the dry signal 

associated with major La Niña events in the tropical Pacific may play a stronger role in 

drought development in some locales of North America, such as the West and the Great 

Plains (Cook et al., 2007). Niyogi and Mishra (2013), however, note that the current trend 

in the Midwest indicates low probability for large-scale droughts in general. However, 

that is not to say that farmers need not pay attention to extended periods of dry or wet 

weather that are projected to become more frequent with a warming climate. Amidst this 

variability, agricultural practices such as land management decisions, irrigation, planting 

dates, drainage systems, and tillage practices can impact local hydrologic cycles and 

either intensify dry conditions into drought conditions or help mitigate the impacts. 

4.4.4.1 Climate Variability, Climate Change, and Teleconnections 

Climate variability considers weather patterns on a smaller time scale, typically 

10 yr. or less, and is often determined by teleconnection patterns such as the El Niño 

Southern Oscillation (ENSO), Arctic Oscillation (AO), North Atlantic Oscillation (NAO), 

Pacific North American pattern, Pacific Decadal Oscillation (PDO), and the Atlantic 

Multidecadal Oscillation (AMO). Climate change is the change in weather patterns over a 
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longer period of time, typically over several decades, with these weather patterns 

showing a systematic change in the state of the atmosphere. Climate variability is 

superimposed over broader climate change patterns. As a result, climate variability and 

associated impacts are often noticed first and climate change needs a longer period of 

record. 

One of the most widely known global weather drivers that provide climate 

variability is ENSO (Philander, 1990). The ENSO describes the seesaw pattern of 

pressure between Darwin, Australia, and Tahiti in the eastern tropical Pacific (Southern 

Oscillation). The changes in atmospheric pressure between these locations feed back into 

rainfall patterns, ocean currents, and sea surface temperatures (SST) leading to changes in 

weather patterns downstream from these locations (e.g., over North America). An El 

Niño event describes a warm SST event, which weakens the atmospheric circulation 

known as the Southern Oscillation, and the La Niña event refers to cold SST and a 

stronger circulation. The “warm” or “cold” anomalies are typically 3- to 5-mo running 

means (length of running mean varies by index being used to monitor the Southern 

Oscillation) of SST 0.5°C greater than or less than the baseline temperature and that 

persist for at least 6 consecutive months. Changes in the intensity of the Southern 

Oscillation result in changes of energy transfers from the tropics to midlatitudes, which is 

why weather changes downstream over North America. While El Niño and La Niña 

events have a greater impact on winter precipitation, effects of each phase can be felt into 

the growing season. La Niña events have been found to result in drought conditions 

across the Southeast and wetter conditions across the Midwest during winters. El Niño 

events during winter months result in a dry, warm Midwest and a wet, cool South. A 

neutral phase results in a normal to wetter spring with normal temperatures. The 

departure from normal SST over the tropical pacific is important to the strength of the 

signals felt over North America. The effects of ENSO patterns are much more 

pronounced in coastal regions and our ongoing research indicates the Midwest shows a 

mixed signal between ENSO phases. During the spring and summer of 2012, the 

dominant ENSO pattern was a moderate to weak La Niña transitioning to ENSO neutral 

by the summer months. 
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4.4.4.2 2012 Teleconnections 

Other teleconnections discussed previously contributed to the drought of 2012 as 

well. The AO is linked to the NAO, which contributes to short-term variability of weather 

patterns across the United States. For example, the 2013 growing season differed greatly 

from 2012 because during January, February and March of 2013, the AO was in a 

negative phase resulting in Midwest cold air outbreaks (periods of snow followed by 

rapid melt and milder temperatures). A positive AO is present when a lower-than-normal 

pressure is present over the polar region (leading to a stronger pressure gradient and jet 

stream), and a negative AO is present when a higher-than-normal pressure is present over 

the polar region (leading to a weaker pressure gradient and jet stream allowing for a 

greater likelihood of cold air outbreaks). Entering April and May, the AO shifted into a 

positive phase, which resulted in a stronger jet stream with less variation in temperatures 

and precipitation patterns. This, coupled with the ENSO neutral phase, contributed to 

near normal conditions across the U.S. Corn Belt, which was suitable for a good growing 

season. In contrast, the beginning of 2012 was influenced by a neutral AO in January and 

February followed by a positive AO in March. April and May transitioned back to a 

neutral AO with June changing signal to a strong negative AO. This allowed for warm air 

to surge farther north, which coincided with the La Niña and a blocking pattern helped to 

lock dry conditions into place across much of the United States. July, August, and 

September were predominantly AO neutral, with ENSO neutral conditions now 

prevailing but with blocking still occurring resulting in minimal rainfall for the United 

States. 

The PDO is a Pacific Ocean SST index in the northern Pacific that is more 

directly coupled to ENSO but is more broadly variable when affecting weather regimes 

across the United States. From the 1940s to the 1970s, the PDO was in a positive phase 

resulting in warmer and wetter conditions in the Northwest and Alaska and cooler, wetter 

conditions in Mexico and the southern United States. Since the 1980s, the PDO has 

entered a negative phase resulting in colder and drier conditions in the Northwest and 

warmer, drier conditions in the Southeast (Wallace and Hobbs, 2006). Therefore, the 

PDO favored drier conditions across portions of the United States, adding to the dry 
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conditions of the La Niña, AO, and blocking pattern that established itself over the 

country in 2012. 

The climate indices discussed are important to capture the interannual climate 

variability (i.e., temperature and precipitation pattern departures from normal) across the 

United States and provide guidance as to what seasonal weather patterns may be 

established. Climate indices are monitored by meteorologists and climatologists and 

serve as guidance tools in the long-term outlook; they are not intended to be predictors of 

short-term temperature and precipitation. The strength and covariability of 

teleconnections needs to be considered when determining seasonal and long-range 

weather outlooks. Typically a strong El Niño or La Niña can overpower the AO or PDO 

while weak or neutral ENSO conditions will be dominated by the other teleconnections. 

Examples of how teleconnections vary include the covariability of ENSO and PDO. 

When ENSO is positive (El Niño) and the PDO is positive, the central plains, southern 

portions of the southern United States, and the Eastern Seaboard are wetter than the 

Midwest. When ENSO is negative (La Niña) and the PDO is negative, the signal reverses; 

the Midwest is wetter and the central plains and Southeast United States are drier by 

comparison (Goodrich and Walker, 2011). McCabe et al. (2004) show that when 

assessing the PDO and AMO together, the AMO directs the spatial extent/broadness of 

potential drought and the PDO directs the location. Correlative relationships between 

temperature and precipitation have also been found (e.g., Trenberth, 2011) where 

increased temperatures lead to an increased risk of drought resulting from increased 

evaporation rates and surface drying. 

4.4.5 The 2012 Drought and Impacts to Agriculture, Livestock, and Forage 

4.4.5.1 Cause of the 2012 Drought 

The assessment for the 2012 drought reported in Hoerling et al. (2014, p. 278) 

finds that the drought was a natural event with immediate causes linked to meteorology: 

“reduced Gulf moisture transport, cyclone activity, and frontal activity in late spring.” 

Anomalous high pressure in the upper troposphere resulted in increased subsidence over 

the region decreasing natural processes of convection during the summer (Hoerling et al., 
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2014). The likelihood of a drought of the magnitude experienced in 2012 to return in a 

following year or even in the next several years is considered rare. However, likelihood 

can depend on location in the United States. In regions such as the Midwest, droughts of 

the magnitude seen in 2012 are possible three to four times per century (Niyogi and 

Mishra, 2013). 

4.4.5.2 Drought Frequency 

Recent drought occurrences in North America show that agricultural drought is 

less frequent in the plains. This can be attributed to irrigation (for now, as ground water 

aquifers are being depleted at rapid rates) and the mean storm track. The decreased 

occurrence of drought in North America is also potentially due to the availability of 

technologies to mitigate drought in recent decades. The potential increase for drought 

today is more likely to be mitigated locally due to advancements in crop hybrids, 

increased irrigation, and field management efforts to conserve soil moisture. While there 

is currently no significant shift in total rainfall, heavy precipitation has been increasing 

over the last several decades (e.g., Kunkel et al., 2013). With this heavy rain, there is an 

increase in runoff because rainfall falls at a rate greater than soil infiltration. This can 

lead to an increased drought potential because the soil and ground water recharge cannot 

occur as needed. Uncertainty regarding the scale of increased heavy precipitation exists; 

therefore, definitive conclusions related to climate change and the frequency of drought 

associated with climate change cannot easily be made (Dai, 2011). Possible biases to 

increased heavy rainfall include more moisture content in regions with warmer air and 

the possible impact of local aerosols acting as cloud condensation nuclei and increasing 

rainfall (Alexander et al., 2006; Dai, 2011). 

4.4.6 Future Climate Scenarios and Impacts to Livestock, Forage, and Feed 

Most studies, assessments, observations, and projections of future climate change 

scenarios for the Great Plains and Midwest show warmer temperatures during the winter 

and during nighttime hours, along with heavier rains and longer dry periods. Specifics 

related to how much and why such changes will occur to the climate system continue to 

be debated by scientists. While large-scale global climate models capture global climate 
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projections, regional climate models still have difficulty forecasting the coupled 

feedbacks between large global-scale circulations and more localized climate change 

effects providing the aforementioned uncertainty (Mearns et al., 2012). Changing land 

use and land cover as well as adaptive practices will impact regional vulnerabilities and 

are difficult to account for in models (Pielke et al., 2013). 

These uncertainties make preparing for drought and broader climate change and 

variability different for producers based on location, and impacts will be heterogeneous 

due the different components linked by climate change. For the United States, overall 

climate change analyses show that temperatures have been warming and will likely 

continue to warm at a small rate. Winters will be warming and nighttime temperatures 

will not get as cold. Precipitation is expected to become more intense (increased 

precipitation over a shorter amount of time) but is also expected to occur less often in 

some areas (e.g., Kunkel et al., 2013). To adapt, crop practices such as hybrid 

development, pesticide use, and irrigation must be adjusted to accommodate the changes 

in weather patterns. A shift in the growing season is likely to occur as well. An example 

of this is the shifting of planting dates to earlier in the year as seen with the anomalous 

warmth during March 2012. Because of this warmth, farmers began planting earlier than 

the normal time frame of mid to late April. May 2012 ushered in a period of little to no 

rainfall across the Great Plains with little to no moisture across the Great Plains and Ohio 

River Valley through June, July, and August, critical periods of phenological 

development for corn crops. Extreme heat in late June and early July acted to further 

harm crops (Hoerling et al., 2014). However, the drought of 2012 is considered a 

climatological anomalous event (e.g. Hoerling et al., 2014), and shifts in the growing 

season to earlier planting dates sometimes attributed to climate change may provide some 

positive impacts to the agricultural sector of the economy by allowing for double 

cropping. 

Craine et al. (2010) find that the climatic changes discussed above can result in a 

decrease of forage quality. Analysis of over 21,000 fecal samples from cattle collected 

over 14 yr. across the continental United States shows that increasing temperatures and 

declining frequency of precipitation reduce dietary crude protein and digestible organic 
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matter in regions of a continental climate. Quality of forage in general was also found to 

decline. These findings indicate increased nutritional stress in the future for cattle, which 

results in a greater need for feed with nutritional supplements to offset a decrease in 

livestock growth (Craine et al., 2010). In addition to degradation in forage production and 

quality, climatic changes will affect livestock through 1) changes in feed-grain 

production, availability, and price; 2) overall animal health, growth, and reproduction 

through heat stress; and 3) disease and pest distributions that will shift as climate changes 

(Walthall et al., 2012). 

4.4.7 Assessing Drought Risk: Adaptive and Mitigative Strategies 

Climate change projections show an increase in occurrence of droughts (among 

other extreme climate events). To determine if a specific event such as the 2012 drought 

was exacerbated by climate change or if the 2012 drought was actually caused by climate 

change, the seasonality of weather patterns, climate variability, and climate change 

factors must be reviewed carefully to determine the cause of the drought. Often, further 

review of past weather observations, atmospheric patterns, and scale analysis must be 

completed to draw more definitive conclusions regarding the cause of a large drought 

such as the drought of 2012. Within the context of the multitude of factors contributing to 

the evolution of the 2012 drought and the local-scale practices contributing to impacts, it 

is difficult to ascertain the full 2012 drought impacts only by reviewing the 

rainfall/drought data and crop yield relationships. In general, it is difficult to predict 

drought with high confidence when dealing with different climatic scales (e.g., field, crop 

reporting district, state, or regional scale) and when not considering the impacts that may 

linger for several years after the drought event. Developing a broad if–then scenario 

analysis can help understand vulnerability and adaptation and mitigation strategies 

(Niyogi and Mishra, 2013). 

4.5 Summary and Conclusions 

The 2012 drought had a significant effect on the agricultural and nonagricultural 

sectors of the U.S. economy with effects of the 2012 drought currently impacting 
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consumers in the form of higher food prices (Dreibus et al., 2014). A promising, warmer-

than-normal early spring weather pattern in 2012 led to early planting of crops, which 

quickly withered in the hot, dry weather that established itself over the Great Plains and 

Midwest late spring and summer 2012. The hot, dry weather that culminated in the 2012 

drought resulted from a combination of weather patterns that led to the absence of 

precipitation systems either moving or forming over the majority of the eastern half of the 

United States. These patterns included a feedback of a negative PDO, a La Niña event, a 

negative to neutral AO, and strong blocking patterns. The effects of the 2012 drought 

impacted corn yields, which were further threatened by increased risk for pests (Stewart, 

2012). The decreased corn yield and pasture in 2012 caused an increase in the cost of 

feed in 2013, further impacting prices for feeder cattle in 2013 (i.e., short-term price 

reduction). The decrease in available pasture resulted in cattle being fed over a longer 

term with feed but at lower weights because of the higher cost of feed in 2013. It is 

speculated that this will lead to greater production declines of cattle by 2014, which will 

increase cattle prices, especially for the consumer, almost 2 yr. after the drought occurred 

(Crutchfield, 2013). 

The 2012 drought resulted from the evolution of the meteorological environment 

through the spring and summer of 2012 and shows the critical link between water 

resources (below normal rainfall and increased irrigation), ecosystem functions (plant 

production decreased and increased risk for ear rot), agriculture production (decreased 

yields and pasture), and food (decrease in feeder cattle due to price of corn and increase 

in cattle costs to consumers). Drought of the magnitude in 2012 is not common but not 

unlikely due to climate variability scenarios that arise from coupled teleconnection 

patterns. In addition to climate variability, agricultural practices can mitigate or aggravate 

a situation. Climate change projections are indicating a greater likelihood of increased 

dry spells between rainfall events in the future, making drought risk and vulnerability 

assessments more important to cereal and livestock producers in addition to 

nonagricultural sectors of the economy. Because drought impacts economic, 

environmental, and social realms, adaptation and mitigation to the effects of drought in 

agricultural and nonagricultural sectors of the economy is crucial to minimize loss in the 
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future (Ding et al., 2010; Wilhite and Glantz, 1985; Figure 4.6). The broader feedback of 

drought impacts across realms will need to be assessed from vulnerability perspectives 

for future drought mitigation (Niyogi and Mishra, 2013). The overall consensus for the 

2012 drought can be summarized as a natural event that may have been abated by human 

actions such as later planting dates, crop choices, or availability to irrigation. 
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4.7 Figures 

 

 

Figure 4.1: Temporal and categorical characteristics and impacts of drought. Adapted 

from the National Drought Mitigation Center (NDMC). 2014. Types of drought. 

http://drought.unl.edu/DroughtBasics/TypesofDrought.aspx. (Accessed 20 May 2014).  
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Figure 4.2:  Evolution and extent of the 2012 drought from January to August 2012. 

CONUS is the acronym for “continental United States.” The U.S. Drought Monitor is 

jointly produced by the National Drought Mitigation Center at the University of Nebraska 

– Lincoln, the USDA, and the National Oceanic and Atmospheric Administration. Map 

courtesy of National Drought Mitigation Center - University of Nebraska-Lincoln.  
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Figure 4.3:  A and B: Departure from normal annual observed temperature comparing 

2011 (left) to 2012 (right). C and D: Departure from normal seasonal (planting season: 

February 1 to April 30 of calendar year) observed temperature comparing 2011 (left) to 

2012 (right). Data are from the Midwest Regional Climate Center 

(http://mrcc.isws.illinois.edu) and are given in degrees Fahrenheit. Climate normal period 

for anomaly calculation is 1981 through 2010.  
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Figure 4.4:  A and B: Percent of normal observed annual precipitation comparing 2011 

(left) to 2012 (right). C and D: Percent of normal observed seasonal (planting season: 

February 1 to April 30 of calendar year) precipitation comparing 2011 (left) to 2012 

(right). Data are from the Midwest Regional Climate Center (http://mrcc.isws.illinois.edu) 

and are given in percent of normal rainfall measured in inches. Climate normal period is 

1981 through 2010.  
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Figure 4.5:  High-resolution drought trigger tool map of the Midwest portion of the U.S. 

Corn Belt April 1, 2012, to June 30, 2012. The detailed input of multisensor precipitation 

estimation data along with Standardized Precipitation Index data provides for a more 

fine-scale analysis of brief convective rainfall events that resulted in short-lived drought 

withdrawal (encircled with a dashed ellipse) across drought-stricken regions. Map 

generated from www.nc-climate.ncsu.edu/drought. NWS = National Weather Service; 

MPE = Multisensor Precipitation Estimation.  
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Figure 4.6: Drought impacts on the economy, societies, and the environment moving 

through time from the top of the chart to the bottom of the chart. Adapted with 

modification from Ding et al. (2010).  
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CHAPTER 5. LAND-FALLING TROPICAL SYSTEM RAINFALL 

CONTRIBUTION TO THE HYDROCLIMATE OF THE EASTERN U.S. CORN 

BELT 1981-2012 

5.1 Introduction 

 Tropical cyclones (i.e. tropical systems) are an important element of global and 

regional hydroclimates in that they are synoptic scale weather phenomena that 

redistribute heat, moisture, and momentum from the tropical regions to the Subtropics 

and Midlatitudes in order to restore thermal and inertial balance in the Earth-atmosphere 

system.  The transport of moisture-laden air from these storms to the Subtropics and 

Midlatitudes links the hydroclimate of the tropics to the hydroclimate of these other 

regions as water is taken from tropical oceans and released as rainfall over the Subtropics 

and Midlatitudes.   

 Precipitation that falls from tropical systems becomes linked to the hydroclimate 

of the Continental United States (CONUS) and its regions once the storm makes landfall.  

With an average of 11.7 named tropical and subtropical storms for the Atlantic Basin 

during the period 1900-2013 and with an average of 1.7 of these storms making landfall 

(Landsea 2014), the annual precipitation defining the hydroclimate within the U.S. Corn 

Belt east of the Rocky Mountains (Atlantic Basin Hurricanes do not go west of this 

divide) is comprised in part by tropical system (TS) rainfall.  The most active time for 

tropical cyclones in the Atlantic Basin is during hurricane season which is defined by the 

months of May to November.  Hurricane season also coincides with the primary 

agricultural production season in the United States.  Recalling the importance of rainfall 

to yield as discussed in chapters two, three, and four, understanding what quantity of crop 

growing season rainfall comes from specific meteorological sources can help producers
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better prepare for wet and dry periods, irrigation, fertilizer application, field work days, 

and harvest.   

 This chapter discusses a land-falling TS climatology developed for the years 

1981-2012 for the Midwest United States.  The climatology, coupled with historic crop 

data and historic rainfall data, attempts to determine the role of land-falling TS rainfall in 

crop production at state climate division and crop reporting district levels for the states of 

Wisconsin, Michigan, Illinois, Indiana, Ohio, and Kentucky.  Findings discussed in detail 

in the next section support the need to include hurricane season forecasts, and more 

specifically land-falling TS forecasts, into seasonal rainfall outlooks for producers due to 

the relationships found between historic yields and TS rainfall in some climate 

divisions/crop reporting districts. 

5.2 Land-falling Tropical System Rainfall Contribution to the Hydroclimate of the 

Eastern U.S. Corn Belt 1981-2012 

As Submitted to the Journal of Weather and Climate Extremes, February 26
th

, 2015. 

 

Full citation: Kellner, O., D. Niyogi, and F.D. Marks, 2015: Land-falling Tropical System 

Rainfall Contribution to the Hydroclimate of the Eastern U.S. Corn Belt 1981-2012.  Wea. 

and Cli. Extremes, Submitted. 

 

Abstract 

 

 This study provides a climatology (1980-2012) of land-falling tropical systems in 

the eastern Corn Belt and investigates the total contribution of land-falling tropical 

system-based rainfall on the monthly climatological total rainfall for states in Midwest 

United States.  The primary focus is on rainfall impacts from land-falling tropical systems 

on historic corn yields at the climate division and crop reporting district level with 

inclusion of El Niño-South Oscillation analysis.  Drought conditions for historic monthly 

observed rainfall are identified using the Palmer Drought Severity Index (PDSI) and the 

Standardized Precipitation Index (SPI).  Analysis using these historic drought indices 

reveals that without land-falling tropical system rainfall drought conditions across the 

domain increased from 16% up to over 200%.  
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It is found that land-falling tropical storm system rainfall accounts for about 30% 

of the observed monthly rainfall during June, 12% during July, 21% during August, 26% 

during September, 15% during October, and 13% during November across the eastern 

Corn Belt.  For the hurricane season, land-falling tropical system rainfall across the 

domain comprises 20% of the observed seasonal rainfall 1980-2012.  Correlation 

between the annual number of land-falling tropical systems and annual yield by state 

within the domain yields no relationship, but correlation of monthly observed rainfall by 

climate division during August to crop reporting district annual yields has a weak to 

moderate correlation in Ohio districts 30-60 and Indiana CRD 90.  September rainfall has 

correlation in Ohio district 80 and Kentucky district 30.  Statistical analysis suggests that 

land-falling tropical storm rainfall may actually reduce yields in some states climate 

divisions/crop reporting districts while increasing yield in others. 

Although land-falling tropical systems alleviate drought conditions across the 

domain, the results presented here suggest that there is a balance between storms 

providing sufficient rainfall and too much rainfall to be of benefit to crops.  Kentucky’s 

western hydroclimate and annual production appears related to the frequency of land-

falling tropical systems.  Findings aim to provide information to producers, crop advisers, 

risk managers and commodity groups so that a seasonal hurricane forecasts can 

potentially be utilized in planning for above or below normal precipitation during 

phenologically important portions of the growing season. 

5.3 Introduction 

Tropical storm systems impacting the tropical and subtropical latitudes of the 

United States primarily originate in the descending branch of the Hadley cell circulation 

known as the northeasterly trade winds over the Atlantic Ocean.  Systems of sufficient 

organization track west, northwest across the tropics, and eventually become embedded 

in westerly flow whereupon the storm takes a right turn (easterly turn) and heads towards 

the subtropical latitudes of North America.  Climatological assessment of rainfall 

resulting from tropical systems has been completed for coastal regions along the Gulf of 

Mexico and the East Coast of the United States (e.g. Cry 1967; Knight and Davis 2009; 
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Nogueira and Keim 2011; LaRow 2013; Maxwell et al. 2013); however, lesser attention 

has been paid to the contribution of land-falling tropical systems to the eastern U.S. Corn 

Belt hydroclimate, especially in regards to agricultural production. 

The Midwest region of the United States includes of a vast expanse of agricultural 

land primarily devoted to the growth of soybeans and corn. Seasonal rainfall from 

midlatitude weather systems and convective thunderstorms is typically sufficient for the 

growth of corn across much of the region without need for irrigation except in regions of 

sandy soils such as northern Indiana and southern Michigan, and portions of Illinois.  

Corn reaches its critical grain-fill period during the months of August and September 

(depending on planting date) when heat and moisture stress within a two week window 

can vastly affect the yield potential of the crop (Nielsen 2011; Takle et al. 2014).  As 

discussed in this study, it is during August and September that the Midwest also sees its 

greatest amount of rainfall from tropical-based systems that made landfall over the 

United States.   

 Hydroclimatological analyses are valuable tools allowing for a better 

understanding of hydroclimatic processes in light of potential climate variability and 

change identified in the last several years (e.g. IPCC 2014, Charusombat and Niyogi 

2011).  As the world’s largest producer of corn, the United States’ Corn Belt is located in 

a region known to experience climate variability and change.  Climate change projections 

indicate longer dry spells, heavier rain events, and longer growing seasons resulting from 

warmer days and warmer nights (Melillo et al. 2014).  Being prepared to face climate 

change begins with understanding climate variability.   A hydroclimatology helps provide 

a better understanding of climate variability in the climate system. 

 Climate variability is responsible for the different temperatures and precipitation 

patterns that are above or below what is considered climatologically normal for a given 

area.  Climate variability is most commonly driven by teleconnection patterns such as the 

El Niño Southern-Oscillation (ENSO) which has been found to impact rainfall amount 

and distribution across the United States depending on ENSO phase.  Climatologically 

normal rainfall for a given region is determined over a 30-year period (e.g. Trewin 2007; 

Wright 2012) and is inclusive of all types of observed precipitation events.  Thus, 
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climatologically normal precipitation values are inclusive of (but not limited to) events 

such as rainfall from tropical systems, blizzards, flood events, and convective 

thunderstorms.  The percentage contribution of each type of precipitation event to the 

monthly climatological normal, however, is not readily available.  In an effort to 

understand the role of land-falling tropical storm system rainfall in the Midwest’s 

hydroclimate, this climatology investigates land-falling tropical system rainfall impact on 

the Midwest.  The period reviewed is 1980-2012 to coincide with the release of newest 

set of climate division normals used to compute if observed rainfall is in drought 

conditions according to the Palmer Drought Severity Index. 

The Midwest is selected as the study area because of its contribution to crop 

production in the United States and because it experiences warm-season weather 

phenomena including tropical and extratropical cyclones, convective storms and 

tornadoes, floods, and droughts which are governed by various teleconnection patterns.  

Research efforts to determine the contribution of tropical cyclone rainfall to seasonal 

rainfall in the United States have been completed over the last several years (e.g. 

Corbosiero et al. 2009; Knight and Davis 2009; La Row 2013; Maxwell et al. 2013; 

Nogueira and Keim 2001; Rodgers et al., 2001; Cry 1967) for coastal regions; however, 

these studies have a strict adherence to “tropical” categorization which removes the 

influence of tropical depressions, extra-tropical transitioning systems, and remnant lows 

from these studies.  Many tropical storm systems traverse far inland impacting the 

Midwest during the growing season such as Tropical Storm Arlene, hurricane Katrina, 

and hurricane Rita in 2005.  Rippey (2010) shows a possible link between corn yield and 

Atlantic tropical cyclone activity/inactivity in his assessment of the PDO and ENSO, 

showing that the number of land-falling tropical systems may influence crop yields.  This 

study further investigates the hypothesis that land-falling tropical systems (TSs) play an 

important part of the Midwest hydroclimate as related to agriculture.  

In addition to the aforementioned studies investigating tropical cyclone rainfall 

budgets, a number of hydroclimatologies were completed for select regions of the United 

States (e.g. the tropics, the southeastern United States, the western United states).  

However, none of these hydroclimatologies investigate the coupled relationships of 
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teleconnection patterns to annual or sub-annual regional rainfall, and none identify the 

portion of climatological warm-season rainfall attributable to land-falling tropical 

systems as influenced by teleconnections such as ENSO.  Haberlie et al. (2013) recently 

completed an analysis of tropical system rainfall in the Eastern Corn Belt, which is 

similar in intent to the work herein, but differs in tools, methodology, and classification 

of storm.  The primary difference between Haberlie et al., (2013) and this paper is that 

Haberlie et al., (2013) identify the role of land-falling TSs as “drought-busting events” 

based on the storm producing a specific precipitation threshold value with the drought of 

2012 serving as the primary driver for the investigation.  While this study investigates 

drought conditions with and without land-falling TS rainfall, the primary goal of this 

study is to determine the total climatological contribution of seasonal rainfall (hurricane 

season defined as May – November) from land-falling TSs and what impact this rainfall 

has on crop production.  This information is expected to help agricultural producers, risk 

managers and commodity groups be better informed when making decisions related to 

crop production when a hurricane season outlook is available. 

5.4 Data & Methods 

5.4.1 Tropical Systems 1980-2012 

HURDAT2 data is collected from 1980-2012 for the Atlantic Basin.  Storms that 

made landfall in the Continental United States (CONUS) are identified through maps of 

best track data, and further selected based on the criteria that the storm traveled inland far 

enough before dissipating for the center pressure to come within 150 miles of a state 

boundary of the domain (Wisconsin, Illinois, Indiana, Ohio, Michigan, and Kentucky) 

and producing precipitation.  150 miles is selected because the average tropical storm 

system diameter is 300 miles with outer rain bands a few miles to tens of miles wide and 

50-300 miles long (NOAA 1999).  Once a storm is within 150 miles of the domain based 

on 6 hour latitude and longitude coordinates, climate records are queried for daily 

precipitation amounts.  States queried for daily precipitation from identified land-falling 

tropical systems are identified through archived Weather Prediction Center (WPC) 

(National Centers for Environmental Prediction (NCEP)) maps of tropical rainfall 
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distribution (available at: http://www.wpc.ncep.noaa.gov/tropical).  If a state is not 

impacted by a given storm, daily rainfall and monthly observed rainfall values are not 

collected.   

5.4.2 Rainfall 1980-2012 

Daily rainfall totals are collected at the state climate division (SCD) level from 

the Midwest Regional Climate Center’s (MRCC) Application Tools Environment (cli-

MATE) for those dates the storm is present in the domain.  The domain has a total of 51 

state climate divisions.  The rainfall data is from the National Climatic Data Center 

(NCDC) nClimDiv dataset which became operational and available to the public on 

March 17, 2014 (Vose et al. 2014).  The nClimDiv dataset is a 5-km gridded dataset 

based on the Global Historical Climatology Network-Daily (GHCN-D) and differs from 

the previous dataset (DRD964x) through use of a grid-based calculation for daily values, 

incorporating more stations with pre-1903’s data, and implementing updated quality-

control techniques (NCDC 2014).   

A tropical system is considered within proximity of affecting the domain through 

analysis of 6 hourly best track data when it is 150 miles or less from domain state 

boundary, or when available radar data shows precipitation from rain bands over the 

domain area (radar data from: http://locust.mmm.ucar.edu/).  Because radar data used for 

1996-2012 storms are time-stamped in Coordinated Universal Time (UTC) (radar images 

prior to 1996 are unavailable), any time stamp of 0600 UTC on a radar image showing 

tropical system induced rainfall within the domain indicates that rainfall fell on the 

previous day in the United States.  This is accounted for where necessary in this analysis.   

Table 5.1 provides a list of all storms meeting the aforementioned criteria. 

Daily precipitation data for a SCD is collected from the day a storm enters the 

domain till the date the storm exits the domain to determine the total storm rainfall.  If 

more than one storm enters the domain in a given month, the storm totals are added 

together to determine the total amount of monthly observed precipitation attributable to 

the land-falling TS (from now on “tropical system rain” or TSR). Monthly observed 

rainfall (from now on MOR) and the monthly climate normals (1981-2010) (from now on 
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NORM) for precipitation are also collected at SCD level.  The NORMs are reduced by 

15% (i.e. NORM – (NORM*0.15) to find the threshold value of observed precipitation 

below which would be considered drought conditions for a given month (from now on 

DRO) as discussed in Palmer (1965).  Following the findings of Palmer (1965), reducing 

NORMs by 15% is representative of Palmer Drought Index (PDI or PDSI – Palmer 

Drought Severity Index) drought classification without a land-falling tropical system’s 

rainfall.   The PDSI index incorporates temperature, precipitation, and soil data to 

determine water supply and demand helping to make it suitable for un-irrigated cropland 

(Palmer 1965).  The PDSI is selected because it is the primary agricultural drought 

indicator and this paper investigates TSR influences (if present) on crop production.  A 

second index, the Standardized Precipitation Index (SPI) is assessed as well due to its 

rapid response to precipitation surplus or deficit.  The SPI responds quickly because it 

considers only observed precipitation and is based on the standardized probability of 

observing a specific amount of precipitation across temporal scales (short-term and long-

term) with focus on application to water availability and use (Guttman 1998).  Under the 

SPI, an SCD is marked as DRO when the SPI index value reaches -0.51 or greater (i.e. 

“abnormally dry”). 

  The MOR is then compared to DRO values to determine which climate divisions 

in the domain are in drought conditions despite all observed rainfall.  Another dataset, 

MOR minus TSR is determined (from now on MOR_TSR) to compute the monthly 

observed rainfall in a given SCD had a land-falling TS not entered the domain.  Those 

MOR_TSR values above DRO indicate that the land-falling TSR was assumed enough to 

provide drought relief in the climate division.  

5.4.3 Crop Production 1980-2012 

Yield data is collected down to county level across the United States with regional 

summaries provided at CRD levels.  Most CRD boundaries coincide with the climate 

division boundaries in a given state, making annual crop yields at crop reporting district 

spatial scales suitable for rainfall analysis at state climate division spatial scales.  

However, while using a gridded rainfall dataset, some smaller-scale rainfall variability 
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impacts to crop yields a localized field scale that may not be captured.  However, the 

spatial resolution used in this study is deemed sufficient for analysis.  For the period in 

review, the state with the average highest annual detrended yield time series is Illinois 

(141.4 bushels/acre), followed by Wisconsin (134.7 bushels/acre), Ohio (134.0 

bushels/acre), Indiana (133.1 bushels/acre), Michigan (125.3 bushels/acre), and Kentucky 

(110.1 bushels/acre), respectively.  All yield data at the CRD level is detrended through a 

one-year lag linear regression and tested with the Durbin-Watson statistic to ensure no 

autocorrelation exists in the detrended yield time series (Montgomery et al., 2006).  The 

The predicted 2012 yield is used as the detrending benchmark. 

5.5 Findings 

5.5.1 Tropical System Climatology 1980-2012 

 Annual past track seasonal maps for the Atlantic Basin are collected from the 

National Hurricane Center’s data archive (http://www.nhc.noaa.gov/data/#annual).  Four 

hundred tropical systems are identified during the hurricane seasons of 1980-2012.  Of 

the 400 storms, 116 of these storms made landfall in the Continental United States 

(CONUS) with only 28 storms entering the Midwest domain. Figure 5.1 provides annual 

seasonal total, annual season total making landfall, and the annual seasonal total of land-

falling hurricanes entering the Midwest.  Annually, 2005 is the year with the highest 

number of named storms (28) and the highest number of land-falling systems to enter the 

Midwest (5).  For all land-falling storms (those entering and not entering the domain), the 

years 1985, 2002, and 2004 tied for the years with the highest number of land-falling 

tropical systems at eight each year.  The year 1983 is the year with the lowest number of 

named tropical systems with only 4 identified in the Atlantic Basin.  The years 1990, 

1993, and 1997 only had one storm make landfall in the CONUS.  For the Midwest, the 

years 1982-1984, 1986, 1987, 1990, 1991, 1993, 1997-2000, 2007, 2009, 2010, and 2013 

experienced no land-falling tropical systems.  On average, for the time period 1981-2012, 

the Atlantic Basin saw 12 storms a year (median value: 12).  Land-falling tropical 

systems for the CONUS average 3 per year (median value of 3), and land-falling storms 

entering the Midwest averages less than 1 per year (0.85 with a median value of 1).  By 
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month, the most active month in the Atlantic Basin hurricane season is September with 

land-falling hurricanes in the CONUS occurring most often in August and September 

(tied at 24).  For land-falling storms entering the Midwest, the most active month is 

September with 13 storms (Figure 5.2). When a storm spanned two months, the storm 

was assigned to the month during which it spent the most time in, and if the storm equally 

spanned two months, it was assigned the month during which the storm made land-fall.  

If the storm did not make landfall, it was assigned to the month in which it was identified.  

Out of the six state domain, Ohio and Kentucky are the states that were most affected by 

land-falling tropical systems 1981-2012.  Through the time period, 23 storms contributed 

to observed rainfall in these states, followed by the state of Indiana at 17 storms, Illinois 

with 16 storms, and Wisconsin at 4 storms.  The average time a tropical system spent in 

the domain is 45.8 hours (median value of 44.5 hours).  This time frame is computed 

from 6 hourly best track data with a storm considered within the domain when it is 150 

miles or less from domain state boundary, or when available radar data shows 

precipitation from rain bands over the domain area (radar data from: 

http://locust.mmm.ucar.edu/).   

Similar to findings of Bove et al. (1998) and Klotzbach (2011) who investigate all 

land-falling hurricanes, the number of land-falling hurricanes to enter the Midwest during 

a La Niña or Neutral-phased ENSO event (18 and 6 storms for the Midwest 1981-2012, 

respectively) is much greater than during an El Niño event (4 storms).   When land-

falling storms are separated by ENSO phase at the time of landfall, storms making 

landfall during an El Niño or La Niña phase favored landfall across the Gulf Coast states 

of Louisiana, Florida (Panhandle), Mississippi, and Alabama with Hurricane Gilbert 

(1989) making landfall over Mexico before being caught in Westerly flow and entering 

the United States and tracking over the eastern U.S. Corn Belt.  Land-falling TCs 

impacting the domain that made landfall during a neutral ENSO event made landfall on 

both the Eastern Seaboard (Virginia, North Carolina, South Carolina, and Florida) and in 

the Gulf Coast States.  Klotzbach (2011) also investigates the relationship between ENSO 

phase and where storms make landfall for the years 1900-2009.   During neutral and La 

Niña phases, there is an increased hurricane probability impact of land-falling storms for 



128 

 

the Gulf Coast while the hurricane probability impact of land-falling storms during an El 

Niño is higher for the East Coast.  Although Klotzbach’s findings differ slightly 

compared to those in this study, this is likely attributable to the limited sample size of 

storms and ENSO events.  Additionally, all events made landfall at storm strength as 

designated in the storm’s name (i.e. Hurricane Fran made landfall as a hurricane) except 

for Tropical Storm Bret 1981 (made landfall as a tropical depression), Hurricane Cindy 

2005 (made landfall as a tropical storm), and Hurricane Ernesto 2006 (made landfall as 

tropical storm).  These three events all occurred during ENSO neutral events.  

Additionally, there is no relationship found between storm intensity at time of landfall 

and recorded TSR, agreeing with Cline (2002). 

5.5.2 Rainfall and Historic Drought Conditions 1980-2012 

 During the study period 1981-2012, drought conditions developed across much of 

the domain with more significant impacts to agricultural production during some years 

compared to others.  Five years experiencing major drought across much of the U.S. Corn 

Belt (1983, 1988, 1991, and 2012) were identified and excluded from yield analysis due 

to the increased amount of yield loss.  In order to investigate the role of land-falling 

hurricanes in the hydroclimate of the Midwest and their impacts on drought conditions 

and yield at SCD level, rainfall records had to be collected for each month and year a 

storm impacted one or more states.  This resulted in a total of 811 separate records of 

SCD rainfall.  Note that records are only collected in those states/climate divisions 

impacted by a tropical storm, so not all years and records are collected and investigated 

for each SCD. 

5.5.2.1 Palmer Drought Severity Index Analysis 

Monthly observed rainfall is compared to DRO values to determine which climate 

divisions in the domain are in drought conditions despite all observed monthly rainfall 

(TSR + other rainfall).   Illinois had 65 climate division records of observed rainfall 

1981-2012 in drought conditions despite tropical storms moving through the region.  

Without any land-falling tropical systems, 17 more climate divisions would have been in 

drought conditions for a total of 82 climate division records in drought status benefitting 
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by the rainfall from land-falling tropical systems.  The number of Illinois SCDs not 

experiencing drought conditions is 71.  This means that 53.6% of SCDs impacted by a 

land-falling TS would have been categorized as experiencing drought without rainfall 

from land-falling tropical systems. Illinois shows the highest percentage of SCDs that 

would have been categorized as experiencing drought conditions without rainfall from 

land-falling tropical systems, followed by Ohio (50.4%), Indiana (48.8%), Wisconsin 

(47.2%), and Kentucky (42.0%).  It is found in this study that the upper peninsula of 

Michigan experiences more climatologically dry conditions than wet conditions, giving 

Michigan a bias to drought conditions without TSR.  Thus, it should not be considered 

the second highest state.   

5.5.2.2 Standardized Precipitation Index Analysis 

To determine the role of TSR in alleviating drought conditions as determined by 

the SPI, the 1-month SPI is computed using MOR and then computed once again with 

MOR_TSR.  The number of SCDs entering DRO status once TSR has been subtracted 

from MOR are counted and compared to those SCDs in drought status with MOR.  Using 

SPI, Illinois had 68 climate division records of observed rainfall 1981-2012 in drought 

conditions despite tropical storms moving through the region.  Without any land-falling 

tropical systems, 11 more climate divisions would have been in drought conditions for a 

total of 79 climate division records in drought status benefitting by the rainfall from land-

falling tropical systems.  The number of Illinois SCDs not experiencing drought 

conditions is 74.  This means that 51.6% of SCDs would have been categorized as 

experiencing drought conditions without rainfall from land-falling tropical systems. 

Unlike PDSI, Indiana (not Illinois) shows the highest percentage of SCDs that would be 

categorized as experiencing drought conditions without rainfall from land-falling tropical 

systems, followed by Illinois (51.6%), Ohio (37.9%), Kentucky (38%) and Wisconsin 

(33.3%).  Once again, Michigan experiences more climatologically dry conditions than 

wet conditions, giving Michigan a bias to drought conditions without TSR.  Thus, it 

should not be considered the second highest state.  Table 5.2 summarizes this information 

for PDSI and SPI for all states in the domain. 
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5.5.2.3 Percentage of Monthly Rainfall Climatology that is Tropical System Rainfall  

 The amount of TSR from each storm is determined as a percentage of the total 

monthly observed rainfall for a state and climate division.  This provides an idea of how 

much TSR constitutes the total climatological rainfall in a state and climate division.  

Storms are documented to impact the domain in the months of June through November 

during the time frame 1980-2012 so climatological rainfall budgets are only computed for 

these months by averaging the percentages of TSR to MOR for each month.  Climate 

divisions with greater than 20% of MOR attributable to TSR are highlighted to determine 

the month(s) most impacted by TSR, denoting the months of August and September 

having the greatest amount of SCDs with 20% or greater MOR attributable to TSR.  

August and September are also crucial months for corn maturity and are investigated 

further in the next section. 

5.5.2.4 ANOVA of Hurricane Season  

Monthly observed rainfall for the months of May-November are summed for each 

year for each state and then separated into two groups for ANOVA analysis.  Group one 

includes only those years in which a land-falling TS impacted the domain during 

hurricane season and group two includes only those years in which no land-falling TS 

impacted the domain during the hurricane season.  The states of Ohio, Kentucky, and 

Wisconsin have statistically significant differences in the seasonal rainfall observed in 

storm years and non-storm years.  During storm years, Ohio averages 26.7 inches of 

rainfall during hurricane season whereas without a storm, it only averages 23.8 inches of 

rainfall which is a 12.2% increase with land-falling TSR during hurricane season. 

Kentucky averages 29.5 inches of rainfall when land-falling TSs enter the domain but 

only 26.6 inches during hurricane season with no storms (a 10.0% increase).  Wisconsin 

averages 25.8 inches during hurricane season when land-falling storms are present in the 

domain and only 22.9 inches if no storm is present (a 12.6% increase). 
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5.5.3 Land-falling Midwest Tropical Systems and Historic Yields 1980-2012 

States with some to all climate divisions in the Midwest experiencing drought 

conditions despite experiencing rainfall from a land-falling TSs during the major 

droughts previously mentioned include Illinois (1988 and 2012), Michigan (1988 and 

2012) Indiana (1988 and 2012), Ohio (1988 and 2012), Kentucky (2012), and Wisconsin 

(2012) (Figure 5.3).  The yield data for these years is removed from analysis.  While the 

1983 and 1991 droughts did not impact the entire domain, the drought impacted some 

states within the domain enough that all yield data was removed for these years as well to 

be keep datasets as far removed from bias as possible (yields greater than one standard 

deviation below the mean). 

Correlation and ANOVA are completed to investigate relationships that may exist 

between TSR and crop production.  ANOVA is used to investigate the role of TSR on 

crop production through yield residuals (amount depicting how far above or below the 

observed yield is from the mean yield of a developed linear regression equation for all 

yields) in the following three analysis: 1) Years during which a TS passed through a state 

and/or climate division versus years during which a storm did not pass through a state 

and/or climate division; 2) years during which a TS passed through a state and/or climate 

division during August only versus all other years; and 3) years during which a TS passed 

through a state and/or climate division during September only versus all other years.  

Correlation of the number of land-falling TSs impacting a state within the domain per 

year to the reported average annual yield of that state is completed, along with correlation 

of state climate division August MOR to reported annual yields for each state climate 

division and September MOR to reported annual yields for each state climate division. 

5.5.3.1 ANOVA  

ANOVA (80% and 90% CIs) for crop residuals (percentage of yield above or 

below trend as determined through linear regression from detrended yield time series) 

during storm years and no storm years results in statistically significant relationships that 

are itemized in Table 5.3(a) and mapped in Figure 5.4.  ANOVA for crop residuals 

during August storm years and years with no storm in August results in statistically 
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significant relationships as shown in Figure 5.5 with residuals provided in Table 5.3(b). 

ANOVA for crop residuals during September storm years and no storm in September 

years results in statistically significant relationships which are provided in Table 5.3(c) 

and mapped in Figure 5.6.  There are not crop reporting districts that are statistically 

significant at the 80% CI.   

5.5.3.2 Correlation 

Correlation of the number of land-falling tropical systems impacting a state within 

the domain per year to the reported annual yield of that state results in no statistically 

significant relationships despite similar high and low points in moving averages (Figure 

5.7).  Correlation of August and September monthly rainfall at climate division/crop 

reporting district level to reported annuals yields, however, does return some statistically 

significant relationships.  Indiana CRD 90 has a moderate to strong significance at 90% 

CI.  Ohio CRDs 30 - 60 (which is Ohio SCDs 6 and 7) have moderate to strong 

significance at 90% CI as well during the month of August. For correlation of observed 

September rainfall and historic yield, only Ohio CRD 80 and Kentucky CRD 30 have a 

statistically significant (90% CI) moderate relationship.  The correlation that does exist 

between historic detrended yield time series and observed rainfall inclusive of land-

falling TSs establishes a generalized direct working relationship (land-falling TSR results 

in increased yield and less to no land-falling TSR rainfall results in decreased yield) 

between receiving land-falling TS rainfall and yields in the respective CRDs that these 

relationships are present.  In terms of agricultural application, it provides an agricultural 

producer the understanding of a possible greater (lesser) than expected yield with an 

active (quiet) hurricane season forecast.   

5.6 Discussion 

 The intent of this climatology is to determine the contribution of land-falling TSR 

to the climatological normal amount of rainfall across the Midwest at the crop reporting 

district/climate division level.  This is completed as an effort to help producers in the 

region make more informed farm-related decisions when presented with seasonal rainfall 

forecasts.  Understanding that there is a greater (or lesser) likelihood for TSR in a given 
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season can help farmers plan irrigation schedules and field work days more effectively 

(Takle et al. 2014).   Additional questions addressed in this climatology include: 

  

1) Is there a relationship between annual yields and the number of land-falling TSs 

entering the Midwest? Findings: While no correlation exists between the number of land-

falling TSs and annual yield, there are statistical relationships present (both positive and 

negative) between annual yields and TSR for the entire season, and TSR during the 

months of August and September in select states and climate divisions/crop reporting 

districts. 

 

2) Is there a relationship between ENSO phase and the number of TSs that affect landfall 

in the Midwest? Findings: The number of land-falling TSs by ENSO phase shows a 

greater likelihood of land-falling TSs to enter the Midwest during an ENSO neutral (with 

entry from the Gulf of Mexico or the Atlantic Seaboard/East Coast) or La Niña event 

(with entry from the Gulf of Mexico).  They are least likely to occur during an El Niño 

event (with entry from the Gulf of Mexico – except for Hurricane Frances 2004, however 

rainfall from this storm impacted only the far northeastern portions of the domain).  This 

would suggest that El Niño events reduce the chance of experiencing TSR within the 

domain.   These findings align with the identified relationships between ENSO and 

drought conditions over the United States as discussed in Cole and Cook (1998).  Cole 

and Cook (1998) find through PDSI analysis that Midwest drought conditions are 

correlated with El Niño events and that central and western United States drought 

conditions are correlated to La Niña events. 

   

3) Is there a relation between ENSO phases and where TSs make landfall (e.g. Eastern 

Seaboard versus Gulf Coast as they affect the Midwest)? Findings: Past literature 

exploring the relationship between ENSO phase and yield point to increased yields 

during cooler and wetter El Niño years and reduced yields during hotter and drier La 

Niña events.  This climatology shows that land-falling TSR is most common during 

ENSO neutral events, indicating that rainfall across the domain during El Niño years 
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primarily originates from extratropical disturbances.  La Niña events had the second 

highest number of land-falling tropical systems to enter the domain, but the number is 

small compared to ENSO neutral events.  Once again, these findings point to the 

importance of extratropical disturbances in rainfall occurrence across the Midwest 

hydroclimate during La Niña and El Niño events.  With ENSO neutral events providing 

the greatest opportunity for land-falling TSR to occur in the Midwest, it is apparent that a 

shift in synoptic scale dynamics due to orientation and placement of the Polar Jet Stream 

occurs.  This shift drives the rainfall budget across the Midwest from one experiencing 

more extratropical system rainfall towards a rainfall budget in which TSs contribute to a 

larger portion of total observed rainfall.  This appears to impact crop production in some 

regions depending on antecedent conditions. 

 

4) Is there a relationship between which month(s) of the growing season TSR occurs and 

affect yield? Findings: For those states with relationships established to be statistically 

significant with for storm years versus no storm years, August storm years versus all 

other years, and September storm years versus all other years are reviewed.  Because a 

majority of storms occurred during ENSO neutral events, and TSR rainfall is found to 

reduce yields in Illinois, Indiana, and Ohio (higher yield residuals on average in years 

where TSR rainfall did not fall during August, September, or during the season), a link 

with ENSO yield relationships and ENSO TSR frequency and yield cannot be established 

with confidence.  It is found that yields in Kentucky improve when TSR occurs in August, 

and during the season (i.e. storm years versus no storm years).  Again, ENSO phase 

during these times is predominantly neutral.  This suggests that Kentucky’s corn 

production is the western portion of the state may be dependent on TSR rainfall due to 

the orientation of the mean storm track across the Midwest during an ENSO neutral event.   

5.7 Conclusions 

 A majority of extreme weather events in the Midwest can be categorized as 

drought events, flooding, severe thunderstorms, tornado outbreaks, and snow storms 

(Changnon and Kunkel 2006).  This study shows that land-falling TSs are an important 
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part of the Midwest hydroclimate in that rainfall from these systems serve to alleviate 

drought conditions in roughly 33-56% of SCDs during the hurricane season, with greatest 

contributions during the months of August and September across the domain - months 

during which crop yields are highly sensitive to heat and moisture stress.     

The Midwest (defined in this analysis by the states of Wisconsin, Illinois, Indiana, 

Ohio, Michigan, and Kentucky) on average experiences slightly less than one land-falling 

TS event a year (0.85) for the years 1980-2012, account for 24% of the 116 land-falling 

TSs that impacted the U.S.  While the year 2005 is the most active year on record for 

land-falling TSs to enter the Midwest (5), there are 15 years within the 1981-2012 

timeframe that experienced no land-falling TSs.  September is the month during which 

land-falling TSs occurred most often, followed by August. Ohio and Kentucky are the 

states most frequently impacted by land-falling TSs with Wisconsin being the least 

impacted.  Land-falling TSs spend on average 44.5 hours (~2 days) in the Midwest from 

time of entry to exit of the domain.  Land-falling TSs are also most likely during ENSO 

neutral events and least common during El Niño events. 

Monthly observed rainfall during all months is reviewed and the percentage of 

TSR to total MOR is computed.  August and September are investigated more deeply to 

determine if land-falling TSs are important contributors to the monthly rainfall budgets 

and crop production in the Midwest portion of the U.S. Corn Belt.  These two months are 

selected because it is found that the average TSR is 21-26% of MOR across the domain 

during these two months.   It is apparent from this climatology that without TSR, drought 

conditions would be more prevalent across the Midwest.  Of all states in the Midwest, the 

percentage increase in the number of SCDs not in drought status with TRS rainfall (PDSI 

and SPI) to drought status conditions without TSR is greatest for the state of Ohio.  

Kentucky is impacted the least in this regard.  However, Kentucky’s SCDs encompass 

much larger land area than SCDs in other states which serves to make drought impact 

greater than it appears.  The one-month SPI analysis reaches the same conclusions.   

ANOVA of hurricane season rainfall of storm years to years with no storm shows 

significance for Ohio, Kentucky, and Wisconsin. 
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ANOVA analysis of historic, detrended yield time series residual data further 

shows that TSR during some months appears to be beneficial for corn production (higher 

yields) in some states while being detrimental (reduced yields) in other states despite 

partial contribution of TSR to drought alleviation.   It may be that the prolonged and 

often greater amounts of rainfall associated with land-falling TSs may be detrimental to 

increased production due to saturated soils.  A moderate to strong correlation of August 

rainfall to annual yield is found in this study showing the importance of August rainfall to 

overall yield in certain regions.   

The findings of this study show that land-falling TSs play an important role in the 

hydroclimate and crop production in the Midwest when land-falling TSs enter the domain 

in terms of drought alleviation and total contribution to climatologically normal rainfall, 

especially in Ohio and Kentucky.  The findings of this study are aimed to help serve as 

guidance to producers and commodity trades when complimented with a tropical cyclone 

forecast in situations such as planning for irrigation during times of heat and moisture 

stress in August and September, and progress in crop dry-down during September.  

Findings will be incorporated into the decision support tool suite of products developed 

by the Useful to Usable (AgClimate4U.org) agricultural and food research initiative. 
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5.9 Tables 

Table 5.1: Midwest land-falling tropical systems and the states impacted by rainfall. H = 

hurricane strength at landfall.  TS = a tropical systems at landfall. 

Year Name Date States Year Name Date States 

1981 
TS 

Bret 

June 29 - 

July 1 

IL, IN, 

KY, OH 
2003 H Isabel 

Sep. 6 - 

19 
OH, MI 

1985 
H 

Danny 

Aug. 12 - 

18 
KY 2004 

H 

Frances 

Aug. 25 - 

Sep. 8 
KY, OH 

1985 
H 

Elena 

Aug. 28 - 

Sep. 4 

IL, IN, 

KY 
2004 H Ivan 

Sep. 2 - 

24 
KY , OH 

1985 H Juan 
Oct. 26 - 

Nov. 1 

IL, IN, 

KY, MI, 

OH, WI 

2005 
TS 

Arlene 

June 8 - 

13 

IL, IN, KY, 

MI, OH 

1988 
H 

Gilbert 
Sep. 8 - 19 

IL,  IN, 

MI, OH, 

WI 

2005 H Cindy July 3 - 7 KY 

1989 
H 

Hugo 

Sep. 10 - 

22 
KY, OH 2005 

H 

Dennis 

July 4 - 

13 

IL, IN, KY, 

OH 

1992 

H 

Andre

w 

Aug. 16 - 

28 

IL,  IN, 

KY, OH 
2005 

H 

Katrina 

Aug. 23 - 

30 

IL, IN, KY, 

OH 

1994 
TS 

Beryl 

Aug. 14 - 

19 
KY, OH 2005 H Rita 

Sep. 18 - 

26 

IL, IN, KY, 

MI, OH 

1995 H Erin 
July 21 - 

Aug. 6 

IL, IN, 

KY, OH 
2006 

H 

Ernesto 

Aug. 24 - 

Sep. 1 
KY, OH 

1995 
H 

Opal 

Sep. 27 - 

Oct. 5 

IN, KY, 

MI, OH 
2008 TS Fay 

Aug. 15 - 

26 
KY, OH 

1996 H Fran 
Aug. 23 - 

Sep. 8 
OH, MI 2008 

H 

Gustav 

Aug. 25 - 

Sep. 4 

IL, IN, KY, 

MI, WI 

2001 
TS 

Barry 
Aug. 2-7 

IL, IN, 

KY 
2008 H Ike 

Sep. 1 - 

14 

IL, IN, MI, 

OH, WI 

2002 
H 

Isidore 

Sep. 14 - 

27 

IL, IN, 

KY, MI, 

OH 

2011 TS Lee Sep. 2 - 5 
IL, IN, KY, 

MI, OH 

2002 H Lili 
Sep. 21 - 

Oct 4 
KY 2012 H Isaac 

Aug. 21 - 

Sep. 1 

IL, IN, KY, 

OH 
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Table 5.2: Summary of state climate division (SCD) records during those months and 

years that a land-falling tropical system impacts the domain.  The role of tropical storm 

system rainfall (TSR) in alleviating drought conditions expressed as a percentage of total 

records.  PDSI is the top table and SPI is the bottom table.  

Palmer Drought Severity Index 

State Illinois Indiana Ohio Michigan Wisconsin Kentucky 

Total SCDs impacted by TSs 

in which MOR is in Drought 

Status 

65 42 54 30 7 23 

Total SCDs impacted by TSs 

in State added to drought if 

TSR removed (in drought 

without TSR) 

17 37 67 31 10 19 

Total SCDs in drought when 

TSR removed 
82 79 121 61 17 42 

Percentage of total SCDs in 

drought when TSR removed 
53.6% 48.8% 

50.4

% 
50.8% 47.2% 42.0% 

Percentage increase of SCDs 

in drought when TSR 

removed 

26.2% 88.1% 
124.1

% 
103.3% 142.9% 82.6% 

Total SCDs impacted by 

TCs by state 1980-2012 
153 162 240 120 36 100 

 

Standardized Precipitation Index 

State Illinois Indiana Ohio Michigan Wisconsin Kentucky 

Total SCDs impacted by 

TSs in which MOR is in 

Drought Status 

68 57 45 26 4 22 

Total SCDs impacted by 

TSs in State added to 

drought if TSR removed (in 

drought without TSR) 

11 33 46 14 8 16 

Total SCDs in drought when 

TSR removed 
79 90 91 40 12 38 

Percentage of total SCDs in 

drought when TSR removed 
51.6% 55.6% 

37.9

% 
33.3% 33.3% 38.0% 

Percentage increase of SCDs 

in drought when TSR 

removed 

16.2% 57.9% 
102.2

% 
53.8% 200.0% 72.7% 

Total SCDs impacted by 

TCs by state 1980-2012 
153 162 240 120 36 100 
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Table 5.3:  States and those crop reporting districts (CDRs) with statistically significant 

relationships between the crop residuals during years in which a) a land-falling tropical 

system entered the domain and did not enter the domain; b) a land-falling tropical system 

entered the domain in August and did not enter the domain in August; and c) a land-

falling tropical system entered the domain during the month of September and not during 

the month of September at 80% and 90% confidence intervals (CI).  Those states that are 

significant at 80% are also significant at 90%.  If a state is not listed, no relationship was 

found. 

a. Storm Year versus No Storm Year – ANOVA 80% CI 

 Average Crop Residual with 

Storm 

Average Crop Residual with No 

Storm 

Indiana: CRD 30 -1.2 6.2 

Kentucky: CRD 20 9.5 1.3 

Storm Year versus No Storm Year – ANOVA 90% CI 

Kentucky: CRD 10 12.8 0.1 
 

b. August Storm Year versus No Storm in August Year – ANOVA 80% CI 

 Average Crop Residual with 

Storm 

Average Crop Residual with No 

Storm 

Ohio: CRD 30 11.8 1.1 

Illinois: CRD 30 -5.8 5.6 

Kentucky: CRD 20 11.2 2.7 

August Storm Year versus No Storm in August Year – ANOVA 90% CI 

Illinois: CRD 10 -5.2 5.7 

Illinois: CRD 20 -6.1 6.3 

Illinois: CRD 40 -4.9 6.4 

Kentucky: CRD 10 13.7 3.6 
 

c. September Storm Year versus No Storm in September Year – ANOVA 90% CI 

 Average Crop Residual with 

Storm 

Average Crop Residual with No 

Storm 

Indiana: CRD 30 -3.6 5.4 

Michigan: CRD 60 9.9 -0.5 
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5.10 Figures 

 

Figure 5.1: Land-falling tropical systems to impact the Midwest 1981-2012.  Tracks are 

from 6-hourly HURDAT2 best track data available from the National Hurricane Center. 
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Figure 5.2: Land-falling hurricanes to impact the Midwest 1981-2012 during the month 

of September.  Tracks are from 6-hourly HURDAT2 best track data available from the 

National Hurricane Center. 
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Figure 5.3: (A-D) PDSI maps showing drought conditions during August or September of 

the 1983, 1988, 1991, and 2012 growing seasons.  These years are removed from analysis 

due to much below normal yields. (E-H) Four-month SPI maps showing drought 

conditions during August or September of the 1983, 1988, 1991, and 2012 growing 

seasons.  PDSI maps from the National Climatic Data Center; 4-month SPI maps from 

the National Drought Mitigation Center and the University of North Carolina High 

Resolution Drought Trigger Tool user interface. 
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Figure 5.4:  Crop reporting districts that have statistically significant differences between 

the mean residual of crop production during years with tropical storm passage and years 

without tropical storm passage during the hurricane season.   
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Figure 5.5: Crop reporting districts that have statistically significant (90% CI and 80% CI) 

differences between the mean residual of crop production during years with tropical 

storm passage during August vs. all other years.  Note that those crop reporting districts 

that are significant at 80% CI are also significant at 90% CI. 
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Figure 5.6:  Same as Figure 5 except for September.  No other crop reporting districts had 

significance, even at 80% CI. 
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Figure 5.7: Bar graph showing the average number of land-falling storms per year in the 

domain (blue bars) alongside the six-state average yield in bushels an acre (green bars, in 

hundreds of bushels an acre).  The solid black line is the two-year moving average of 

total Midwest land-falling tropical systems.  The dashed black line is the two-year 

moving average of the six-state average annual yield.  No relationship is found between 

the average number of storms per year within the domain and the average total yield of 

the domain. 
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CHAPTER 6. THE ROLE OF ANTECEDENT SOIL MOISTURE ON THE 

INLAND REINTENSIFICATION OF TROPICAL SYSTEMS EXAMINED 

USING REMOTELY SENSED DATA AND MODEL VERIFICATION 

6.1 Introduction 

Thermodynamic interactions between tropical storm systems and the ocean or 

land surface are fundamental to the growth, evolution, and decay of tropical systems over 

ocean waters and land.  The development of hurricane-specific mesoscale forecast 

models such as the Hurricane Weather Research and Forecast (HWRF) Model and 

hurricane research completed using HWRF over the last several years has shed light on 

and improved hurricane forecasts.  However, despite research to improve hurricane 

forecasts (e.g. Hurricane Forecast Improvement Project: Gall et al., 2013), hurricane track 

forecasts possess levels of uncertainty that need to be improved upon to better prepare 

and mitigate the hazards associated with land-falling hurricanes such as localized 

flooding, flash flooding, tropical cyclone induced tornadoes, wind damage, and storm 

surge damage.  With knowledge of the large role that ocean temperatures, latent heat flux, 

and sensible heat flux play in tropical storm development, organization, migration, and 

sustainment, this research project investigates the possibility of such relationships also 

existing over land, in essence acting as a “Brown Ocean” to land-falling tropical cyclones 

(e.g., Andersen and Shepherd 2013).  

 While a large quantity of research exists investigating the role of antecedent 

synoptic environment interactions with land-falling tropical systems (i.e. jet streaks and 

vorticity maximums embedded in westerly flow) and antecedent oceanic environments 

(shallow continental shelves and warm water upwelling - see Wu and Shi, et al. 1997; 

Cheng, 1999; Hanley, et al. 2001; Emanuel et al. 2004), research on land surface 

interactions serving as energy sources for land-falling tropical systems is a new area of
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research that is quickly expanding as an untapped source of information regarding 

tropical system lifecycle processes.  The possible role of dust in the air (e.g. Wu, 2007; 

Sun et al. 2008; Braun, 2010) and the antecedent state of the land surface serving to 

restrengthen/reintensify or weaken storms post-landfall (e.g. Shen et al., 2002; Emanuel 

et al., 2008; Kellner et al., 2011; Kishtawal et al., 2011; Andersen and Shepherd 2013) 

has pointed to new understandings in tropical system lifecycle processes upon making 

landfall.   

 Land surface heterogeneity, most simply defined as changes in land cover such as 

urban to rural areas, vegetated to non-vegetated surfaces, or soil moisture discontinuities, 

has been a focused area of research for decades.  Numerous studies have demonstrated 

that land surface heterogeneities on the spatial scales of ~10-20 km can result in 

mesoscale baroclinic circulations, a result of localized moisture and heat flux 

discontinuities stemming from the land surface heterogeneity.  These mesoscale 

circulations have been demonstrated through numerical modeling to be strong enough to 

perturb weaker synoptic conditions and lead to the development of mesoscale rainfall and 

thunderstorms (Clark and Arritt, 1995; Baidya Roy and Avissar, 2000; Pielke 2001).   

With rainfall memory studies completed by Findell and Eltahir (1997) and Pal and 

Eltahir (2003) demonstrating a positive feedback between the antecedent condition of the 

underlying soil, coupled with the aforementioned land surface heterogeneity feedbacks, 

this study investigates the role (or lack thereof) of the antecedent synoptic environment 

and the role of antecedent land surface conditions and surface fluxes resulting from soil 

moisture and land surface heterogeneity on inland tropical storm system sustainment, 

reintensification, and decay.   

 Here we use historic meteorological, climatological, and land surface data 

complimented with remotely sensed data and numerical weather prediction model 

verification to explore the working hypothesis that wetter antecedent soil conditions can 

aid in the reintensification of some land-falling tropical storm systems by acting as a 

latent heat source with the corollary hypothesis being that dry soils act to increase the rate 

at which land-falling tropical cyclones decay over land due to a lack of latent heat (i.e. 

moisture).  This working hypothesis is built from work investigating the role of 
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antecedent surface conditions on tropical systems in the Indian Monsoon Region (Chang 

et al., 2009; Kishtawal et al., 2010) and Typhoon  Abigail over Western Australia 

(Emanuel et al., 2008).  The results of these studies and the findings of this study have the 

potential to be generalized and applied in the operational community in regions around 

the world where the state of the land surface is readily monitored and included in the 

tropical system forecast and monitoring process. 

6.2 Hypothesis 

 Land-falling tropical systems are recognized as potential sources of severe 

weather and extreme climate hazards such as inland flooding, wind damage, and tropical 

cyclone induced tornadoes.  With heightened recognition of the cost associated with such 

storm damages, increased effort to better predict, prepare for, and mitigate the effects of 

these systems has been seen over the last decade.  Analysis of extreme events such as 

Tropical Storm (TS) Erin (2007) is one example of a poorly predicted storm that 

impacted unprepared communities.  TS Erin (2007) demonstrated the need for improved 

understanding of inland tropical storm systems, especially inland storm system 

interaction with the land surface and how forecast tools can be improved to better capture 

such synergistic feedbacks. 

TS Erin (2007) is an ideal example of a land-falling tropical system that appears 

to experience a feedback between antecedent land surface conditions and the storm’s 

intensity and evolution post-landfall, far from a warm water energy source.  TS Erin 

(2007) made landfall on the 16 of August 2007 near Corpus Christy, Texas, traveling 

northwest into central Texas before turning north and then turning northeast and traveling 

into an anomalously wet Oklahoma (second wettest spring and early summer on record – 

Arndt et al., 2009) where the storm reorganized and formed an eye-like structure over 

central Oklahoma.  Observational/operational weather data from the Oklahoma Mesonet, 

upper air data and surface data from the University Corporation for Atmospheric 

Research (UCAR), mesoanalysis data from the National Oceanic Atmospheric 

Administration (NOAA) Storm Prediction Center (SPC), and tropical cyclone reports 

from the National Hurricane Center (NHC) are supportive of land surface interactions 
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between the anomalously wet land surface in Oklahoma and the storm in August 2007.  

These findings lend support to the completion of a series of soil moisture sensitivity 

analyses using the WRF model to test the working hypothesis that wetter soils sustained 

and reintensified TS Erin (2007) inland away from a warm water energy source (Kellner 

2011).   

To examine the antecedent soil moisture hypothesis and tropical storm feedback 

hypothesis in more detail, the WRF model is initialized with North American Regional 

Reanalysis (NARR) forecast data and North American Mesoscale (NAM) forecast data.  

For each experiment, soil moisture availability values in the model are increased or 

reduced within the domain to represent anomalously dry, standard, and anomalously wet 

antecedent soil moisture conditions (0.5 soil moisture, standard soil moisture, and 1.5  x 

soil moisture.), and a forecast is generated to investigate how the model 

simulates/forecasts TS Erin with different soil moisture conditions (Table 6.1).  Kellner 

(2011) and Kellner et al. (2011) discuss the findings of these studies in detail.  Results of 

the analysis suggest that the anomalous soil moisture conditions in Oklahoma at the time 

of TS Erin’s passage contributed in part to TS Erin’s reintensification via priming of the 

mesoscale environment and priming of the boundary layer which initiated a positive 

feedback between the land surface, the atmosphere, and the tropical storm.  

The initial findings from Kellner et al. (2011) investigating TS Erin lend support 

to further study antecedent storm environments and land-falling tropical storms.  Three 

additional case studies of land-falling tropical systems in anomalous environments are 

identified and investigated through observational-based case studies (e.g. archived upper 

air maps, surface data, rainfall and temperatures, soil moisture conditions, and 

mesoanalysis) and WRF soil moisture sensitivity experiments.  The storms are TS Arlene 

(2005), TS Don (2011), and Hurricane Isaac (2012).  TS Arlene made land fall in a 

climatologically drier than normal climate (May 1.47 inches below normal and 0.59 

inches below normal for month of June across the Midwest – OH, IN, IL, KY, WI, MN, 

IA, and MO).  However, TS Arlene remained classified as a tropical system far inland, 

similar to TS Erin invoking a comparable investigation.  TS Don 2011 made landfall in 

an extremely drier than normal climate (1.68 inches below normal, third driest July on 
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record in Texas) (MRCC 2014) igniting hopes of drought relief in southern Texas as the 

storm approached.  TS Don is selected to serve as the corollary hypothesis case study.  

Finally, Hurricane Isaac 2012 made landfall during the widespread and catastrophic 

drought of 2012 that crippled much of the Great Plains and Midwest that year.  It serves 

as an additional corollary hypothesis event for this study on soil moisture anomaly 

feedbacks to land-falling tropical systems. 

6.3 Data and Methods 

6.3.1 Methods 

 An important component to numerical weather prediction, especially at smaller 

spatial scales, is the selection of a land surface parameterization scheme.  Land surface 

parameterization schemes are responsible for partitioning and determining the heat and 

moisture fluxes between the land surface, the storm environment, and the storm as 

forecast by the model (Stensrud 2009).  Land surface schemes can be simple or complex 

in nature, varying by how each scheme views the land surface and subsurface (e.g. one or 

two layers versus five layers), if soil temperature or soil moisture (or both) is (or is not) 

forecast prognostically, and if the parameterization scheme can account for features such 

as cooling of soil temperatures from rain water infiltration, cooling of the boundary layer 

from evaporation, runoff and further feedback into the storm environment, or accounting 

well for snow and ice (Stensrud 2009).  In this analysis (and WRF in general), the two 

primary land surface models/parameterization schemes considered for soil moisture 

sensitivity analysis are Slab (5-layer thermal diffusion) and Noah.  The two schemes 

differ from each other in several regards. 

The Slab LSM (also known as the 5-Layer Thermal Diffusion LSM, see Dudhia 

1996) is a land surface scheme that only determines soil temperature (and not soil 

moisture) prognostically.  Soil moisture is a function of land use category only and does 

not change in time as the model progresses forward in the forecast.  The Slab LSM also 

does not include explicit representation of vegetation.  Using Slab highlights the model’s 

forecast sensitivity to the initial soil moisture value.  The Noah LSM prognostically 

forecasts soil moisture and soil temperature, and includes explicit vegetation 
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representation providing for the most realistic evolutionary forecasts possible of the event. 

The Noah LSM includes heat and moisture fluxes as driven by atmospheric forcings of 

precipitation, temperature, humidity, surface pressure, winds, and radiation.  The Noah 

LSM is inclusive of soil variables such temperature, water, ice, and texture with land 

surface variables such as vegetation type, slope, albedo, and roughness.  It can be run as 

coupled or uncoupled and applies finite-differencing to compute the governing equations 

of physical processes of the land surface between soils, vegetation, and the snowpack 

(Mitchell 2005; Stensrud 2009).  It is the more realistic land surface model compared to 

the Slab LSM. 

The WRF soil moisture sensitivity analysis experiments in this series of soil 

moisture sensitivity case study analysis are completed using the Slab and Noah LSMs. 

Slab is primarily used to assess the sensitivity of the model to the initial soil moisture 

value.  Model runs are initialized using NAM and NARR data.  NAM differs from 

NARR in that NAM is a forecast model generated dataset while NARR is a reanalysis 

product.  Using reanalysis products and land data assimilation systems have been shown 

to better forecast past weather events because the model is constantly calibrated through 

the forecast process with observed surface, upper air, and satellite data (among others).  

However, the improvement of forecasts through the use of reanalysis products does not 

discredit datasets such as NAM, as reanalysis datasets also contain biases inherent from 

the numerous remotely sensed datasets of different time intervals that may introduce error 

into the reanalysis forecast.  Thorough analysis of the NAM and NARR forecasts for TS 

Erin can be found in Kellner 2011.  Forecasts for TS Don, TS Arlene, and Hurricane 

Isaac show similar sensitivity to initial soil moisture values as noted with TS Erin in 

Kellner (2011) and Kellner et al. (2011) in that drier conditions result in forecasts of 

weaker convection while higher soil moisture contributes to stronger convection forecast 

by the model.   

From analysis of Slab forecasts in Kellner (2011), it is identified that WRF 

forecasts convection that is sensitive to initial soil moisture conditions.  From these 

findings it is noted that investigation of the more dynamic interactions of antecedent soil 

moisture conditions with a LSM that is better representative of the real environment (i.e. 
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the Noah-LSM) is needed.  Thus, the focus of this paper is on how the Noah-LSM 

forecasts land surface feedbacks and interactions with land-falling tropical systems that 

interact with an antecedent environment suffering from moisture deficit or surplus. 

The Noah-LSM forecasts of TS Erin, TS Arlene, TS Don, and Hurricane Isaac in 

this analysis are generated using the Goddard Earth Sciences Data and Information 

Services Center (GES DISC) Interactive Online Visualization and Analysis Infrastructure 

(Giovanni) user interface and visual display query system developed and supported by 

the Goddard Earth Sciences Data and Information Services Center (GES DISC) rather 

than WRF.  Local-scale climate parameters of surface specific humidity, surface 

evaporation/evapotranspiration or total evapotranspiration, surface latent heat flux, 

surface sensible heat flux, surface ground heat flux, and total column soil moisture 

(specific soil moisture layers when total column soil moisture is not available as a 

parameter) are analyzed due to their diagnostic relationship in understanding land surface 

partitioning of soil moisture and heat fluxes in the soil-vegetation-atmospheric (SVAT) 

system. 

Noah-LSM forecasts and land-falling tropical storm interactions are investigated 

through the parameters of surface specific humidity, surface 

evaporation/evapotranspiration or total evapotranspiration, surface latent heat flux, 

surface sensible heat flux, surface ground heat flux, and soil moisture parameters.  These 

parameters are plotted at six-hourly UTC intervals using Giovanni with forecasts 

initialized in one of the following manners: 24 hours prior to storm landfall, 24 hours 

prior to storm reintensification, or initialization times are adjusted to capture certain flux 

parameters prior to rainfall from the tropical system impacting the land surface.  All 

parameters are mapped via a time-averaged, latitude-longitude map except for specific 

humidity data which is a time series plot for the same time frame of 24 hours prior to 

model run initialization to end of model initialization.  Domain areas are inclusive of the 

entire landmass area from where the storm made landfall till where the storm experiences 

extratropical transition or dissipation. 
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6.3.2 Data Sets 

The Noah-LSM analysis that is completed on the four land-falling tropical cyclones 

representing possible interaction with soil moisture anomalies utilizes three remotely-

sensed datasets.  These include the Modern-era Retrospective Analysis for Research and 

Applications (MERRA), the North American Land Dada Assimilation System-2 

(NLDAS), and the Global Land Data Assimilation System-1 (GLDAS).  MERRA differs 

from NLDAS and GLDAS in that it is a reanalysis product.  Reanalysis datasets are 

developed through the assimilation of six, 12-hourly observational datasets (satellite, 

buoy, aircraft, ship, radiosonde, and surface observations) into a forecast model(s) for the 

period being analyzed. Land data assimilation systems include the ingestion of weather 

observations as well to generate a forecast, but run independently of a 

forecast/atmospheric model.  By doing this, land data assimilation systems remove the 

bias of NWP models that drive reanalysis products. 

6.3.2.1 Modern-era Retrospective Analysis for Research and Applications (MERRA) 

MERRA is a reanalysis product developed from the Goddard Earth Observing 

System Data Assimilation System Version 5 (GOES-5).  It has two-dimensional 

diagnostics such as surface flux parameters which are produced at hourly intervals of 

one-half degree latitude by two-thirds degree longitude (55.5 km x 74 km) grid resolution.  

Three-dimensional (MERRA 3D) is available as well.  MERRA is developed from 

GOES-5 atmosphere data using an atmospheric data assimilation system that merges 

various observations from the satellite era (1979-present).  Because the assimilation 

system is time-fixed (i.e. data is assimilated into the model at equal time steps regardless 

of the weather event), the data produced from MERRA is viewed as steady and reliable 

making it ideal for climatological applications.  A weather-focused/NWP forecast 

analysis differs through time in that systematic changes resulting from the weather or 

weather/storm events in the model contribute to forecast evolution.  MERRA is more 

suitable for climatological applications because all weather and climatological data is 

included – forecasts are not generated for just specific weather events (MERRA 2012).  

Incorporating specific weather event data only results in an exclusive storm dataset that 
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drives the model.  This can actually serve to drive the forecasts towards anomalous 

representation of the climate system.  Focusing only on anomaly events may drive the 

model more towards one direction or another (MERRA 2012). Assimilated satellite 

products in the MERRA dataset include data from the NOAA Polar Orbiter High 

Resolution Infrared Radiation Sounder, GOES platforms, TIROS, Nimbus-7, and the 

AQUA Advanced Microwave Sounding Unit (MERRA 2012). 

6.3.2.2  North American Land Dada Assimilation System-2 (NLDAS) 

NLDAS provides hourly products of land surface parameters at a spatial 

resolution of 1/8
th

 a degree (13.875 km x 13.875 km).  NLDAS is produced from non-

precipitation land surface forcing fields developed from the NCEP North American 

Regional Reanalysis (NARR) which is a high resolution reanalysis (32km/45 layer) of the 

North America region (Canada, the United States, and Mexico) (Rodell 2014 (a)).  Once 

NLDAS is initialized, it produces forecasts using the NCEP Eta Model which further uses 

the Regional Data Assimilation System (RDAS) to assimilate precipitation and radiances 

into the model.  Surface, downward shortwave radiation is bias-corrected by using five 

years of hourly 1/8
th

 degree GOES-based surface downward shortwave radiation fields.  

Precipitation is not of NARR precipitation forcing, but from a gauge-only Climate 

Prediction Center analysis of 24-hour precipitation that has been separated into hourly 

time intervals and that accounts for orography based on PRISM climatology (Mesinger et 

al., 2005; Shafran et al., 2006).  Assimilated satellite products in NLDAS include MODIS 

evapotranspiration, AMSR-E near surface soil moisture, and AVHRR land cover data 

built upon NAI and NDVI indexes (Rodell et al. 2004). 

6.3.2.3 Global Land Data Assimilation System-1 (GLDAS) 

GLDAS provides three-hourly products that are in produced at a 1ᵒ x 1ᵒ (111 km x 

111 km) spatial resolution.  GLDAS is initialized by data from NCEP’s Global Data 

Assimilation System (GDAS), Climate Prediction Center (CPC) Merged Analysis of 

Precipitation (CMAP), and Air Force Weather Agency (AFWA) radiation.   GLDAS is a 

project focused on combining satellite data and ground observational data into land 

surface models through data assimilation.  GLDAS is viewed as a “sister” project to the 
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Land Information System (LIS) project, and its results can be produced in near real-time.  

Time-separated CMAP precipitation (6 hourly mean rain rate) drives precipitation forcing 

in GLDAS, with additional input data to GLDAS similar to that of NLDAS (Rodell 2014 

(b)).  GLDAS and NLDAS are similar projects with the primary difference between the 

two being spatial resolution. 

6.4 Discussion of Findings 

 Interactions between Earth’s atmosphere and the land surface occur daily in 

response to solar radiation. During the daytime, radiative energy from the sun propagates 

as shortwave radiation downward towards Earth’s surface heating the atmosphere and 

surface components that are struck by it.  Uneven heating across Earth’s surface due to 

differences in vegetation, soil moisture content, albedo, terrain, and latitude (different 

inclination angle of the sun) results in atmospheric convection, conduction of heat 

through different mediums (e.g. air, water, and soil), and evapotranspiration of water.  

The atmosphere works to redistribute heat (shortwave and longwave radiative energy), 

mass (water), and momentum (winds) to restore equilibrium to the atmospheric system 

that results from uneven heating at Earth’s surface.  The daily surface radiation balance 

equation (Rn = L + H + G) results in a sign convention of positive fluxes of sensible and 

latent heat from the land surface during the day and negative at night.  The ground heat 

flux works to move heat from the top layers of the land surface into deeper soils resulting 

in a negative sign convention.  At night, the signs of these heat flux terms reverse (Oke 

1987; Stull 1988; Shelton 2009). 

 The importance of understanding the surface radiation balance equation in 

relation to land-falling tropical systems is that the strength/intensity and sign (positive or 

negative) of each type of heat flux during daytime and nighttime indicates how a tropical 

storm may be utilizing energy from the land surface in the forms of sensible and latent 

heat.  Tropical storm systems are self-sustaining systems that draw energy from the warm 

water of tropical oceans with the common understanding that once a tropical storm 

system makes landfall, it will dissipate rather quickly since its energy source (the warm 

water) has been cut off (Emanuel 2003). 
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The analysis completed here focuses on sensible and latent heat fluxes during the 

daytime and nighttime hours, along with antecedent soil moisture and surface specific 

humidity values during the inland progression of the four land-falling tropical systems 

identified in previous sections as optimal case studies. Flux values (positive or negative), 

proximity to inland storm track, proximity to reintensification, and the presence of 

mesoscale boundaries in the form of heat fluxes, soil moisture, or surface specific 

humidity (if present) are identified to assess the following relationships as set forth by the 

proposed hypotheses: 

1) Any positive sensible and latent heat fluxes over land during nighttime hours 

(ground heat flux will be negative to follow sign conventions) indicate heat 

lost to the atmosphere which suggests that the storm system is extracting 

energy from the land surface to sustain itself; 

2) Any gradients of sensible heat, latent heat, or moisture that may serve as 

mesoscale sources of “invisible” (i.e. not identifiable on a surface weather 

map such as a frontal boundary) baroclinicity/vorticity boundaries suggests 

further possible positive feedback to storm sustainment, reintensification, and 

storm steering. 

6.4.1 WRF Soil Moisture Sensitivity Analysis, NARR and NAM Data 

The WRF-Slab soil moisture sensitivity analyses using NARR and NAM data as 

completed and discussed in Kellner 2011 and Kellner et al. (2011) shows that the amount 

of soil moisture available from the land surface to the storm environment contributes to 

the evolution of the storm and its convection over land.  Those model runs (for all events) 

show that when more soil moisture is available in the model for 

evaporation/evapotranspiration, convection is heightened.  When soil moisture is limited 

(i.e. less), convection is forecast as less intense.  While these results are partially driven 

by the simplistic nature of the model parameterization schemes, in theory the relationship 

between soil moisture and availability of soil moisture for evaporation and latent heat 

release that drives convection is sound.  These findings agree with past modeling studies 
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on land surface heterogeneity and the soil moisture memory effect as described in the 

introduction section of this chapter.    

6.4.2 Giovanni MERRA, NLDAS, and GLDAS Analysis 

MERRA, NLDAS, and GLDAS analyses with the Noah-LSM all result in 

different values of surface flux data for case study forecasts.  However, all generally 

forecast similar locations and spatial extent where fluxes are positive or negative during 

the time of the storm event.  When reviewing all three datasets, it is apparent in the 

results that the spatial resolution at which surface sensible and latent heat flux, ground 

heat flux, soil moisture, specific humidity, and evapotranspiration are forecast influence 

the degree and certainty of feedback occurring between the land surface and the tropical 

storm.  While GLDAS provides surface parameter maps of similar spatial distribution, it 

has the coarsest spatial resolution and does not perform well in capturing potential land 

surface feedbacks.  This serves to dilute or smooth out distinct regions of flux data (e.g. 

sensible, latent, ground heat flux), but not parameters of soil moisture or humidity.  

MERRA and NLDAS are of finer spatial resolution (55.5 km x 74 km and 13.875 km x 

13.875 km, respectively) and show distinct regions of positive surface flux data into the 

tropical systems during the nighttime hours (00Z-06Z and 06Z-12Z – 8pm-2am and 2am-

8am LST). 

All case study events as shown/produced by MERRA, NLDAS, and GLDAS 

appear to have interaction with surface flux parameters directly relatable to antecedent 

soil moisture conditions.  Soil moisture is shown to be a critical component of the 

hydroclimate, as it determines surface albedo, the partitioning of sensible and latent heat 

fluxes, likelihood of surface ponding of water and runoff, and the rate of transfer of heat 

between the atmosphere and ground.  As such, this is why soil moisture is investigated as 

a possible diagnostic tool for inland tropical storm intensification or decay.  In the 

following sections, each case study event is briefly described with findings related to soil 

moisture and surface flux data reviewed for each MERRA, NLDAS, and GLDAS. 
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6.4.2.1 Tropical Storm Erin (2007) 

Tropical Storm (TS) Erin is the original tropical storm event that led to the 

development of the antecedent soil moisture hypothesis investigated in this study, and is 

the storm that sparked the investigation of soil moisture and antecedent environmental 

relationships in additional studies such as those completed by Arndt et al., (2009), 

Monteverdi and Edwards (2010), and Evans et al., (2011).  TS Erin is unique because 

after making landfall on August 16
th

 near Corpus Christy, TX, the storm tracked inland, 

weakening along the way, and then experienced a period of reintensification over west-

central Oklahoma during the early morning hours of August 19, 2007 (Knabb 2008).  

Reintensification is defined in this study as a period of time during which the low 

pressure center deepened (lowered) and convection became enhanced (e.g. Kellner et al. 

2011).  Furthermore, the generation of a hurricane-like eye feature over west-central 

Oklahoma (roughly 600 miles inland) occurred during this time with TS Erin which had 

not been seen before during the storm’s lifetime.  Additionally, the evolution of TS Erin 

overland is unique because during the months prior to landfall and reintensification over 

Oklahoma, observed rainfall amounts resulted in the second wettest spring on record 

across much of the state (Arndt et al., 2009; Kellner et al., 2011).  These antecedent soil 

moisture conditions and the reintensification of TS Erin over this region formulate the 

hypothesis that anomalous soil moisture (wetter than normal or drier than normal) may 

contribute to the reinvigoration, sustainment, or more rapid demise of land-falling and 

inland-tracking tropical systems. Figures 6.1-6.6 highlight land surface feedbacks 

witnessed with the reintensification of TS Erin with a complete analysis of the TS Erin 

soil moisture hypothesis available in Kellner (2011) and Kellner et al., (2011). 

6.4.2.2 Tropical Storm Arlene (2005) 

 Tropical Storm Arlene made landfall in the Florida Panhandle on June 12
th

, 2005 

after organizing in the Atlantic Ocean east of Honduras close to where the Gulf of 

Mexico and Caribbean Sea meet.  Upon making landfall, TS Arlene moved northward 

just east of the Mississippi River as a tropical depression till the afternoon of June 13
th

, 

2005 when the storm transitioned to an extratropical low pressure system over south-
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central Michigan.  TS Arlene moved north, northeast over the Midwest where rainfall had 

been below normal leading up to the storm’s passage. During the time that TS Arlene 

moved northward, the system generated two tornadoes in east-central Indiana and 

produced 1.0-3.0 inches of rainfall across the region (Lixion and Brown 2005; Schultz 

and Cecil 2009).  TS Arlene is chosen as an ideal case study for this research proposal in 

that extratropical transition did not occur till 950 miles inland, farm from a warm ocean 

energy source similar to TS Erin.   

 While antecedent soil moisture conditions were not anomalous in nature across 

much of the land surface over which TS Arlene passed in June 2005, interesting land 

surface feedbacks are identified between the antecedent soil moisture conditions in 

Indiana and where TS Arlene generated two tornadoes.   NLDAS and MERRA show 

surface evaporation occurring during the overnight hours of June 12, 2005 with weak, 

positive values of surface evaporation/evapotranspiration present suggesting a flux from 

the surface into the overlying atmosphere.  Enhanced values are seen in NDLAS over 

Indiana on 13 June 2005 when two tornadoes are reported (Figure 6.7).  Latent heat flux 

is related to surface evapotranspiration, thus similar relationships (positive flux – into the 

overlying atmosphere at night) with latent heat flux are seen with NLDAS and MERRA 

productions.  NLDAS shows greater detail of latent heat flux, with highest amounts in 

vicinity of where the two tornadoes are reported (Figure 6.8).  As with TS Erin, a soil 

moisture gradient prior to migration of the storm through the region is present, with 

higher soil moisture values in proximity to where the increased rates of surface 

evaporation, latent heat, and tornadoes occur (Figure 6.9). 

6.4.2.3 Tropical Storm Don (2011) 

Experiencing severe drought since the beginning of the year in 2011 (USDM 

2011), Texas welcomed TS Don as a hopeful form of drought relief for portions of the 

state.  However, TS Don rapidly dissipated after making landfall on July 30, 2011 near 

Padre Island National Seashore, quickly diminishing any hope of drought relief anywhere 

in the state.  Within six hours of landfall, the circulation center of the storm completely 

dissipated over southwest Texas (Brennan 2011).  Investigating TS Don’s rapid demise in 

relation to exceptionally dry antecedent soil moisture conditions serves as an excellent 
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corollary hypothesis case study event to TS Erin.  Exceptionally dry soil moisture 

anomalies present as severe drought in the vicinity of the storm’s landfall and 

surrounding regional landscape are opposite of those antecedent soil moisture conditions 

present with TS Erin.  No studies investigating the role of hydroclimatological extreme 

events such as drought resulting in a faster dissipation rate for land-falling tropical 

systems has been completed.   

Land surface feedbacks occurring in the vicinity of TS Don as the storm made 

landfall and dissipated are interesting in that plots show similar feedbacks as those seen 

with TS Erin and TS Arlene.  Upon landfall, TS Don moved over a land surface with 

weak evapotranspiration (Figure 6.10). Latent heat flux plots, however, show a positive 

heat flux to the atmosphere (i.e. positive feedback/interaction with the storm) such as 

those seen with TS Erin and TS Arlene.  These observations suggest that land-falling 

tropical storms continue to extract heat from the land surface for energy.  Additionally, 

there are pockets of enhanced latent heat flux in west-central Texas where TS Don 

tracked (Figure 6.11 and Figure 6.12).  Sensible heat flux plots during the overnight 

hours (8pm to 2am local time) are weak, but positive as well below the storm.  A larger 

pocket of sensible heat flux is noted on the plots and is located in a location towards 

which the storm center tracked (Figure 6.13).  Albeit in drought, soil moisture is 

scrutinized to see if any soil moisture anomalies or gradients are present in Texas in the 

vicinity of TS Don’s track.  It is noted in Figure 6.14 that the circulation center of TS 

Don appears to track towards a region of higher soil moisture in Texas. 

Although TS Don rapidly dissipated over the exceptionally dry surface present in 

Texas, analysis of surface flux parameters shows that the circulation center associated 

with TS Don tracked towards regions of higher surface evaporation/evapotranspiration 

and sensible heat.  Possible explanations of TS Don’s circulation center following this 

storm track include ideal gas law relationships - the boundary layer over areas of warmer, 

more moist air should produce lighter, more unstable air the system may have sought out 

as an energy source.  Knowing that more unstable air also rises, the diagnostic 

environmental parameter of surface pressure falls along TS Don’s track is reviewed for 

any indication of weak low pressure forming over areas of heightened surface 
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evaporation/evapotranspiration and sensible heat.  However, any pressure falls (if present) 

appear not significant enough to be detected by mesoanalysis products provided by the 

SPC mesoanalysis archive database (http://www.spc.noaa.gov/exper/ma_archive/). 

6.4.2.4 Hurricane Isaac (2012) 

The year 2012 is a historic drought year (i.e. a hydroclimatological anomaly, e.g. 

Shelton 2009) in the United States during which drought reached levels comparable to 

the Dust Bowl (Fuchs et al., 2014).  The United States agriculture industry was heavily 

impacted by the lack of rainfall during the growing season and news of Isaac’s projected 

path into the Midwest brought hope for drought relief (Healy 2012).   Isaac made its final 

landfall on August 29, 2012 in Louisiana as a tropical storm and tracked northwest into 

western Arkansas before curving northeastward and tracking across central Missouri 

toward St. Louis.  The circulation center of Isaac then entered south-central Illinois and 

dissipated over southern Illinois, Indiana, and western Kentucky (Berg 2013).  While 

drought relief was provided, the rainfall was not enough to break drought status in the 

storm’s wake.  During Isaac’s lifetime, it is documented to have produced 34 tornadoes 

from August 27
th

 – September 4
th

. Tornado events within the domain post-landfall 

include those tornadoes reported on August 30
th

, 31
st
, and September 1

st
, 2012 (Berg 

2013).   

Similar to TS Don, the antecedent soil moisture conditions of extreme drought 

serve as an excellent corollary hypothesis case study to TS Erin.  Hurricane Isaac is 

unique compared to TS Don, however, in that the storm did not rapidly dissipate upon 

making landfall despite the prolific and wide-spread drought conditions across much of 

the country.  It is worth noting, however, that Louisiana was not in drought status during 

Isaac’s landfall and that Texas was in a drought during TS Don’s landfall.  Based on 

findings from TS Erin, TS Arlene, and TS Don, this may have allowed Isaac to remain 

organized after making landfall rather than undergoing rapid dissipation like TS Don. 

GLDAS, NLDAS, and MERRA plots all show land surface feedbacks occurring 

post-landfall between Hurricane Isaac and the land surface overnight.  Figure 6.15 and 

Figure 6.16 both document what appears to be Hurricane Isaac trying to continue the self-

sustaining process of obtaining sensible and latent heat flux from the land surface for 
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energy.  Although fluxes are weak, they are positive (during the nighttime hours) beneath 

and slightly ahead of where the storm center advances.  The highest rates of 

evaporation/evapotranspiration after landfall also happen to coincide with times of more 

active convection and the numerous tornado reports across Illinois, Indiana, Missouri, 

Kentucky and Arkansas.  This is similar to the behavior documented with TS Arlene.  

MERRA and NLDAS provided more detailed analysis of this noted storm behavior due 

to their more finite spatial resolution. 

6.5 Conclusions 

 Antecedent soil moisture conditions have been identified in this land-falling 

tropical storm event analysis as an important and underappreciated ingredient in land-

falling tropical storm system forecasts of track, intensity, and inland duration.  

Observational analysis, analysis with NLDAS, GLDAS, and MERRA remotely sensed 

satellite products, and soil moisture sensitivity analysis using the WRF model on TS Erin 

(2007), TS Don (2011), TS Arlene (2005), and Hurricane Isaac (2012) supports the 

hypothesis that land-falling tropical systems interact with the land surface in the same 

manner that tropical systems interact with the ocean surface.  Tropical storm systems are 

warm core, self-sustaining low pressure systems that obtain their energy from the warm 

ocean surface through high surface fluxes of sensible and latent heat.  The analysis 

completed here demonstrates that land-falling tropical systems entering anomalous soil 

moisture conditions are attracted to regions of higher sensible and latent heat flux when 

synoptic scale environments do not dictate inland migration and track, and increased 

wind shear present in the Midlatitudes does not aid in the more rapid dissipation of the 

tropical storm system over land.  The storms reviewed in this climatology likely exhibit 

strong, interactive behavior with the land surface because the systems made landfall 

when synoptic scale weather features were not present to influence storm dynamics.  This 

allowed the storms to continue the self-sustaining process of warm-core systems by 

pulling energy from the land surface after making landfall.   

 Soil moisture and its antecedent conditions is the key variable investigated in this 

study because of the crucial role soil moisture plays in the partitioning of heat and 
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moisture fluxes between the sub-surface and surface, and land surface and the 

atmosphere (e.g. Shelton 2009; Grundstein and Bentley 2001).  Anomalous soil moisture 

is investigated for a possible relationship to land-falling tropical systems due to 

unexplained and observed reintensification of tropical systems far inland from a warm 

ocean energy source (e.g. Kellner et al., 2011).  Observational weather data and 

numerical model sensitivity analysis with WRF supports the hypothesis that wetter 

antecedent soils can act to enhance or sustain inland tropical systems and that drier soils 

act to enhance the rate at which a land-falling system will decay over land.  Even though 

Hurricane Isaac made landfall while a large portion of the country was in drought 

conditions, the system likely remained organized longer farther inland because it was 

much larger than TS Don at landfall, and the immediate land surface upon making 

landfall was not under drought conditions as seen with TS Don.  All systems investigated 

in this climatology show that tropical systems continue to pull energy and moisture from 

the land surface even when the radiative forcing mechanisms of surface fluxes (i.e. the 

sun) has set for the day.  Typically sensible and latent heat fluxes, along with 

evapotranspiration, are negative at night.  However, in this study the fluxes are found to 

be positive during overnight hours indicating that energy is being pulled from the land 

surface by forcing mechanisms other than radiation forcing directly from the sun.  The 

fluxes are also found to be highest nearest to the tropical storm system center of low 

pressure. 

 These findings (see also Kellner 2011; Kellner et al., 2011) stress the increased 

need for more detailed, timely assimilation of remotely-sensed data describing land 

surface characteristics such as soil moisture, evapotranspiration, vegetation, and surface 

fluxes into hurricane prediction/forecast systems, especially when it has been forecast 

that synoptic scale dynamics will be weak or non-existent when a storm makes landfall.  

The findings also demonstrate the need of high-resolution land surface datasets to capture 

all interactions of land-falling tropical systems with the land surface and how these 

interactions may influence the intensity of land-falling tropical storm forecasts.  This last 

point is important for future projections of land-falling tropical systems that are forecast 

in general circulation models (much larger spatial resolution, generalized land surface 
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features) for global climatological analysis under warming scenarios.  This suggestion is 

made due to the findings in this study that NLDAS and MERRA analyses, both of finer 

spatial resolution, did a better job at capturing land surface feedbacks between the storm 

and the land surface.  WRF soil moisture sensitivity analysis at spatial resolutions of 1 

km to 4.25 km further supports the need for fine-scale forecast model prediction to best 

capture land-falling tropical system feedbacks and evolution over land. 
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6.7 Tables 

Table 6.1:  WRF model set up for the four select case studies exploring the soil moisture 

feedback hypothesis.   

 
Land Surface Parameterization, Initialization Dataset, Soil Moisture 

(SM) Values 

Storms Slab NAM Slab NAM Slab NAM 
Slab 

NARR 

Slab 

NARR 

Slab 

NARR 

TS Erin 

(2007) 
0.5 x SM Default 1.5 x SM 0.5 x SM Default 1.5 x SM 

TS Don 

(2011) 
0.5 x SM Default 1.5 x SM 0.5 x SM Default 1.5 x SM 

H Isaac 

(2012) 
0.5 x SM Default 1.5 x SM 0.5 x SM Default 1.5 x SM 

TS Arlene 

(2005) 
0.5 x SM Default 1.5 x SM 0.5 x SM Default 1.5 x SM 
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6.8 Figures 

 

Figure 6.1: Plots of total evapotranspiration (GLDAS [top] and NLDAS [middle]) and 

surface evaporation (MERRA - bottom) prior to (00Z-06Z 19 August 2007) and during 

storm reintensification (06Z-12Z 19 August 2007).  TS Erin’s track is denoted by the 

thick black line.  Values are highest during reintensification (4-10Z 19 August 2007) and 

are positive despite it being nighttime. 
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Figure 6.2: GLDAS (top) and NLDAS (bottom) ground heat flux prior to and during 

reintensification.  Negative values note flux towards atmosphere while positive values 

indicate flux into the ground.  Along TS Erin’s path (thick black line) there is a ground 

heat flux gradient with increased/heightened levels of heat flux into the atmosphere at the 

time of reintensification noticeable in NLDAS image of 06-12Z 19 August 2007 (circled 

in red). 
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Figure 6.3:  GLDAS (top row), MERRA (middle), and NLDAS (bottom row) latent heat 

flux plots for six hour intervals during the nighttime hours the day before (18 August 

2007) and day of reintensification (19 August 2007).  Positive values indicate latent heat 

flux from the surface into the atmosphere.  All products show enhanced/heightened latent 

heat flux during the night hours into the storm (circled in red), especially leading up to 

reintensification.  NLDAS captures the most detail and verifies with observations of 

where and when the storm restrengthened.  MERRA and GLDAS show increased latent 

heat flux during reintensification, however is not as spatially precise as NLDAS.  

GLDAS appears to displace latent heat flux bull’s-eye south east of where 

reintensification occurs.  

 

 

 



176 

 

 

Figure 6.4:  Same as Figure 3 except sensible heat flux plots.  Sign conventions are the 

same.  Time frame is by 6 hourly intervals for 1800Z 18 August 2007 to 1200Z 19 

August 2007.  As with latent heat flux, there is a positive sensible heat flux into the storm 

from the land surface.  However, it is much weaker than the latent heat flux due to the 

portioning of fluxes by the daily surface radiation budget equation.  Once again a distinct 

gradient of heat flux in vicinity of TS Erin’s track and region of reintensification is 

visible. 
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Figure 6.5: Total column soil moisture for the region over which TS Erin tracked.  The 

track readily follows the western edge of the soil moisture gradient through southwest 

and western Texas then northeast into Oklahoma. 

 

 

Figure 6.6: GLDAS (top row) and NLDAS (bottom) plots of surface specific humidity.  

TS Erin appears to have traverse along the western boundary of increased specific 

humidity which is influenced by surface characteristics such as soil moisture and 

vegetation cover. 
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Figure 6.7:  NLDAS evapotranspiration (2 left columns) and MERRA (2 right columns) 

surface evaporation during the overnight hours June 12 (top row) and 13(bottom row), 

2005.  Weak, but positive values (circled in red) of surface 

evaporation/evapotranspiration suggest a flux from the land surface to the atmosphere 

with enhanced values over Indiana on the 13
 
June 2005 when tornadoes were reported. 

NLDAS places the enhanced evapotranspiration in close proximity to where tornadoes 

touched down whereas MERRA fails to capture the same location and detail.  TS 

Arlene’s track is noted by the thick black line. 
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Figure 6.8:  NLDAS latent heat flux (2 right columns) and MERRA latent heat flux (2 

left columns) during the overnight hours June 12 (top row) and 13(bottom row) 2005.  

Like Figure 7, positive values suggest a flux from the land surface to the atmosphere with 

enhanced values over Indiana on the 13
 
June 2005 when tornadoes were reported. 

NLDAS places the enhanced latent heat flux amounts in close proximity to where 

tornadoes touched down whereas MERRA once again fails to capture the same location 

and detail. 
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Figure 6.9: Soil moisture data from NLDAS (total column, left figure) 24 hours prior to 

landfall and GLDAS (0-10cm, 10-40cm, 40-100cm, and 100-200cm layers, right 4 

figures) soil moisture at landfall.  Like TS Erin, there is a soil moisture gradient (NLDAS 

image, encircled with dashed red) in the vicinity of the storm’s track.  Worth noting in the 

GLDAS imagery is the increased soil moisture at 10-40cm, 40-100cm, and 100-200cm 

layers in the vicinity of increased surface evaporation, latent heat flux, and reported 

tornadoes (solid red circles). 
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Figure 6.10:  MERRA surface evaporation (left), GLDAS total evapotranspiration (top 

right), and NLDAS total evapotranspiration (bottom right) during TS Don’s landfall.  

Images show weak evapotranspiration near to where the storm made landfall.  However, 

no strong surface boundary is present with TS Don.  
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Figure 6.11:  GLDAS latent heat flux plots 12 hours prior to landfall by 6 hour intervals 

(first two images, top row) till dissipation (by 6 hour intervals).  Even during overnight 

hours, TS Don managed to extract latent heat from the surface after making landfall 

(circled in red) and before dissipating.  Orange circles (top row) denote regions of 

enhanced latent heat flux from the land surface prior to landfall and in the direction that 

TS Don tracked. 
 

 

 

 

Figure 6.12:  Like GLDAS in Figure 11, a positive latent heat flux is shown in proximity 

to the storm’s center in southern Texas after moving inland (right figure).  Location of the 

storm is circled for convenience. 
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Figure 6.13:  Sensible heat flux from 8pm (29 July 2011) - 2am (30 July 2011) local time.  

TS Don made landfall at 1030pm 29 July 2011.  Weak but positive sensible heat flux is 

shown beneath the storm center (circled) at this time with the highest sensible heat flux 

northwest of where TS Don made landfall and the circulation center eventually tracked 

(dashed line). 
 

 

 
 

Figure 6.14:  GLDAS soil moisture plots (0-10cm, 10-40cm, 40-100cm, and 100-200cm 

layers) leading up to and during the time TS Don makes landfall.  The circulation center 

appears to track towards regions of higher soil moisture (circled in yellow). 
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Figure 6.15: Total evapotranspiration (GLDAS – top row and NLDAS – bottom row) and 

surface evaporation MERRA (middle row) during the overnight hours after Isaac’s 

landfall (final landfall at 2am LST 29 August 2012) as Isaac tracked inland.  Center of 

Isaac marked on the map for the beginning time (purple X) and end time (orange X) of 

the image. It can be seen that the self-sustaining process of tropical systems readily 

encouraged evaporation/evapotranspiration (albeit weak) as a moisture source from the 

land surface near and ahead of the center despite the absence of daytime solar radiation.  

Highest rates of evaporation/evapotranspiration also coincide with times of active 

convection during which tornadoes occurred in IL, IN, MO, KY, and AR (see 

http://www.spc.noaa.gov/climo/reports/120831_rpts.html and 

http://www.spc.noaa.gov/climo/reports/120901_rpts.html for tornado report information) 

as found with TS Arlene 2005 over east-central Indiana.  MERRA and NLDAS (high 

spatial resolution show more detailed and slightly higher rates of 

evaporation/evapotranspiration than GLDAS). 
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Figure 6.16:  Same as figure 15 except latent heat flux.  
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CHAPTER 7. CONCLUSION 

7.1 Hydroclimate Systems 

The Earth-atmosphere system is a highly complex, dynamical series of 

interconnected spheres (i.e. subsystems): the atmosphere, the biosphere, the lithosphere, 

the hydrosphere, and the cryosphere.  Climate, and more specifically the hydroclimate, is 

influenced by characteristics and properties inherent to each of these spheres.  The 

hydroclimate of a given area is established by climates of the first and second kind with 

each type of climate resulting from the thermodynamic and hydrodynamic properties 

inherent to the transfer and flux of heat, mass (water), and momentum across different 

spatial and temporal scales.  Hydroclimatology is the coupled science of hydrology, 

meteorology, and climatology.  The hydrologic cycle is intricately linked to the 

atmosphere in that the atmosphere serves as the primary input to the hydrological cycle in 

the form of precipitation.  Additionally, evaporation, a component of the hydrosphere, 

serves as input to the atmosphere.  Additional evaporative input to the atmosphere comes 

from the land surface (biosphere and lithosphere). 

7.1.1 Types of Climate 

Climate as a science is subdivided into two parts: 1) climate as determined by 

general atmospheric circulation and 2) climate as determined by the flux of heat and 

moisture between the overlying atmosphere, the land surface and the subsurface.  These 

two separate climates have been identified as large-scale and local-scale climate, 

respectively (e.g. Shelton 2009).  Large-scale and local-scale climates are linked in that 

the established temperature and precipitation regimes as determined by large-scale
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climates work synergistically with local-scale climates.  Large-scale climate determines 

the rates of input and output for local-scale climate with the output (e.g. flux of heat and 

moisture from the land surface to the atmosphere) from local-scale climate further being 

able to contribute to the evolution of large-scale climate. 

7.1.2 Climate Variability and Change 

Humans, a component of the biosphere, modify climate systems that have been 

established for thousands of years on Earth.  The geologic time frame that encompasses 

when humans began to influence the physical processes of the Earth-atmosphere system 

through hunting and gathering, agriculture, land use change, and the burning of fossil 

fuels has been identified as the Anthropocene (Steffen et al., 2007).  Climate systems are 

documented to have experienced episodes of natural climate variability for thousands of 

years primarily through proxy data analysis.  However, with the onset of the industrial 

revolution, human impact to the Earth-atmosphere system shifted to a much higher and 

impactful level because of the abundant release of carbon dioxide due to burning of fossil 

fuels for energy (Steffen et al., 2007).  Humans elicit changes in climate through 

modification of the land surface through processes such as urbanization and deforestation 

and modification of the atmosphere through the burning of fossil fuels which release 

greenhouse gases such as carbon dioxide, nitrous oxide, and methane into the atmosphere 

adding to the natural greenhouse gasses already present.  While climate variability and 

change can occur naturally from volcanic eruptions, changes in Earth’s orbit, and solar 

cycles, human modification of the natural climate systems has been identified and is 

noted as human-induced climate change.  Climate change resulting from humans is 

receiving more attention than in the past due to the rate of warming documented in the 

last approximately 100 years and the ability of scientist to show that the warming is not 

completely a function of natural causes (e.g. Steffen et al., 2007). 

7.1.3 Weather and Climate Data History 

The collection of weather and climate data began approximately during the late 

1700s, spreading in countries around the world as industrialization of societies began.  
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Commerce and economies needed to track weather systems due to weather’s impacts on 

the transportation of goods (Monmonier 1999).  With the establishment of weather 

observers and the invention of the telegraph, weather prediction began to unfold in the 

early 1900s.  The collection of daily weather data has led to the establishment of a 

weather record dataset spanning almost 130 years in some areas of the world.  The efforts 

to observe, understand, and predict the weather has provided a solid base of observations 

to which meteorologists and climatologists have been able to monitor changes in weather 

and climate through time.  Advancements in remotely sensed technologies such as 

satellites provide additional weather and climate data from locations where humans are 

unable to monitor weather and climate changes first-hand.    

Through scientific collection of weather and climate data, an increased 

comprehension of anthropogenic feedbacks to hydroclimates has been identified.  It is 

recognized that humans are contributing to global climate change (e.g. Melillio 2014; 

IPCC 2014) through land surface change and increased levels of greenhouse gases.  

Accounting for these changes in climate models, model projections forecast shifts in 

precipitation patterns and temperatures.  With temperature (radiation) and precipitation 

being the two primary drivers of hydrological processes, it is expected with global 

climate change that local hydroclimate change will occur as well.  Although a consensus 

has been reached in the scientific community through applied research and numerical 

prediction that Earth will warm and shifts in temperature and precipitation will occur, 

there is uncertainty in how future generations will understand, prepare for, predict, and 

mitigate the effects of projected changes in climate and weather. 

7.1.4 Importance of Analysis for the Future 

Hydroclimatology is far-reaching and highly applicable to many components of 

peoples’ lives.  Understanding how hydroclimatology will change in a warming climate 

is best completed through a comprehensive, thorough analysis of hydroclimates across 

temporal and spatial scales.  Understanding past behaviors of a climate system is highly 

critical to determining possible future behaviors of a climate system.  This 

hydroclimatological analysis serves to obtain a deeper understanding of current 
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hydroclimates and components of hydroclimates from past and current climate data to 

apply findings from each study to strengthen climate change mitigation and resiliency.  

Enhancing climate resiliency is becoming more important as hydroclimatological 

extremes begin to occur more frequently under projected warming climate scenarios 

(Melillio et al., 2014; IPCC 2014).  

7.1.5 Spatial and Temporal Scales 

The hydroclimates of the world vary across spatial and temporal scales and they 

are open systems that regularly interact with each other.  Hydroclimates vary in scale 

from microclimates such as those established around a plant (with fluxes of heat, mass, 

and momentum occurring across time frames of seconds to minutes), up to planetary 

scale hydroclimates such as those established by general circulation cells that dictate 

Midlatitude climate regimes on time frames of months, seasons, and decades.  

Hydroclimates can experience natural climate variability from sources such as 

teleconnections (weeks) or volcanic eruptions (e.g. Krakatoa in 1883 – “year without a 

summer”).  Hydroclimates can also experience climate change through time as a result of 

natural and human causes (decades).  Impacts from climate variability and change are not 

reserved to specific hydroclimates, but can impact hydroclimates across all spatial and 

temporal scales.   

7.1.6 Classification of Primary Hydroclimate Variables: Normal, Anomaly, and Change  

 As discussed in Chapter 1, hydroclimates are driven by movement of heat and 

moisture through a climate system.  Heat is most commonly quantified in the form of 

temperature (daily, monthly, annual and maximum, minimum, and average temperatures) 

which contributes to relationships such as evapotranspiration and saturation vapor 

pressure.  Temperatures are further influenced by climate variability which can result in 

heat waves and cold spells, and are further influenced by climate change which can lead 

to an increase or decrease in average temperature in a given area over time.  Additionally, 

ambient temperatures are strongly influenced by the radiation balance at the surface.  The 

partitioning of surface radiation into different surface fluxes of heat, mass, and 
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momentum on different types of surfaces (vegetation, soil, or impervious) and moisture 

content influences temperature as well. Precipitation (rainfall, snowfall, tropical cyclones, 

blizzards, etc.) which serves as the input component of the hydrologic cycle, is the largest 

input of moisture to the hydroclimate system.  Established precipitation patterns within a 

hydroclimate can experience extreme or anomalous events such as floods or droughts 

which can commonly be attributed to climate variability and but hydroclimates can also 

undergo climate change.  Climate change will shift a hydroclimate system into a new 

state of hydroclimatological balance.  The variable ‘climate normal’ allows scientists to 

determine if weather is normal, anomalous (within the mean distribution of a normal 

climate, just within the tails of the distribution), or a manifestation of climate change. 

7.2  Hydroclimatic Assessments across Spatial and Temporal Scales 

7.2.1 Agroclimatology 

The development of human societies results from the domestication and 

production of vegetation and animals by humans.  Thousands of years of trial and error 

for plant and animal domestication occurred before humans were able to identify those 

plants and animals that could be domesticated and survive in varying climates around the 

world.  It is the variation in climates as established by general circulation of the 

atmosphere that provide Earth with various regions of primary agronomic production 

such as the U.S. Corn Belt which is favorable for corn, soybean, cattle, and sheep 

production.  The Fertile Crescent is another production region, which is suitable for 

wheat, barley, flax, chickpeas, and lentil.  Mediterranean climates are ideal for fruits such 

as olives, figs, pomegranate, and citrus, and subtropical climates favorable for cotton, 

tobacco, rice, poultry, and swine.  With agriculture and agronomic production intricately 

linked to weather and climate, understanding the evolution of agriculture in relation to 

past weather and climate regimes is key to exploration of agricultural evolution into the 

future as weather and climate experiences variability and change.  Chapter 2, 

“Agroclimatology” provides a comprehensive discussion on the history, the growth, and 

the efforts underway to improve future agronomic practices as related to past, present, 

and future weather and climate.  In this chapter, the hydroclimate system is investigated 
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primarily with a focus on the relationships between large-scale climate and agricultural 

production.  Local-scale climate is also discussed due to the intricate connection of crop 

phenology and parameters such as soil moisture, soil temperatures, and 

evapotranspiration. 

7.2.2 Climate Variability and the U.S. Corn Belt: ENSO and AO Episode-dependent 

Hydroclimatic Feedbacks to Corn Production at Regional and Local Scales 

Hydroclimatic variability most commonly manifests itself in the form of record 

high and low temperatures or precipitation events which lie in the “tails” of what is the 

normal probability distribution of the climatological variable in question.  While rare, 

these events are part of the normal climate system.  However, the rate at which climate 

variability occurs is expected to increase under a warming climate scenario.  Thus, 

understanding the response of past crop production, specifically corn, to climate 

variability in the form of temperature and precipitation changes resulting from ENSO and 

AO teleconnections is important.  Chapter 3 discusses the development of usable tools for 

agricultural producers through the application of past climate data.  This allows producers 

to better prepare for increased climate variability and change in the future.  Efforts such 

as the ENSO and AO climatology developed in Chapter 3 demonstrate the efforts of 

climate scientists working with the agricultural community to develop adequate tools and 

adaptable behaviors to ensure continued, successful food production in future decades as 

the world begins to face greater rates of food and water scarcity.  It will be the proper 

management of water resources in drier Midlatitude climates that will ensure producers 

reach their highest production potential.  The climatology and tool development 

described in Chapter 3 provides producers with climatological scenarios showing which 

atmospheric indexes (large-scale climate) will result in drier or wetter conditions in their 

fields (local-scale climate) months ahead of time.  Analogue historic production 

compliments the climatological scenarios present in the climatology with the primary 

goal of the climatology and tool to help farmers better plan for optimal planting, 

fertilizing, water, and harvesting as the climate becomes more variable with time. 
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7.2.3 Assessing Drought Vulnerability of Agricultural Production Systems in Context 

of the 2012 Drought 

Drought is an example of the hydroclimatological extreme event of a profound 

rainfall deficit (the opposite extreme event to a drought is a flood).  Because drought 

varies in type (e.g. meteorological, hydrological, agricultural, or socioeconomic), it has 

far-reaching impacts across societies and manifests itself in the hydro-thermodynamics of 

both large-scale and local-scale climate.  With agriculture being such a large component 

of the United States economy and the United States being such a large contributor to the 

world food market, the 2012 drought that impacted the United States is the most recent 

example of an extreme climate event worthy of detailed analysis to gain a comprehensive 

understanding of drought triggers, atmospheric circulation associated with historic 

drought events, and the scale of impacts to production and world food markets in order to 

be better prepared for future drought events of such magnitude.    The drought of 2012 

was widespread, with up to 63% of the land area in the Continental United States 

classified as being in Moderate to Exceptional Drought (USDM 2012) and comparable in 

magnitude to the droughts in the 1980s and the Dust Bowl.  The heat and moisture deficit 

not only drastically impacted corn and soybean productions, it impacted forage and feed 

with a chain reaction into cattle production and prices.  Drought and high temperatures 

commonly occur together increasing rates of heat stress on cattle which further impacts 

reproduction and lactation rates of cows.  Assessing drought vulnerability in agricultural 

production systems under the most recent drought events brings forth the reality that 

adapting agricultural practices more resilient to drought and practicing mitigative drought 

measures will ensure less drastic impacts to agricultural production systems under future 

drought scenarios.   

7.2.4 Land-falling Tropical System Rainfall Contribution to the Hydroclimate of the 

Midwest 1981-2012 

The unifying theme in four of the six hydroclimatological assessments is the 

impact of hydroclimatic variability and change to agricultural production across the U.S. 
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Corn Belt.  Chapter 2 encapsulates the highly coupled relationships between climate, 

agriculture, and agronomy.  Chapter 3 discusses hydroclimate variability stemming from 

ENSO and AO teleconnections with impacts to agricultural production across the North 

Central Region of the United States, and Chapter 4 demonstrates the drastic impacts of 

extreme climate events on the agroclimate during the 2012 drought.  While the primary 

agricultural production region of North America receives precipitation from rainfall 

generated by Midlatitude weather systems and summertime convective thunderstorms fed 

by moisture from the Gulf of Mexico, land-falling tropical cyclones are also a generator 

of hydroclimatological rainfall across the Central and Eastern United States.  Depending 

on antecedent seasonal rainfall, these land-falling storms may result in flood events (e.g. 

Villarini et al., 2014), or may serve as drought busting events (e.g. Haberlie et al., 2014).  

Regardless, land-falling tropical systems are a part of the Midwest hydroclimate that are 

not readily quantified as a total percentage of rainfall.  Furthermore, land-falling tropical 

systems are not experienced every year.  Thus a storm’s presence may or not may impact 

the overall production in a growing season.  Chapter 5 investigates the average observed 

total seasonal rainfall contribution from land-falling tropical systems to the Midwest 

hydroclimate in the Eastern U.S. Corn Belt.  Findings show that land-falling tropical 

systems do play an important role in production, especially over regions in Illinois and 

Kentucky where shifts in the jet stream greatly impact where Midlatitude weather 

systems traverse and produce rainfall.  With these results, an accurate hurricane forecast 

may help agricultural producers in the region better plan for a drier or wetter than 

expected season. 

7.2.5 Role of Antecedent Soil Moisture Conditions on the Inland Reintensification of 

Tropical Systems Examined Using Remotely Sensed Data and Model Verification 

Local-scale climate is the climate established at the atmosphere and land surface 

interface where heat, moisture, and momentum fluxes occur based on the daily radiation 

budget.  While tropical systems are regarded as self-sustaining, warm core systems that 

mainly derive energy from the warm ocean waters, recent research points to land-falling 

tropical systems interacting with the land surface in a way such that inland longevity of a 
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tropical storm system is prolonged rather than the storm dissipating quickly after making 

landfall.  These observations have led to the proposed hypotheses that land-falling 

tropical systems, a phenomena of large-scale climate, interact with local-scale climate to 

sustain, reintensify, or more readily dissipate land-falling/inland tropical storm systems 

depending on antecedent hydroclimate conditions.  Chapter 6 thoroughly investigates the 

proposed hypothesis that inland anomalously wet antecedent hydroclimatic conditions 

serve as an energy source to land-falling tropical systems with the corollary hypothesis 

that inland anomalously dry (i.e. drought) antecedent hydroclimatic conditions serve as 

an accelerant to land-falling tropical system dissipation.  Operational hydroclimatic 

analysis coupled with remotely sensed datasets prior to and during inland storm tracking 

show land surface interactions supportive of the proposed hypothesis.  Model verification 

using WRF further supports anomalous antecedent hydroclimatic interactions between 

land-falling tropical systems and the land surface.   

7.3 Summary and Future Research Directions 

The Earth-atmosphere system is comprised of hydroclimates across spatial and 

temporal scales that embody different dynamic and thermodynamic properties.  

Hydroclimates across Earth determine how humans and other life forms live and prosper.  

A hydroclimate is determined by its proximity to large-scale climate influences resulting 

from general atmospheric circulation.  However, large-scale hydroclimates are further 

influenced by local-scale land surface characteristics such as land cover, land use, 

vegetation, topography, soil type, and albedo.  While large-scale climates influence large, 

regional land areas and result in regional climate characteristics such as arable land for 

agriculture, local-scale land surface characteristics further influence hydroclimatic 

responses.  Humans and societies are intricately entwined with hydroclimates because of 

human dependency on agriculture and commerce.  This dependency makes understanding 

the physical relationships that drive hydroclimates across temporal and spatial scales vital 

for human resiliency to climate variability and change in the future.   

The primary purpose of this U.S. Corn Belt hydroclimatological assessment 

across spatial and temporal scales is to identify hydroclimatic relationships important to 
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agricultural production as discussed in Chapter 2.  Chapter 4 highlights the driving 

hydroclimatic relationships that led to the 2012 drought and how these hydroclimatic 

relationships impacted agronomic decision making and agronomic markets.  The main 

goal of Chapter 2 is to provide readers with drought information to improve resiliency to 

future drought.   As noted in Chapter 3, prior assessments of the hydroclimates across the 

U.S. Corn Belt analyze large-scale hydroclimatic influences such as ENSO with different 

indexes, across different spatial scales, and across different time frames.  Additionally, 

hydroclimatic analysis of the AO on agricultural production is more limited in literature 

than ENSO.  Thus, the AO analysis in Chapter 3 provides a new glimpse to AO 

hydroclimate influences on agricultural production across the U.S. Corn Belt.  Together, 

the findings in Chapter 3 that discuss ENSO and AO episode-dependent feedbacks to 

agricultural production show the scale-dependency of temperature and precipitation 

hydroclimate relationships across the U.S. Corn Belt.  Presented in a manner useful to 

producers, the findings in Chapter 3 allow for more tailored and accurate decision making 

by producers when faced with climate variability in the future.  Future episode-dependent 

hydroclimatic assessments should investigate the relationship between teleconnections 

such as the Pacific North American Pattern (PNA), the North Atlantic Oscillation (NAO), 

and the Pacific Decadal Oscillation (PDO) and agricultural production. 

Tropical Storm systems regularly make landfall along the Gulf and East Coasts of 

the United States.  Upon making landfall, storms commonly begin to weaken for several 

reasons: lack of a latent heat source, interaction with higher wind speeds found in 

Westerly flow, and friction from the land surface that disrupts balanced airflow into the 

core of the storm (Rhome and Raman 2006).  However, some storms remain organized 

and can track far inland before transitioning to extratropical systems.  These land-falling 

tropical systems serve as a new hydroclimate “input” in the form of tropical system 

rainfall (rather than the more common extratropical system rainfall observed across the 

Subtropics and Midlatitudes of the United States).  Understanding the role of tropical 

system rainfall to the Eastern U.S. Corn Belt hydroclimate is important for agriculture 

production because the region experiences episodes of climate variability in the form of 

wetter than normal or drier than normal conditions.  Chapter 5 shows that during these 
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abnormally dry or wet conditions, tropical system rainfall can either be of benefit to crop 

production in some states, or detrimental to production in some states.   The findings 

suggest that with timely and accurate tropical storm season outlooks, producers can make 

more informed decisions ahead of time to reduce yield loss and increase yield during the 

growing season.  Future research to support these findings should focus on improving 

hurricane season forecasts so that the results in Chapter 5 may be applied in agronomic 

decision making. 

The hydroclimatic analysis completed in Chapter 6 examines the open-system 

relationships between local-scale and large-scale hydroclimate phenomena.  The analysis 

specifically investigates the role of antecedent, anomalous soil moisture conditions at 

several different spatial resolutions using remotely-sensed datasets and numerical 

modeling.  The results show that soil moisture anomalies may contribute to tropical storm 

system evolution over land, and it is suggested from these findings that land-surface 

interactions are given more weight in land-falling tropical system forecasts as part of the 

Hurricane Forecast Improvement Project.  Like other chapters, Chapter 6 also 

demonstrates the spatial scale dependency of hydroclimatic analysis with results from 

GLDAS, NLDAS, and MERRA showing differences in flux values and location despite 

all being input datasets being driven by the Noah-LSM.  GLDAS has the coarsest spatial 

resolution (111 x 111 km) and fails to capture the heat and moisture flux detail that 

NLDAS (13.875 x 13.87 5km) and MERRA (55.5 x 74 km) provide.  This suggests an 

increased need of higher spatial resolution hydroclimatic analyses and modeling in land-

falling tropical system forecasts for convection.   

Comprehensively, this hydroclimatic assessment shows that the spatial and 

temporal scale at which hydroclimatic assessments are completed reveal different 

relationships and feedbacks, all of which are important to consider and all of which are 

applicable to agronomic decision making and forecasting.  Because agriculture is 

fundamental to human societies, understanding hydroclimate responses across regions at 

spatial and temporal scales relevant to producers is critical to helping producers make 

more informed decisions as the world shifts into a more hydroclimatologically volatile 

state. 
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Appendix A Chapter Three Supplemental Material 

Seasonal Teleconnection Phase Climatology 

 

Bold values are highest average observed values of all three phases within the state 

climate division.  Italicized values are the lowest average observed values of all three 

phases within the state climate division. 

Indiana Average Observed Seasonal 

 Precipitation (inches) per AO Phase 1980-2010 

Phase 

Cli. 

Div. 

Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Winter 

(DJF) 

Positive 1 3.19 4.13 3.82 2.67 

Negative 1 2.93 4.62 3.23 1.87 

Neutral 1 3.86 4.16 3.17 2.10 

Positive 2 3.37 4.37 3.54 2.70 

Negative 2 2.97 4.26 3.03 2.12 

Neutral 2 3.73 4.14 3.10 2.19 

Positive 3 3.46 4.05 3.40 2.64 

Negative 3 3.03 4.16 2.96 2.00 

Neutral 3 3.73 4.02 2.98 2.22 

Positive 4 3.88 4.46 3.82 2.80 

Negative 4 3.45 4.63 3.26 2.27 

Neutral 4 4.29 4.15 3.12 2.44 

Positive 5 4.18 4.22 3.80 2.89 

Negative 5 3.67 4.25 3.30 2.39 

Neutral 5 4.22 4.11 2.97 2.72 

Positive 6 3.87 4.02 3.55 2.67 

Negative 6 3.50 4.19 3.07 2.14 

Neutral 6 3.92 4.17 2.79 2.54 

Positive 7 4.78 4.06 4.62 3.78 

Negative 7 4.88 4.19 3.57 2.95 

Neutral 7 4.71 3.79 3.39 3.13 

Positive 8 4.79 4.21 4.54 3.72 

Negative 8 4.86 4.65 3.56 3.05 

Neutral 8 4.66 3.86 3.10 3.19 

Positive 9 4.68 4.22 4.25 3.58 

Negative 9 4.70 4.53 3.34 2.99 

Neutral 9 4.47 4.08 2.93 3.11 
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Indiana Average Observed Seasonal 

 Mean Temperature (degrees F) per AO Phase 1980-2010 

Phase 

Cli. 

Div. 

Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Winter 

(DJF) 

Positive 1 47.0 70.8 51.5 28.8 

Negative 1 45.9 69.4 49.8 24.9 

Neutral 1 52.7 71.7 54.8 27.0 

Positive 2 47.1 70.9 51.5 29.2 

Negative 2 45.9 69.4 49.9 25.3 

Neutral 2 52.8 71.7 54.8 27.4 

Positive 3 46.5 70.6 51.1 29.2 

Negative 3 45.5 69.2 49.5 25.1 

Neutral 3 52.3 71.5 54.4 27.1 

Positive 4 49.7 72.5 53.2 31.3 

Negative 4 48.2 70.9 51.5 27.2 

Neutral 4 54.9 73.1 56.3 29.5 

Positive 5 49.4 72.2 53.1 31.6 

Negative 5 47.9 70.6 51.2 27.5 

Neutral 5 54.5 72.9 56.1 29.6 

Positive 6 48.1 71.1 52.2 30.7 

Negative 6 46.7 69.5 50.4 26.7 

Neutral 6 53.3 71.7 55.1 28.7 

Positive 7 53.3 75.2 56.2 35.7 

Negative 7 51.8 73.9 54.6 32.1 

Neutral 7 58.1 75.9 59.4 33.6 

Positive 8 52.1 73.7 54.9 35.1 

Negative 8 50.5 72.3 53.3 31.4 

Neutral 8 56.7 74.3 57.9 33.1 

Positive 9 51.7 73.8 55.0 35.0 

Negative 9 50.3 72.2 53.3 31.2 

Neutral 9 56.4 74.2 57.9 32.9 
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Illinois Average Observed Seasonal 

 Precipitation (inches) per AO Phase 1980-2010 

Phase 

Cli. 

Div. 

Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Winter 

(DJF) 

Positive 1 2.98 4.33 2.93 1.82 

Negative 1 3.06 5.22 2.93 1.53 

Neutral 1 3.75 4.16 3.02 1.67 

Positive 2 3.14 4.52 3.31 2.14 

Negative 2 2.91 4.77 3.06 1.67 

Neutral 2 3.65 3.83 3.08 1.86 

Positive 3 3.25 4.08 3.18 2.06 

Negative 3 3.42 4.47 3.07 1.61 

Neutral 3 4.18 4.12 3.12 1.94 

Positive 4 3.26 4.01 3.40 2.45 

Negative 4 3.18 3.91 3.01 1.77 

Neutral 4 3.98 3.80 3.04 2.05 

Positive 5 3.28 4.17 3.63 2.51 

Negative 5 3.12 4.42 3.08 1.78 

Neutral 5 4.04 3.97 2.92 2.16 

Positive 6 3.45 3.82 3.54 2.48 

Negative 6 3.37 3.96 3.34 2.01 

Neutral 6 4.11 3.66 3.23 2.21 

Positive 7 4.05 3.74 4.04 2.81 

Negative 7 3.58 4.22 3.45 2.44 

Neutral 7 4.29 3.80 3.28 2.79 

Positive 8 4.41 3.53 4.29 3.44 

Negative 8 4.39 4.61 3.84 2.75 

Neutral 8 4.37 3.61 3.41 3.06 

Positive 9 4.67 3.77 4.46 3.97 

Negative 9 4.65 4.29 3.63 2.96 

Neutral 9 4.62 3.54 3.34 3.34 
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Illinois Average Observed Seasonal 

 Mean Temperature (degrees F) per AO Phase 1980-2010 

Phase 

Cli. 

Div. 

Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Winter 

(DJF) 

Positive 1 46.4 71.0 50.2 25.9 

Negative 1 45.5 69.3 47.9 22.4 

Neutral 1 52.5 72.1 53.8 24.8 

Positive 2 46.1 70.9 51.1 27.4 

Negative 2 45.2 69.1 48.8 23.9 

Neutral 2 52.0 72.1 54.5 26.1 

Positive 3 49.2 73.4 52.5 29.3 

Negative 3 48.3 71.6 50.4 25.5 

Neutral 3 55.0 74.0 56.2 27.8 

Positive 4 48.4 72.2 52.1 29.1 

Negative 4 47.2 70.7 50.0 25.2 

Neutral 4 54.1 73.0 55.6 27.7 

Positive 5 48.4 72.2 52.1 29.1 

Negative 5 47.2 70.7 50.0 25.2 

Neutral 5 54.1 73.0 55.6 27.7 

Positive 6 51.1 74.3 54.2 32.1 

Negative 6 49.8 72.6 52.0 28.3 

Neutral 6 56.4 74.9 57.6 30.5 

Positive 7 51.6 74.5 54.7 33.0 

Negative 7 50.1 72.9 52.5 29.1 

Neutral 7 56.7 75.1 58.0 31.2 

Positive 8 54.1 76.0 56.4 35.9 

Negative 8 52.5 74.9 54.5 32.7 

Neutral 8 58.8 76.7 59.8 34.6 

Positive 9 54.0 75.8 56.3 36.2 

Negative 9 52.3 74.5 54.5 32.9 

Neutral 9 58.7 76.4 59.8 34.7 
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Ohio Average Observed Seasonal 

 Precipitation (inches) per AO Phase 1980-2010 

Phase 

Cli. 

Div. 

Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Winter 

(DJF) 

Positive 1 3.34 3.72 3.19 2.54 

Negative 1 2.84 3.86 2.95 1.86 

Neutral 1 3.40 3.62 2.56 2.26 

Positive 2 3.33 3.92 3.40 2.66 

Negative 2 2.88 4.18 3.13 1.93 

Neutral 2 3.39 3.69 2.70 2.42 

Positive 3 3.63 3.87 3.77 2.99 

Negative 3 3.13 4.50 3.65 2.38 

Neutral 3 3.54 3.86 3.42 2.73 

Positive 4 3.71 4.19 3.34 2.69 

Negative 4 3.18 3.74 3.06 2.16 

Neutral 4 3.67 4.13 2.54 2.53 

Positive 5 3.81 3.78 3.48 2.85 

Negative 5 3.36 4.11 2.96 2.18 

Neutral 5 3.65 4.02 2.59 2.70 

Positive 6 3.97 3.79 3.51 2.87 

Negative 6 3.37 4.64 3.13 2.23 

Neutral 6 3.76 4.18 2.81 2.76 

Positive 7 3.80 3.77 3.49 2.83 

Negative 7 3.31 4.64 3.38 2.42 

Neutral 7 3.59 3.98 2.77 3.01 

Positive 8 4.38 4.03 3.63 3.26 

Negative 8 4.07 4.38 3.23 2.55 

Neutral 8 4.27 3.71 2.67 2.90 

Positive 9 4.33 3.61 3.84 3.23 

Negative 9 3.75 4.85 2.95 2.60 

Neutral 9 3.96 3.82 2.36 3.23 

Positive 10 4.03 3.87 3.80 3.01 

Negative 10 3.67 4.63 3.25 2.42 

Neutral 10 3.76 4.01 2.56 3.03 
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Ohio Average Observed Seasonal 

 Mean Temperature (degrees F) per AO Phase 1980-2010 

Phase 

Cli. 

Div. 

Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Winter 

(DJF) 

Positive 1 46.6 71.0 51.6 29.9 

Negative 1 45.7 69.5 49.4 25.9 

Neutral 1 52.5 71.9 54.8 27.6 

Positive 2 46.5 70.7 52.0 30.5 

Negative 2 45.3 69.1 49.8 26.7 

Neutral 2 52.0 71.5 55.0 28.2 

Positive 3 45.6 69.3 51.5 30.6 

Negative 3 44.4 67.4 49.2 26.7 

Neutral 3 51.0 69.9 54.2 28.2 

Positive 4 47.9 71.1 52.2 30.8 

Negative 4 46.4 69.7 49.8 26.8 

Neutral 4 53.2 71.7 55.1 28.8 

Positive 5 49.1 71.7 53.1 32.4 

Negative 5 47.4 70.4 50.8 28.4 

Neutral 5 54.0 72.4 55.9 30.1 

Positive 6 46.8 69.6 51.2 30.7 

Negative 6 45.4 67.9 49.0 26.7 

Neutral 6 51.9 70.3 53.9 28.2 

Positive 7 47.3 69.8 51.9 31.8 

Negative 7 45.6 68.1 49.4 27.6 

Neutral 7 52.3 70.6 54.3 29.6 

Positive 8 50.6 72.8 54.2 34.0 

Negative 8 48.9 71.3 52.0 29.9 

Neutral 8 55.3 73.5 57.2 31.7 

Positive 9 51.5 72.4 54.6 35.6 

Negative 9 49.7 71.3 52.3 31.7 

Neutral 9 56.0 73.2 57.0 33.4 

Positive 10 49.2 70.7 53.0 33.5 

Negative 10 47.4 69.4 50.6 29.5 

Neutral 10 53.9 71.5 55.6 31.1 
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Michigan Average Observed Seasonal 

 Precipitation (inches) per AO Phase 1980-2010 

Phase 

Cli. 

Div. 

Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Winter 

(DJF) 

Positive 1 2.48 2.92 2.62 1.70 

Negative 1 2.19 3.07 3.10 1.92 

Neutral 1 2.53 3.36 3.57 1.96 

Positive 2 2.27 2.99 2.91 1.92 

Negative 2 1.95 2.86 3.50 1.87 

Neutral 2 2.29 3.09 3.55 1.99 

Positive 3 2.37 3.19 3.06 2.04 

Negative 3 2.05 2.88 3.35 1.89 

Neutral 3 2.74 3.09 3.51 1.94 

Positive 4 2.40 3.34 2.81 1.87 

Negative 4 2.02 2.95 2.83 1.61 

Neutral 4 2.68 3.17 2.95 1.70 

Positive 5 3.04 3.21 3.42 2.15 

Negative 5 2.18 3.24 3.34 1.83 

Neutral 5 3.16 3.14 3.81 2.01 

Positive 6 2.98 3.41 3.18 2.00 

Negative 6 2.31 3.16 2.99 1.65 

Neutral 6 3.14 3.23 3.42 1.86 

Positive 7 2.86 3.39 3.05 1.99 

Negative 7 2.35 3.21 3.16 1.71 

Neutral 7 2.81 3.14 3.28 1.79 

Positive 8 3.16 3.61 3.65 2.54 

Negative 8 2.60 3.95 3.26 2.18 

Neutral 8 3.34 3.59 3.68 2.35 

Positive 9 3.07 3.76 3.39 2.06 

Negative 9 2.49 3.79 2.95 1.70 

Neutral 9 3.15 3.41 3.18 1.86 

El Nino 10 2.94 3.63 3.05 2.30 

Neutral 10 2.60 3.70 2.98 1.85 

La Nina 10 2.96 3.26 2.93 2.08 
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Michigan Average Observed Seasonal 

 Mean Temperature (degrees F) per AO Phase 1980-2010 

Phase 

Cli. 

Div. 

Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Winter 

(DJF) 

Positive 1 35.6 62.9 42.7 17.4 

Negative 1 35.8 60.8 40.1 15.9 

Neutral 1 42.5 63.5 46.4 16.5 

Positive 2 35.2 62.7 44.2 20.3 

Negative 2 36.0 61.0 41.8 18.3 

Neutral 2 42.3 63.4 47.7 18.7 

Positive 3 38.8 65.0 46.7 24.1 

Negative 3 38.8 63.5 44.3 21.9 

Neutral 3 45.5 66.1 50.0 22.6 

Positive 4 38.4 65.1 45.8 22.8 

Negative 4 38.6 63.2 43.5 20.6 

Neutral 4 45.3 65.9 49.2 21.4 

Positive 5 41.6 66.4 47.9 26.6 

Negative 5 41.3 64.9 45.7 24.4 

Neutral 5 47.9 67.6 51.3 25.1 

Positive 6 42.0 67.7 47.7 25.4 

Negative 6 41.7 66.1 45.4 22.9 

Neutral 6 48.6 68.7 51.2 23.7 

Positive 7 41.5 67.3 48.3 26.1 

Negative 7 41.5 65.7 46.2 23.5 

Neutral 7 48.0 68.2 51.8 24.5 

Positive 8 44.4 69.0 50.4 28.4 

Negative 8 43.8 67.7 48.2 25.6 

Neutral 8 50.4 70.2 53.6 26.7 

Positive 9 43.8 68.4 49.1 27.2 

Negative 9 43.1 67.0 46.9 24.1 

Neutral 9 50.0 69.5 52.4 25.4 

Positive 10 44.4 69.6 50.2 28.1 

Negative 10 43.8 67.9 48.0 24.9 

Neutral 10 50.4 70.5 53.6 26.2 
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Wisconsin Average Observed Seasonal 

 Precipitation (inches) per AO Phase 1980-2010 

Phase 

Cli. 

Div. 

Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Winter 

(DJF) 

Positive 1 2.50 4.19 2.37 0.93 

Negative 1 2.03 3.56 2.43 1.07 

Neutral 1 2.77 4.21 3.72 1.02 

Positive 2 2.69 3.99 2.52 1.15 

Negative 2 2.05 3.60 2.81 1.20 

Neutral 2 2.70 4.07 3.66 1.19 

Positive 3 2.63 3.66 2.42 1.19 

Negative 3 2.09 3.31 2.80 1.25 

Neutral 3 2.77 3.78 3.32 1.21 

Positive 4 2.87 4.69 2.50 0.97 

Negative 4 2.33 3.91 2.62 1.10 

Neutral 4 3.24 4.58 3.19 1.04 

Positive 5 2.93 4.36 2.43 1.22 

Negative 5 2.19 3.68 2.79 1.18 

Neutral 5 3.10 4.35 2.98 1.15 

Positive 6 2.63 3.70 2.53 1.42 

Negative 6 1.95 3.45 2.75 1.40 

Neutral 6 2.96 3.63 2.89 1.32 

Positive 7 2.90 4.65 2.59 1.20 

Negative 7 2.48 4.45 2.67 1.29 

Neutral 7 3.72 4.73 2.93 1.15 

Positive 8 2.93 4.68 2.75 1.52 

Negative 8 2.36 4.18 2.75 1.43 

Neutral 8 3.58 4.32 3.09 1.49 

Positive 9 2.94 4.57 2.87 1.69 

Negative 9 2.31 4.15 2.72 1.59 

Neutral 9 3.45 3.76 3.01 1.70 
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Wisconsin Average Observed Seasonal 

 Mean Temperature (degrees F) per AO Phase 1980-2010 

Phase 

Cli. 

Div. 

Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Winter 

(DJF) 

Positive 1 38.5 65.8 43.4 16.2 

Negative 1 38.4 63.7 40.9 13.9 

Neutral 1 45.7 66.4 47.2 15.5 

Positive 2 37.2 64.3 42.6 16.3 

Negative 2 37.2 62.2 40.0 14.4 

Neutral 2 44.6 65.1 46.3 15.6 

Positive 3 38.1 64.8 43.6 18.2 

Negative 3 38.3 63.0 41.2 16.4 

Neutral 3 45.2 65.5 47.2 17.3 

Positive 4 42.0 68.6 45.9 19.6 

Negative 4 41.5 66.5 43.5 16.7 

Neutral 4 49.0 69.3 49.7 18.7 

Positive 5 41.6 67.9 46.0 20.8 

Negative 5 41.4 65.9 43.7 18.2 

Neutral 5 48.5 68.7 49.8 19.8 

Positive 6 40.5 67.2 47.3 22.8 

Negative 6 40.6 65.3 44.9 20.3 

Neutral 6 46.8 68.0 50.8 21.6 

Positive 7 43.3 68.9 47.3 22.2 

Negative 7 42.9 67.1 44.9 19.1 

Neutral 7 49.9 69.9 51.0 21.2 

Positive 8 43.3 68.9 47.7 23.1 

Negative 8 42.9 67.2 45.4 20.0 

Neutral 8 49.8 69.9 51.3 22.1 

Positive 9 43.0 68.6 49.0 25.0 

Negative 9 42.5 66.7 46.5 22.0 

Neutral 9 48.8 69.6 52.3 23.8 
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Missouri Average Observed Seasonal 

 Precipitation (inches) per AO Phase 1980-2010 

Phase 

Cli. 

Div. 

Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Winter 

(DJF) 

Positive 1 3.23 4.07 2.96 1.69 

Negative 1 3.59 4.88 3.44 1.32 

Neutral 1 4.33 4.79 3.31 1.50 

Positive 2 3.64 4.04 3.40 2.37 

Negative 2 3.69 4.55 3.67 2.01 

Neutral 2 4.29 4.11 3.46 2.27 

Positive 3 3.86 3.91 3.90 2.24 

Negative 3 4.17 4.89 3.96 1.91 

Neutral 3 4.59 4.45 3.57 2.03 

Positive 4 4.50 3.52 4.30 2.97 

Negative 4 4.22 4.43 4.34 2.42 

Neutral 4 4.47 3.93 3.90 2.36 

Positive 5 4.55 3.40 4.37 3.56 

Negative 5 4.24 4.13 4.24 2.71 

Neutral 5 4.58 3.80 3.66 2.78 

Positive 6 4.87 3.46 4.68 4.66 

Negative 6 4.02 3.57 3.99 3.30 

Neutral 6 4.79 3.38 3.48 3.57 
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Missouri Average Observed Seasonal 

 Mean Temperature (degrees F) per AO Phase 1980-2010 

Phase 

Cli. 

Div. 

Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Winter 

(DJF) 

Positive 1 50.9 74.7 53.0 30.8 

Negative 1 49.6 72.9 51.3 27.7 

Neutral 1 55.8 75.2 56.9 30.0 

Positive 2 51.9 75.0 54.5 33.0 

Negative 2 50.5 73.5 52.4 29.3 

Neutral 2 56.8 75.7 58.1 31.3 

Positive 3 53.3 76.0 55.6 34.7 

Negative 3 51.8 74.6 53.8 31.6 

Neutral 3 57.7 76.6 59.2 33.5 

Positive 4 54.2 75.3 55.9 36.5 

Negative 4 52.7 74.4 54.5 34.0 

Neutral 4 58.1 76.1 59.5 35.6 

Positive 5 53.8 75.1 55.5 36.0 

Negative 5 52.3 74.0 53.7 33.1 

Neutral 5 58.0 75.8 59.0 34.7 

Positive 6 56.8 77.9 58.3 38.8 

Negative 6 55.4 77.5 56.7 36.3 

Neutral 6 61.1 78.7 61.9 37.8 
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Iowa Average Observed Seasonal 

 Precipitation (inches) per AO Phase 1980-2010 

Phase 

Cli. 

Div. 

Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Winter 

(DJF) 

Positive 1 2.60 3.72 2.51 0.73 

Negative 1 2.83 3.51 1.91 0.77 

Neutral 1 3.15 4.37 2.39 0.70 

Positive 2 2.93 4.01 2.56 0.99 

Negative 2 2.83 4.23 2.13 1.05 

Neutral 2 3.81 4.98 2.53 0.86 

Positive 3 2.90 4.46 2.77 1.18 

Negative 3 2.72 4.85 2.57 1.31 

Neutral 3 3.90 4.90 2.76 1.07 

Positive 4 2.85 3.91 2.59 0.92 

Negative 4 2.87 4.41 2.18 0.93 

Neutral 4 3.78 4.44 2.29 0.77 

Positive 5 3.24 4.15 2.80 1.13 

Negative 5 2.98 5.07 2.52 1.13 

Neutral 5 3.87 4.88 2.56 0.92 

Positive 6 2.76 4.18 2.68 1.48 

Negative 6 3.05 5.41 2.91 1.39 

Neutral 6 3.75 4.50 2.93 1.34 

Positive 7 2.92 3.61 2.72 1.06 

Negative 7 3.24 5.08 2.67 1.07 

Neutral 7 4.20 4.70 2.48 0.96 

Positive 8 3.08 4.04 2.86 1.35 

Negative 8 3.25 4.80 3.15 1.16 

Neutral 8 4.17 5.00 2.85 1.07 

Positive 9 3.05 4.23 2.87 1.63 

Negative 9 3.36 5.21 3.30 1.43 

Neutral 9 4.14 4.56 3.13 1.56 

 

 

 

 

 

 



211 

 

 

Iowa Average Observed Seasonal 

 Mean Temperature (degrees F) per AO Phase 1980-2010 

Phase 

Cli. 

Div. 

Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Winter 

(DJF) 

Positive 1 43.7 70.4 46.6 20.7 

Negative 1 42.8 68.3 44.5 17.8 

Neutral 1 50.3 70.8 50.8 19.7 

Positive 2 43.3 70.0 46.7 20.4 

Negative 2 42.9 67.9 44.5 17.3 

Neutral 2 50.3 70.5 50.9 19.3 

Positive 3 43.8 70.0 47.6 21.8 

Negative 3 43.6 68.0 45.3 18.5 

Neutral 3 50.7 70.7 51.6 21.0 

Positive 4 46.4 72.1 48.7 24.0 

Negative 4 45.4 69.8 46.7 21.0 

Neutral 4 52.2 72.3 53.0 23.0 

Positive 5 45.8 71.6 48.7 23.7 

Negative 5 45.1 69.3 46.6 20.6 

Neutral 5 52.0 72.0 52.8 22.7 

Positive 6 46.4 71.7 49.7 24.9 

Negative 6 45.8 69.8 47.6 21.6 

Neutral 6 52.8 72.4 53.7 24.0 

Positive 7 48.5 73.2 50.6 26.7 

Negative 7 47.2 71.0 48.5 23.6 

Neutral 7 53.6 73.7 54.8 25.8 

Positive 8 47.8 72.6 50.5 26.8 

Negative 8 46.7 70.4 48.5 23.5 

Neutral 8 53.3 73.0 54.4 25.8 

Positive 9 48.8 73.5 51.8 28.0 

Negative 9 47.9 71.5 49.7 24.4 

Neutral 9 54.6 74.1 55.8 26.5 
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Minnesota Average Observed Seasonal 

 Precipitation (inches) per AO Phase 1980-2010 

Phase 

Cli. 

Div. 

Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Winter 

(DJF) 

Positive 1 1.57 3.74 1.61 0.59 

Negative 1 1.26 3.42 1.96 0.70 

Neutral 1 2.10 3.63 2.32 0.63 

Positive 2 1.74 4.03 2.00 0.66 

Negative 2 1.49 3.19 2.04 0.74 

Neutral 2 2.33 3.89 2.69 0.68 

Positive 3 1.93 3.90 2.21 0.87 

Negative 3 1.58 3.31 2.33 0.90 

Neutral 3 2.35 3.87 3.37 0.90 

Positive 4 2.10 3.28 2.05 0.51 

Negative 4 1.68 3.33 1.91 0.84 

Neutral 4 2.43 3.77 2.30 0.70 

Positive 5 2.48 3.97 2.26 0.65 

Negative 5 1.93 3.64 1.99 0.94 

Neutral 5 2.77 4.24 2.79 0.74 

Positive 6 2.43 4.10 2.26 0.80 

Negative 6 1.91 3.62 2.13 0.99 

Neutral 6 2.87 4.30 3.27 0.83 

Positive 7 2.52 3.64 2.25 0.55 

Negative 7 2.49 3.42 2.06 0.81 

Neutral 7 2.85 3.90 2.33 0.63 

Positive 8 2.74 4.32 2.44 0.76 

Negative 8 2.68 3.76 2.24 1.04 

Neutral 8 3.24 4.56 2.66 0.84 

Positive 9 2.84 4.65 2.57 0.90 

Negative 9 2.52 4.10 2.44 1.11 

Neutral 9 3.40 4.68 2.97 1.00 
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Minnesota Average Observed Seasonal 

 Mean Temperature (degrees F) per AO Phase 1980-2010 

Phase 

Cli. 

Div. 

Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Winter 

(DJF) 

Positive 1 36.6 66.5 40.7 11.0 

Negative 1 37.1 63.9 38.6 8.4 

Neutral 1 45.2 66.5 45.2 10.3 

Positive 2 36.2 65.1 40.8 11.3 

Negative 2 36.7 62.7 38.1 9.4 

Neutral 2 44.2 65.4 44.8 10.9 

Positive 3 34.4 62.3 40.2 12.3 

Negative 3 34.9 60.3 37.6 10.7 

Neutral 3 41.7 62.6 44.0 12.0 

Positive 4 39.9 69.1 43.8 16.3 

Negative 4 40.3 66.6 41.9 12.8 

Neutral 4 48.1 69.2 48.2 14.9 

Positive 5 40.5 68.8 44.3 16.7 

Negative 5 40.8 66.7 42.3 13.9 

Neutral 5 48.5 69.3 48.6 15.8 

Positive 6 39.6 67.3 43.8 16.1 

Negative 6 39.7 65.6 41.5 13.7 

Neutral 6 47.2 68.0 47.8 15.4 

Positive 7 42.1 69.7 45.4 19.5 

Negative 7 41.7 67.5 43.2 15.9 

Neutral 7 49.3 70.1 49.6 18.2 

Positive 8 42.4 69.8 46.0 19.6 

Negative 8 42.0 67.7 43.7 16.2 

Neutral 8 49.8 70.3 50.2 18.2 

Positive 9 42.2 69.2 46.2 19.7 

Negative 9 41.8 66.9 43.8 16.6 

Neutral 9 49.4 69.7 50.1 18.8 
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North Dakota Average Observed Seasonal 

 Precipitation (inches) per AO Phase 1980-2010 

Phase 

Cli. 

Div. 

Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Winter 

(DJF) 

Positive 1 1.26 2.20 0.85 0.48 

Negative 1 1.17 2.41 0.94 0.53 

Neutral 1 1.39 2.62 1.25 0.53 

Positive 2 1.30 2.48 0.95 0.46 

Negative 2 1.08 2.92 1.19 0.55 

Neutral 2 1.68 3.06 1.56 0.51 

Positive 3 1.37 2.88 1.18 0.48 

Negative 3 1.17 3.24 1.41 0.58 

Neutral 3 1.71 3.29 1.74 0.52 

Positive 4 1.43 2.36 0.81 0.38 

Negative 4 1.22 2.68 1.08 0.48 

Neutral 4 1.58 2.61 1.36 0.49 

Positive 5 1.32 2.78 1.12 0.41 

Negative 5 1.17 3.18 1.27 0.53 

Neutral 5 1.74 3.00 1.60 0.52 

Positive 6 1.59 3.13 1.32 0.54 

Negative 6 1.32 3.08 1.78 0.67 

Neutral 6 1.96 3.28 1.97 0.57 

Positive 7 1.35 2.05 0.79 0.28 

Negative 7 1.26 2.61 1.01 0.42 

Neutral 7 1.62 2.25 1.27 0.42 

Positive 8 1.40 2.38 0.80 0.38 

Negative 8 1.22 3.02 1.15 0.49 

Neutral 8 1.81 2.69 1.36 0.37 

Positive 9 1.73 2.68 1.47 0.43 

Negative 9 1.47 3.24 1.54 0.64 

Neutral 9 2.19 3.11 1.88 0.53 
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North Dakota Average Observed Seasonal 

 Mean Temperature (degrees F) per AO Phase 1980-2010 

Phase 

Cli. 

Div. 

Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Winter 

(DJF) 

Positive 1 37.6 66.3 39.7 14.2 

Negative 1 38.0 63.7 38.4 11.0 

Neutral 1 44.4 66.0 44.4 13.1 

Positive 2 36.2 65.9 39.1 11.4 

Negative 2 36.5 63.3 37.9 8.5 

Neutral 2 43.8 65.6 43.7 10.4 

Positive 3 35.9 66.4 39.8 10.5 

Negative 3 36.2 63.5 37.9 7.7 

Neutral 3 44.2 66.0 44.3 9.7 

Positive 4 38.9 67.4 41.3 16.9 

Negative 4 39.2 64.4 39.9 13.4 

Neutral 4 45.2 67.1 45.8 15.5 

Positive 5 37.9 67.4 40.9 14.2 

Negative 5 38.4 64.5 39.5 10.9 

Neutral 5 45.2 67.1 45.5 12.7 

Positive 6 37.9 67.7 41.4 13.0 

Negative 6 38.3 64.9 39.5 9.7 

Neutral 6 45.9 67.4 46.0 11.8 

Positive 7 39.7 67.7 41.8 19.9 

Negative 7 40.1 64.5 40.8 16.4 

Neutral 7 45.3 67.3 46.1 19.1 

Positive 8 39.6 68.2 41.8 17.5 

Negative 8 39.8 64.9 40.7 14.0 

Neutral 8 45.8 68.0 46.3 16.2 

Positive 9 39.2 68.4 42.3 15.6 

Negative 9 39.6 65.5 40.7 12.2 

Neutral 9 46.6 68.3 46.7 14.3 
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South Dakota Average Observed Seasonal 

 Precipitation (inches) per AO Phase 1980-2010 

Phase 

Cli. 

Div. 

Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Winter 

(DJF) 

Positive 1 1.44 1.99 0.96 0.29 

Negative 1 1.84 2.63 1.02 0.51 

Neutral 1 2.19 2.29 1.23 0.43 

Positive 2 1.52 2.36 1.10 0.34 

Negative 2 1.51 2.91 1.24 0.54 

Neutral 2 2.08 2.80 1.42 0.39 

Positive 3 1.83 2.90 1.74 0.42 

Negative 3 1.65 3.06 1.61 0.67 

Neutral 3 2.43 3.45 1.92 0.54 

Positive 4 2.01 2.54 1.41 0.58 

Negative 4 2.71 3.04 1.31 0.75 

Neutral 4 2.85 2.65 1.60 0.70 

Positive 5 1.56 2.08 1.14 0.35 

Negative 5 2.11 2.57 1.12 0.50 

Neutral 5 2.40 2.28 1.28 0.44 

Positive 6 1.62 2.29 1.22 0.35 

Negative 6 1.98 3.11 1.33 0.59 

Neutral 6 2.33 2.74 1.47 0.41 

Positive 7 2.14 3.19 1.89 0.43 

Negative 7 2.06 3.18 1.78 0.69 

Neutral 7 2.48 3.48 1.99 0.50 

Positive 8 2.01 2.70 1.39 0.40 

Negative 8 2.37 3.16 1.49 0.64 

Neutral 8 2.80 2.88 1.65 0.50 

Positive 9 2.22 2.85 1.98 0.56 

Negative 9 2.65 3.08 1.88 0.64 

Neutral 9 2.91 3.49 2.03 0.50 
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South Dakota Average Observed Seasonal 

 Mean Temperature (degrees F) per AO Phase 1980-2010 

Phase 

Cli. 

Div. 

Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Winter 

(DJF) 

Positive 1 41.5 69.8 43.8 22.7 

Negative 1 41.4 66.1 43.0 19.3 

Neutral 1 46.7 69.4 48.4 21.9 

Positive 2 40.7 69.5 43.4 18.7 

Negative 2 40.5 66.4 42.0 15.0 

Neutral 2 47.1 69.5 47.9 17.5 

Positive 3 39.9 69.0 43.4 16.8 

Negative 3 40.1 66.2 41.7 13.2 

Neutral 3 47.2 69.1 47.9 15.4 

Positive 4 40.0 65.2 43.1 25.6 

Negative 4 39.5 62.3 42.0 24.4 

Neutral 4 44.0 65.2 46.8 26.0 

Positive 5 44.1 71.2 46.1 26.3 

Negative 5 43.3 67.7 45.2 24.0 

Neutral 5 48.6 70.9 50.6 25.9 

Positive 6 43.4 71.8 45.9 22.8 

Negative 6 42.5 68.6 44.7 18.8 

Neutral 6 49.1 71.7 50.6 21.7 

Positive 7 41.6 69.7 44.7 19.4 

Negative 7 41.2 67.0 42.9 15.8 

Neutral 7 48.5 69.9 49.0 17.9 

Positive 8 44.7 71.6 47.1 26.2 

Negative 8 43.3 68.7 45.6 22.5 

Neutral 8 49.4 71.7 51.5 24.9 

Positive 9 44.8 72.0 47.4 23.2 

Negative 9 43.8 69.4 45.5 19.7 

Neutral 9 51.0 72.3 51.8 21.9 

 

 

 

 

 

 



218 

 

 

Nebraska Average Observed Seasonal 

 Precipitation (inches) per AO Phase 1980-2010 

Phase 

Cli. 

Div. 

Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Winter 

(DJF) 

Positive 1 1.55 1.96 1.05 0.41 

Negative 1 1.96 2.67 0.98 0.40 

Neutral 1 2.08 2.38 1.17 0.39 

Positive 2 2.11 3.00 1.55 0.50 

Negative 2 2.61 3.04 1.68 0.57 

Neutral 2 2.67 3.18 1.61 0.46 

Positive 3 2.41 3.79 2.22 0.77 

Negative 3 2.94 3.13 1.92 0.67 

Neutral 3 3.25 3.69 2.19 0.60 

Positive 5 2.35 3.01 1.83 0.64 

Negative 5 2.83 3.58 1.57 0.52 

Neutral 5 2.93 3.49 1.73 0.48 

Positive 6 2.41 3.33 2.42 0.87 

Negative 6 3.04 4.29 1.97 0.75 

Neutral 6 3.61 4.01 2.12 0.72 

Positive 7 1.79 2.78 1.28 0.54 

Negative 7 2.28 3.42 1.34 0.42 

Neutral 7 2.34 2.94 1.22 0.45 

Positive 8 2.08 3.32 1.73 0.67 

Negative 8 2.80 3.33 1.72 0.48 

Neutral 8 3.11 3.52 1.58 0.50 

Positive 9 2.39 3.35 2.19 0.89 

Negative 9 3.16 4.42 2.31 0.82 

Neutral 9 3.87 4.10 2.28 0.85 
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Nebraska Average Observed Seasonal 

 Mean Temperature (degrees F) per AO Phase 1980-2010 

Phase 

Cli. 

Div. 

Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Winter 

(DJF) 

Positive 1 44.8 70.5 45.7 27.4 

Negative 1 43.5 67.2 45.3 26.8 

Neutral 1 48.3 70.0 50.5 27.8 

Positive 2 45.5 71.3 47.0 26.7 

Negative 2 44.0 68.7 45.9 24.0 

Neutral 2 50.0 71.5 51.5 25.7 

Positive 3 46.4 72.4 48.3 25.2 

Negative 3 45.1 69.9 46.7 22.2 

Neutral 3 51.8 72.6 52.7 24.2 

Positive 5 46.9 72.3 47.9 27.1 

Negative 5 45.3 69.7 47.0 24.9 

Neutral 5 51.4 72.3 52.7 26.6 

Positive 6 48.5 74.0 50.3 27.3 

Negative 6 47.3 71.4 48.7 24.5 

Neutral 6 53.6 74.1 54.7 26.5 

Positive 7 47.9 73.2 48.9 29.1 

Negative 7 46.3 70.4 48.2 28.2 

Neutral 7 51.7 73.1 53.6 29.4 

Positive 8 48.9 74.0 49.9 28.8 

Negative 8 47.4 71.5 48.9 27.1 

Neutral 8 53.1 74.1 54.7 29.0 

Positive 9 49.6 74.6 51.4 28.8 

Negative 9 48.4 72.3 50.0 26.2 

Neutral 9 54.4 74.8 55.8 28.4 
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Kansas Average Observed Seasonal 

 Precipitation (inches) per AO Phase 1980-2010 

Phase 

Cli. 

Div. 

Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Winter 

(DJF) 

Positive 1 2.56 3.28 2.12 1.06 

Negative 1 3.15 3.90 2.13 0.81 

Neutral 1 3.14 3.81 2.12 0.94 

Positive 2 2.28 3.34 1.88 0.83 

Negative 2 2.92 3.59 1.93 0.67 

Neutral 2 3.18 3.80 1.92 0.81 

Positive 3 2.90 3.82 2.73 1.28 

Negative 3 3.56 4.68 3.02 0.98 

Neutral 3 3.98 4.85 2.83 1.11 

Positive 4 1.81 2.64 1.36 0.74 

Negative 4 2.37 3.01 1.31 0.45 

Neutral 4 2.13 3.03 1.17 0.56 

Positive 5 2.79 3.07 1.84 0.98 

Negative 5 3.26 3.90 2.05 0.76 

Neutral 5 3.07 4.00 2.03 0.97 

Positive 6 3.22 3.87 3.06 1.51 

Negative 6 3.98 4.72 3.25 1.17 

Neutral 6 4.05 4.75 3.04 1.28 

Positive 7 1.63 2.71 1.37 0.68 

Negative 7 2.09 3.05 1.12 0.47 

Neutral 7 1.98 2.85 1.27 0.62 

Positive 8 2.76 3.61 1.87 1.07 

Negative 8 3.39 4.18 2.06 0.82 

Neutral 8 3.09 3.71 2.17 1.02 

Positive 9 3.89 3.76 3.69 1.84 

Negative 9 4.28 5.15 3.29 1.54 

Neutral 9 4.51 4.54 3.48 1.49 
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Kansas Average Observed Seasonal 

 Mean Temperature (degrees F) per AO Phase 1980-2010 

Phase 

Cli. 

Div. 

Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Winter 

(DJF) 

Positive 1 49.3 74.2 50.2 30.5 

Negative 1 47.4 71.9 49.6 30.1 

Neutral 1 52.6 74.3 55.1 31.0 

Positive 2 51.1 76.3 52.7 31.0 

Negative 2 49.6 74.2 51.5 28.9 

Neutral 2 55.1 76.6 57.3 30.7 

Positive 3 51.9 76.0 53.7 31.4 

Negative 3 50.6 74.1 52.0 28.6 

Neutral 3 56.3 76.3 57.9 31.0 

Positive 4 50.8 75.2 51.7 31.8 

Negative 4 48.9 73.2 51.1 31.6 

Neutral 4 53.9 75.5 56.5 32.5 

Positive 5 52.7 77.5 54.3 32.9 

Negative 5 51.2 75.5 53.3 31.0 

Neutral 5 56.5 77.8 59.0 32.9 

Positive 6 53.1 76.4 54.8 33.4 

Negative 6 51.8 74.9 53.4 30.6 

Neutral 6 57.1 76.9 59.0 32.7 

Positive 7 52.9 76.6 53.6 33.9 

Negative 7 51.1 74.9 53.3 33.7 

Neutral 7 56.1 76.9 58.6 34.8 

Positive 8 54.1 78.2 55.5 34.8 

Negative 8 52.5 76.6 54.7 33.3 

Neutral 8 57.7 78.7 60.3 34.8 

Positive 9 54.6 77.4 56.4 35.8 

Negative 9 53.4 76.1 55.2 33.3 

Neutral 9 58.5 77.9 60.5 35.3 
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El Niño-Southern Oscillation 

Indiana Average Observed Seasonal 

 Precipitation (inches) per ENSO Phase 1980-2010 

Phase Cli. Div. Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF) 

El Niño 1 3.49 4.15 3.22 2.14 

Neutral 1 3.56 4.44 3.99 2.06 

La Niña 1 3.00 3.64 2.71 2.45 

El Niño 2 3.40 4.23 3.05 2.22 

Neutral 2 3.57 4.36 3.65 2.31 

La Niña 2 3.09 3.61 2.81 2.51 

El Niño 3 3.37 3.93 3.00 2.15 

Neutral 3 3.59 4.25 3.46 2.29 

La Niña 3 3.29 3.63 2.69 2.41 

El Niño 4 3.86 4.22 3.23 2.38 

Neutral 4 4.18 4.56 3.83 2.48 

La Niña 4 3.50 3.46 2.84 2.64 

El Niño 5 3.86 3.96 3.10 2.53 

Neutral 5 4.29 4.49 3.82 2.65 

La Niña 5 3.77 3.43 2.80 2.77 

El Niño 6 3.65 4.02 2.85 2.27 

Neutral 6 4.00 4.43 3.49 2.45 

La Niña 6 3.47 3.41 2.77 2.57 

El Niño 7 4.57 3.53 3.99 3.12 

Neutral 7 4.96 4.15 4.06 3.13 

La Niña 7 4.57 3.89 3.12 3.61 

El Niño 8 4.53 3.93 3.78 3.11 

Neutral 8 4.88 4.20 3.92 3.24 

La Niña 8 4.72 3.78 3.03 3.63 

El Niño 9 4.25 4.31 3.49 3.03 

Neutral 9 4.80 4.35 3.53 3.10 

La Niña 9 4.47 3.29 3.10 3.56 
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Indiana Average Observed Seasonal 

 Mean Temperature (degrees F) per ENSO Phase 1980-2010 

Phase Cli. Div. Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF) 

El Niño 1 50.5 70.3 52.2 28.7 

Neutral 1 48.8 71.5 52.3 25.7 

La Niña 1 48.8 72.2 52.9 26.1 

El Niño 2 50.6 70.3 52.3 29.0 

Neutral 2 48.8 71.5 52.3 26.1 

La Niña 2 48.9 72.0 52.8 26.6 

El Niño 3 50.2 70.1 51.8 28.7 

Neutral 3 48.3 71.3 51.8 25.9 

La Niña 3 48.2 71.9 52.5 26.6 

El Niño 4 52.8 71.7 53.8 30.9 

Neutral 4 51.3 73.0 53.9 28.3 

La Niña 4 51.0 73.5 54.4 28.7 

El Niño 5 52.5 71.6 53.8 31.1 

Neutral 5 50.9 72.7 53.7 28.6 

La Niña 5 50.6 73.2 54.2 29.0 

El Niño 6 51.3 70.5 52.8 30.2 

Neutral 6 49.7 71.5 52.8 27.8 

La Niña 6 49.4 72.1 53.1 28.0 

El Niño 7 55.8 74.8 57.0 35.0 

Neutral 7 55.1 75.8 57.0 33.0 

La Niña 7 54.1 75.8 57.3 33.4 

El Niño 8 54.6 73.3 55.7 34.3 

Neutral 8 53.7 74.1 55.6 32.5 

La Niña 8 52.8 74.7 55.9 32.7 

El Niño 9 54.4 73.1 55.6 34.2 

Neutral 9 53.3 74.1 55.7 32.3 

La Niña 9 52.6 74.6 55.8 32.5 
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Illinois Average Observed Seasonal 

 Precipitation (inches) per ENSO Phase 1980-2010 

Phase Cli. Div. Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF) 

El Niño 1 3.23 4.48 2.90 1.59 

Neutral 1 3.52 4.43 3.18 1.52 

La Niña 1 3.05 3.81 2.79 1.90 

El Niño 2 3.25 4.05 3.11 1.89 

Neutral 2 3.48 4.28 3.43 1.74 

La Niña 2 2.95 3.64 2.77 2.04 

El Niño 3 3.72 4.11 3.16 1.86 

Neutral 3 3.89 4.38 3.27 1.79 

La Niña 3 3.22 3.54 2.88 1.91 

El Niño 4 3.46 3.83 3.26 2.12 

Neutral 4 3.74 4.05 3.41 2.01 

La Niña 4 3.23 3.22 2.61 2.13 

El Niño 5 3.63 4.08 3.11 2.05 

Neutral 5 3.71 4.33 3.57 2.08 

La Niña 5 3.17 3.21 2.66 2.28 

El Niño 6 3.85 3.47 3.58 2.37 

Neutral 6 3.83 3.87 3.57 2.18 

La Niña 6 3.29 3.83 2.75 2.14 

El Niño 7 3.79 3.55 3.48 2.67 

Neutral 7 4.24 3.99 3.98 2.58 

La Niña 7 3.81 4.03 3.00 2.74 

El Niño 8 4.12 3.68 3.86 3.14 

Neutral 8 4.56 3.65 4.06 3.03 

La Niña 8 4.29 4.23 3.27 3.06 

El Niño 9 4.44 3.58 3.84 3.47 

Neutral 9 4.80 3.68 3.94 3.25 

La Niña 9 4.51 4.02 3.30 3.54 
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Illinois Average Observed Seasonal 

 Mean Temperature (degrees F) per ENSO Phase 1980-2010 

Phase Cli. Div. Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF) 

El Niño 1 50.2 70.5 51.0 26.6 

Neutral 1 48.5 71.8 51.1 23.2 

La Niña 1 48.2 72.2 51.5 23.0 

El Niño 2 49.8 70.4 51.8 27.8 

Neutral 2 48.0 71.7 51.8 24.7 

La Niña 2 48.0 72.6 52.4 24.7 

El Niño 3 52.7 72.6 53.3 29.3 

Neutral 3 51.2 74.0 53.5 26.6 

La Niña 3 50.9 74.0 53.9 26.6 

El Niño 4 52.5 72.2 53.2 29.3 

Neutral 4 50.9 73.5 53.3 26.4 

La Niña 4 50.5 73.6 53.8 26.6 

El Niño 5 51.9 71.6 52.9 29.2 

Neutral 5 50.2 72.9 53.0 26.2 

La Niña 5 50.1 73.3 53.5 26.5 

El Niño 6 54.3 73.6 54.9 31.7 

Neutral 6 52.9 74.9 55.1 29.3 

La Niña 6 52.1 74.7 55.5 29.7 

El Niño 7 54.5 73.8 55.3 32.4 

Neutral 7 53.3 75.1 55.5 30.1 

La Niña 7 52.5 75.1 55.9 30.6 

El Niño 8 56.6 75.5 57.2 35.4 

Neutral 8 55.7 76.7 57.3 33.6 

La Niña 8 54.8 76.7 57.8 34.1 

El Niño 9 56.3 75.2 57.2 35.5 

Neutral 9 55.7 76.3 57.3 34.0 

La Niña 9 54.7 76.6 57.7 34.2 
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Ohio Average Observed Seasonal 

 Precipitation (inches) per ENSO Phase 1980-2010 

Phase Cli. Div. Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF) 

El Niño 1 3.20 3.53 2.69 2.11 

Neutral 1 3.28 3.79 3.22 2.20 

La Niña 1 3.18 3.61 2.52 2.30 

El Niño 2 3.13 3.65 2.81 2.35 

Neutral 2 3.31 3.95 3.48 2.34 

La Niña 2 3.22 3.68 2.62 2.26 

El Niño 3 3.17 3.78 3.28 2.72 

Neutral 3 3.51 4.20 4.03 2.58 

La Niña 3 3.69 3.52 3.36 2.77 

El Niño 4 3.27 3.82 2.70 2.39 

Neutral 4 3.78 4.45 3.26 2.46 

La Niña 4 3.35 3.41 2.68 2.48 

El Niño 5 3.31 3.93 2.87 2.57 

Neutral 5 3.82 4.27 3.11 2.48 

La Niña 5 3.51 3.16 2.78 2.60 

El Niño 6 3.43 4.07 2.92 2.59 

Neutral 6 3.83 4.48 3.35 2.58 

La Niña 6 3.79 3.39 2.95 2.62 

El Niño 7 3.47 3.79 3.19 2.61 

Neutral 7 3.65 4.47 3.39 2.63 

La Niña 7 3.56 3.08 2.73 2.90 

El Niño 8 4.08 3.86 2.92 2.82 

Neutral 8 4.42 4.13 3.37 2.84 

La Niña 8 4.05 3.02 2.92 3.02 

El Niño 9 3.49 3.85 3.24 2.89 

Neutral 9 4.38 4.19 2.80 2.81 

La Niña 9 3.79 3.25 2.68 3.26 

El Niño 10 3.35 3.87 3.26 2.80 

Neutral 10 4.05 4.47 3.13 2.53 

La Niña 10 3.82 3.22 2.81 3.02 
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Ohio Average Observed Seasonal 

 Mean Temperature (degrees F) per ENSO Phase 1980-2010 

Phase Cli. Div. Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF) 

El Niño 1 50.4 70.5 52.4 29.3 

Neutral 1 48.5 71.6 52.3 26.7 

La Niña 1 48.5 72.2 52.8 27.3 

El Niño 2 49.8 70.3 52.8 29.8 

Neutral 2 48.3 71.2 52.6 27.6 

La Niña 2 48.0 71.7 52.9 28.0 

El Niño 3 49.1 68.9 52.2 29.6 

Neutral 3 47.3 69.6 51.9 27.7 

La Niña 3 46.9 70.2 52.2 28.1 

El Niño 4 51.2 70.7 52.9 30.2 

Neutral 4 49.5 71.5 52.7 27.9 

La Niña 4 49.3 72.1 53.0 28.2 

El Niño 5 52.0 71.4 53.8 31.4 

Neutral 5 50.5 72.1 53.6 29.6 

La Niña 5 50.1 72.8 53.7 29.8 

El Niño 6 50.0 69.3 51.8 29.6 

Neutral 6 48.4 69.9 51.8 27.9 

La Niña 6 48.0 70.3 51.9 28.1 

El Niño 7 50.1 69.6 52.3 30.6 

Neutral 7 48.9 70.1 52.2 29.2 

La Niña 7 48.2 70.9 52.4 29.2 

El Niño 8 53.4 72.4 54.9 32.9 

Neutral 8 52.0 73.2 54.9 31.2 

La Niña 8 51.4 73.8 55.1 31.4 

El Niño 9 53.6 72.1 55.1 34.5 

Neutral 9 53.0 72.9 54.9 32.9 

La Niña 9 52.3 73.8 55.2 33.3 

El Niño 10 51.9 70.7 53.6 32.3 

Neutral 10 50.6 71.0 53.4 30.7 

La Niña 10 50.0 71.9 53.5 31.1 

 



228 

 

 

 

Michigan Average Observed Seasonal 

 Precipitation (inches) per ENSO Phase 1980-2010 

Phase Cli. Div. Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF) 

El Niño 1 2.35 3.31 3.02 1.65 

Neutral 1 2.50 3.09 3.09 1.79 

La Niña 1 2.30 3.61 3.51 2.11 

El Niño 2 2.19 3.10 3.22 1.71 

Neutral 2 2.24 2.93 3.30 1.69 

La Niña 2 2.02 3.28 3.63 2.36 

El Niño 3 2.41 3.06 3.34 1.74 

Neutral 3 2.57 3.09 3.32 1.88 

La Niña 3 2.17 3.11 3.39 2.24 

El Niño 4 2.51 3.22 2.92 1.51 

Neutral 4 2.55 3.15 2.85 1.65 

La Niña 4 1.98 3.13 2.88 2.02 

El Niño 5 2.52 3.26 3.56 1.83 

Neutral 5 3.06 3.18 3.79 1.78 

La Niña 5 2.78 2.93 3.30 2.37 

El Niño 6 2.71 3.36 3.18 1.67 

Neutral 6 3.05 3.22 3.48 1.65 

La Niña 6 2.68 3.10 2.98 2.17 

El Niño 7 2.65 3.28 3.01 1.63 

Neutral 7 2.88 3.26 3.54 1.68 

La Niña 7 2.48 2.79 2.94 2.18 

El Niño 8 2.87 4.03 3.56 2.24 

Neutral 8 3.26 3.56 4.04 2.21 

La Niña 8 3.02 3.08 2.91 2.61 

El Niño 9 2.72 3.77 3.00 1.77 

Neutral 9 3.11 3.49 3.64 1.74 

La Niña 9 2.90 3.12 2.79 2.10 

El Niño 10 2.74 3.51 2.77 1.99 

Neutral 10 3.00 3.31 3.52 1.93 

La Niña 10 2.68 3.37 2.52 2.30 
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Michigan Average Observed Seasonal 

 Mean Temperature (degrees F) per ENSO Phase 1980-2010 

Phase Cli. Div. Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF) 

El Niño 1 40.5 61.8 43.7 18.9 

Neutral 1 38.2 63.5 43.4 15.4 

La Niña 1 38.0 64.0 44.0 15.5 

El Niño 2 40.2 61.8 45.3 21.2 

Neutral 2 38.1 63.3 44.6 17.7 

La Niña 2 37.9 64.1 45.7 18.5 

El Niño 3 43.2 64.4 47.7 24.7 

Neutral 3 41.3 65.9 47.0 21.4 

La Niña 3 41.2 66.7 48.0 22.6 

El Niño 4 42.9 64.4 46.9 23.4 

Neutral 4 41.0 65.8 46.2 20.1 

La Niña 4 41.1 66.5 47.1 21.2 

El Niño 5 45.7 66.0 48.9 27.0 

Neutral 5 43.9 67.4 48.4 24.3 

La Niña 5 43.8 68.0 49.2 25.0 

El Niño 6 46.2 67.1 48.7 25.7 

Neutral 6 44.3 68.4 48.1 22.8 

La Niña 6 44.5 69.4 49.2 23.6 

El Niño 7 45.7 66.6 49.4 26.3 

Neutral 7 43.9 68.0 48.8 23.4 

La Niña 7 44.1 68.9 49.7 24.3 

El Niño 8 48.3 68.8 51.2 28.5 

Neutral 8 46.5 69.9 50.9 25.9 

La Niña 8 46.4 70.7 51.7 26.4 

El Niño 9 47.6 68.0 49.9 27.1 

Neutral 9 45.9 69.2 49.7 24.4 

La Niña 9 45.9 70.0 50.4 25.1 

El Niño 10 48.3 69.1 51.1 27.8 

Neutral 10 46.5 70.3 50.8 25.4 

La Niña 10 46.4 71.0 51.5 26.0 
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Wisconsin Average Observed Seasonal 

 Precipitation (inches) per ENSO Phase 1980-2010 

Phase Cli. Div. Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF) 

El Niño 1 2.45 3.85 3.01 0.92 

Neutral 1 2.50 4.19 2.80 0.93 

La Niña 1 2.56 4.40 3.24 1.18 

El Niño 2 2.45 3.80 3.17 1.09 

Neutral 2 2.61 4.03 3.01 1.06 

La Niña 2 2.42 4.23 3.17 1.38 

El Niño 3 2.66 3.48 3.01 1.11 

Neutral 3 2.62 3.75 2.80 1.14 

La Niña 3 2.24 3.92 2.99 1.40 

El Niño 4 2.97 4.39 3.00 1.02 

Neutral 4 2.96 4.60 2.60 0.95 

La Niña 4 2.65 4.38 2.98 1.14 

El Niño 5 2.85 3.93 2.80 1.15 

Neutral 5 2.87 4.35 2.73 1.06 

La Niña 5 2.61 4.61 2.83 1.35 

El Niño 6 2.70 3.32 2.76 1.28 

Neutral 6 2.67 3.78 2.81 1.29 

La Niña 6 2.31 3.73 2.68 1.60 

El Niño 7 3.29 4.32 2.75 1.19 

Neutral 7 3.14 4.91 2.72 1.09 

La Niña 7 3.02 4.65 2.85 1.39 

El Niño 8 3.18 4.02 2.99 1.33 

Neutral 8 3.06 4.67 2.96 1.33 

La Niña 8 2.97 4.12 2.73 1.78 

El Niño 9 2.96 3.81 2.84 1.56 

Neutral 9 3.08 4.19 3.09 1.51 

La Niña 9 2.88 3.59 2.71 1.90 
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Wisconsin Average Observed Seasonal 

 Mean Temperature (degrees F) per ENSO Phase 1980-2010 

Phase Cli. Div. Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF) 

El Niño 1 43.5 64.7 44.4 17.9 

Neutral 1 41.0 66.4 44.2 13.9 

La Niña 1 41.1 66.8 44.7 13.8 

El Niño 2 42.3 63.3 43.5 18.0 

Neutral 2 39.8 65.0 43.3 14.2 

La Niña 2 39.7 65.5 43.9 14.1 

El Niño 3 42.9 63.8 44.5 19.8 

Neutral 3 40.8 65.5 44.2 16.2 

La Niña 3 40.6 66.0 45.0 16.0 

El Niño 4 46.6 67.6 46.9 21.0 

Neutral 4 44.4 69.2 46.8 17.1 

La Niña 4 44.3 69.8 47.3 16.8 

El Niño 5 46.0 66.9 47.0 22.1 

Neutral 5 44.1 68.6 46.8 18.5 

La Niña 5 44.0 69.2 47.4 18.2 

El Niño 6 44.4 66.3 48.2 23.9 

Neutral 6 42.9 67.8 47.9 20.5 

La Niña 6 42.9 68.8 48.6 20.3 

El Niño 7 47.3 68.2 48.1 23.3 

Neutral 7 45.7 69.7 48.2 19.7 

La Niña 7 45.7 70.3 48.6 19.4 

El Niño 8 47.3 68.3 48.7 24.0 

Neutral 8 45.6 69.7 48.4 20.6 

La Niña 8 45.7 70.4 49.1 20.4 

El Niño 9 46.4 67.9 49.7 25.8 

Neutral 9 45.0 69.2 49.6 22.5 

La Niña 9 45.1 70.5 50.1 22.4 
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Missouri Average Observed Seasonal 

 Precipitation (inches) per ENSO Phase 1980-2010 

Phase Cli. Div. Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF) 

El Niño 1 4.01 4.63 3.06 1.56 

Neutral 1 3.99 4.85 3.32 1.47 

La Niña 1 3.10 4.09 3.42 1.48 

El Niño 2 3.98 3.93 3.70 2.36 

Neutral 2 4.08 4.27 3.64 2.08 

La Niña 2 3.54 4.28 3.08 2.17 

El Niño 3 4.17 4.19 4.00 2.16 

Neutral 3 4.50 4.45 3.74 1.99 

La Niña 3 3.80 4.75 3.51 2.04 

El Niño 4 4.19 4.17 4.13 2.76 

Neutral 4 4.51 3.64 4.37 2.55 

La Niña 4 4.44 4.40 3.82 2.50 

El Niño 5 4.29 3.95 4.07 3.14 

Neutral 5 4.60 3.54 4.26 2.92 

La Niña 5 4.43 4.18 3.62 3.04 

El Niño 6 4.38 3.56 4.12 3.94 

Neutral 6 4.64 3.28 3.78 3.78 

La Niña 6 4.83 3.62 3.93 3.83 
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Missouri Average Observed Seasonal 

 Mean Temperature (degrees F) per ENSO Phase 1980-2010 

Phase Cli. Div. Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF) 

El Niño 1 53.3 73.8 53.9 30.9 

Neutral 1 52.7 75.3 54.3 28.6 

La Niña 1 52.2 75.0 54.8 28.8 

El Niño 2 54.5 74.2 55.2 32.4 

Neutral 2 53.6 75.4 55.5 30.4 

La Niña 2 53.0 75.6 56.1 30.6 

El Niño 3 55.3 75.2 56.2 34.1 

Neutral 3 54.9 76.7 56.9 32.6 

La Niña 3 54.3 76.4 57.3 32.8 

El Niño 4 55.8 74.7 56.7 36.2 

Neutral 4 55.7 76.2 57.3 34.9 

La Niña 4 54.8 76.1 57.5 35.0 

El Niño 5 55.9 74.4 56.3 35.6 

Neutral 5 55.4 75.9 56.6 33.9 

La Niña 5 54.4 75.7 57.0 34.2 

El Niño 6 58.8 77.5 59.4 38.5 

Neutral 6 58.5 78.8 59.4 37.0 

La Niña 6 57.4 78.8 59.8 37.3 
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Iowa Average Observed Seasonal 

 Precipitation (inches) per ENSO Phase 1980-2010 

Phase Cli. Div. Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF) 

El Niño 1 3.24 4.25 2.46 0.78 

Neutral 1 2.84 4.06 1.93 0.72 

La Niña 1 2.64 3.99 2.53 0.71 

El Niño 2 3.48 4.43 2.58 1.08 

Neutral 2 3.40 4.94 2.03 0.92 

La Niña 2 2.81 4.35 2.74 0.95 

El Niño 3 3.35 4.61 2.87 1.19 

Neutral 3 3.32 4.97 2.52 1.08 

La Niña 3 3.17 4.72 2.75 1.35 

El Niño 4 3.45 4.36 2.50 0.99 

Neutral 4 3.44 4.33 2.10 0.79 

La Niña 4 2.63 4.27 2.45 0.87 

El Niño 5 3.58 4.54 2.81 1.17 

Neutral 5 3.62 4.99 2.34 1.03 

La Niña 5 2.88 4.51 2.72 1.03 

El Niño 6 3.28 4.71 2.87 1.37 

Neutral 6 3.39 4.68 2.91 1.28 

La Niña 6 2.98 3.93 2.79 1.58 

El Niño 7 3.78 4.68 2.60 1.22 

Neutral 7 3.76 4.61 2.62 0.93 

La Niña 7 2.83 4.01 2.55 0.97 

El Niño 8 3.80 4.73 2.85 1.23 

Neutral 8 3.84 4.94 2.98 1.16 

La Niña 8 2.79 4.37 2.99 1.22 

El Niño 9 3.59 4.45 3.08 1.55 

Neutral 9 3.85 4.81 3.13 1.45 

La Niña 9 3.03 4.17 3.12 1.61 
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Iowa Average Observed Seasonal 

 Mean Temperature (degrees F) per ENSO Phase 1980-2010 

Phase Cli. Div. Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF) 

El Niño 1 47.3 69.2 47.7 21.8 

Neutral 1 46.0 70.9 48.1 17.7 

La Niña 1 46.4 70.9 48.1 18.5 

El Niño 2 47.5 69.0 47.8 21.4 

Neutral 2 45.8 70.4 48.1 17.5 

La Niña 2 46.2 70.8 48.3 18.0 

El Niño 3 48.1 69.1 48.5 22.8 

Neutral 3 46.3 70.5 48.7 19.2 

La Niña 3 46.5 71.2 49.0 19.1 

El Niño 4 49.3 70.7 49.7 24.6 

Neutral 4 48.4 72.4 50.2 21.2 

La Niña 4 48.6 72.5 50.3 22.0 

El Niño 5 49.2 70.4 49.7 24.5 

Neutral 5 48.0 71.9 50.0 21.0 

La Niña 5 48.2 72.5 50.3 21.3 

El Niño 6 50.3 70.9 50.8 25.7 

Neutral 6 48.7 72.2 50.9 22.4 

La Niña 6 48.5 72.8 51.2 22.2 

El Niño 7 51.0 72.0 51.5 27.2 

Neutral 7 50.2 73.8 51.9 24.0 

La Niña 7 50.3 73.8 52.3 24.7 

El Niño 8 50.8 71.5 51.3 27.3 

Neutral 8 49.6 73.0 51.7 24.3 

La Niña 8 49.7 73.3 52.1 24.3 

El Niño 9 52.1 72.7 52.7 28.2 

Neutral 9 50.8 74.0 53.0 25.2 

La Niña 9 50.7 74.5 53.4 25.3 
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Minnesota Average Observed Seasonal 

 Precipitation (inches) per ENSO Phase 1980-2010 

Phase Cli. Div. Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF) 

El Niño 1 1.71 3.68 1.96 0.65 

Neutral 1 1.69 3.52 1.83 0.57 

La Niña 1 1.84 3.80 2.37 0.72 

El Niño 2 1.86 3.65 2.19 0.64 

Neutral 2 1.80 3.78 2.18 0.65 

La Niña 2 2.34 4.26 2.70 0.80 

El Niño 3 1.85 3.46 2.53 0.86 

Neutral 3 2.04 3.81 2.55 0.75 

La Niña 3 2.20 4.45 3.34 1.06 

El Niño 4 1.97 3.60 2.07 0.61 

Neutral 4 2.20 3.63 1.95 0.67 

La Niña 4 2.18 3.54 2.41 0.78 

El Niño 5 2.36 4.36 2.44 0.68 

Neutral 5 2.49 3.98 2.25 0.75 

La Niña 5 2.52 3.91 2.63 0.92 

El Niño 6 2.33 4.18 2.68 0.83 

Neutral 6 2.50 4.13 2.50 0.80 

La Niña 6 2.65 4.20 2.92 1.02 

El Niño 7 2.61 4.00 2.20 0.66 

Neutral 7 2.69 3.79 2.02 0.68 

La Niña 7 2.65 3.24 2.54 0.68 

El Niño 8 3.04 4.53 2.57 0.86 

Neutral 8 2.91 4.49 2.12 0.81 

La Niña 8 2.91 3.76 2.86 1.00 

El Niño 9 3.10 4.58 2.91 1.01 

Neutral 9 3.06 4.64 2.31 0.91 

La Niña 9 2.74 4.40 2.99 1.11 
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Minnesota Average Observed Seasonal 

 Mean Temperature (degrees F) per ENSO Phase 1980-2010 

Phase Cli. Div. Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF) 

El Niño 1 42.7 64.8 42.2 13.1 

Neutral 1 39.8 66.7 42.0 8.1 

La Niña 1 39.7 66.9 42.1 8.4 

El Niño 2 42.2 63.8 42.0 13.6 

Neutral 2 39.1 65.6 41.6 9.0 

La Niña 2 38.9 65.4 41.9 8.9 

El Niño 3 39.7 61.1 41.3 14.4 

Neutral 3 37.1 62.8 40.9 10.4 

La Niña 3 36.9 62.9 41.3 10.2 

El Niño 4 45.7 67.6 45.1 17.9 

Neutral 4 42.8 69.3 45.3 13.1 

La Niña 4 43.2 69.8 45.3 12.9 

El Niño 5 46.1 67.7 45.6 18.3 

Neutral 5 43.4 69.3 45.5 14.2 

La Niña 5 43.6 69.8 45.9 13.8 

El Niño 6 44.9 66.4 45.0 17.8 

Neutral 6 42.3 68.0 44.7 13.7 

La Niña 6 42.3 68.3 45.3 13.7 

El Niño 7 46.5 68.4 46.5 20.6 

Neutral 7 44.6 70.2 46.8 16.3 

La Niña 7 45.1 70.5 46.9 16.6 

El Niño 8 46.9 68.6 47.0 20.7 

Neutral 8 44.9 70.3 47.2 16.5 

La Niña 8 45.5 70.7 47.6 16.7 

El Niño 9 46.8 68.0 47.0 20.9 

Neutral 9 44.7 69.6 47.4 17.2 

La Niña 9 44.9 70.3 47.6 16.8 
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North Dakota Average Observed Seasonal 

 Precipitation (inches) per ENSO Phase 1980-2010 

Phase Cli. Div. Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF) 

El Niño 1 1.21 2.48 1.04 0.51 

Neutral 1 1.34 2.56 0.96 0.48 

La Niña 1 1.28 2.40 1.20 0.55 

El Niño 2 1.34 2.92 1.29 0.55 

Neutral 2 1.43 2.99 1.18 0.41 

La Niña 2 1.46 2.73 1.43 0.56 

El Niño 3 1.43 3.29 1.54 0.56 

Neutral 3 1.55 3.24 1.38 0.46 

La Niña 3 1.32 2.89 1.59 0.57 

El Niño 4 1.29 2.59 1.29 0.42 

Neutral 4 1.50 2.67 0.98 0.42 

La Niña 4 1.47 2.19 1.13 0.50 

El Niño 5 1.39 2.73 1.52 0.48 

Neutral 5 1.54 3.24 1.28 0.43 

La Niña 5 1.36 2.67 1.34 0.54 

El Niño 6 1.64 3.37 1.81 0.62 

Neutral 6 1.72 3.24 1.51 0.49 

La Niña 6 1.66 2.86 1.96 0.69 

El Niño 7 1.38 2.32 1.26 0.33 

Neutral 7 1.49 2.37 0.93 0.40 

La Niña 7 1.43 1.79 1.00 0.38 

El Niño 8 1.43 2.42 1.32 0.39 

Neutral 8 1.57 2.80 1.02 0.37 

La Niña 8 1.58 2.83 1.10 0.49 

El Niño 9 1.78 2.89 1.70 0.53 

Neutral 9 1.93 3.28 1.51 0.50 

La Niña 9 1.82 2.58 1.85 0.58 
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North Dakota Average Observed Seasonal 

 Mean Temperature (degrees F) per ENSO Phase 1980-2010 

Phase Cli. Div. Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF) 

El Niño 1 42.0 64.7 41.5 15.8 

Neutral 1 40.3 66.2 41.7 10.9 

La Niña 1 40.2 66.3 41.2 11.5 

El Niño 2 41.2 64.3 41.0 13.1 

Neutral 2 39.2 65.8 41.0 8.5 

La Niña 2 38.9 66.0 40.6 8.7 

El Niño 3 41.6 64.7 41.5 12.3 

Neutral 3 39.0 66.2 41.4 7.7 

La Niña 3 38.9 66.2 40.9 7.7 

El Niño 4 43.0 65.8 43.0 18.4 

Neutral 4 41.4 67.2 43.2 13.5 

La Niña 4 41.3 67.4 42.6 13.8 

El Niño 5 42.9 65.7 42.6 15.7 

Neutral 5 40.7 67.1 42.8 10.9 

La Niña 5 40.6 67.8 42.3 11.2 

El Niño 6 43.4 65.9 43.1 14.6 

Neutral 6 40.9 67.7 43.0 9.8 

La Niña 6 40.7 68.0 42.7 10.0 

El Niño 7 43.2 65.9 43.4 21.5 

Neutral 7 42.0 67.5 43.7 16.9 

La Niña 7 42.0 67.9 43.3 16.9 

El Niño 8 43.5 66.6 43.5 18.9 

Neutral 8 42.0 68.0 43.8 14.1 

La Niña 8 41.8 68.3 43.2 14.5 

El Niño 9 44.2 66.8 43.9 17.2 

Neutral 9 42.0 68.4 44.0 12.2 

La Niña 9 42.0 68.9 43.6 12.6 
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South Dakota Average Observed Seasonal 

 Precipitation (inches) per ENSO Phase 1980-2010 

Phase Cli. Div. Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF) 

El Niño 1 1.85 2.24 1.19 0.34 

Neutral 1 1.82 2.36 1.02 0.48 

La Niña 1 2.03 2.14 1.09 0.41 

El Niño 2 1.62 2.56 1.27 0.40 

Neutral 2 1.79 2.93 1.27 0.43 

La Niña 2 1.88 2.46 1.34 0.45 

El Niño 3 1.98 3.26 1.75 0.51 

Neutral 3 2.15 3.42 1.65 0.54 

La Niña 3 1.88 2.88 2.02 0.59 

El Niño 4 2.73 2.61 1.62 0.59 

Neutral 4 2.52 2.78 1.33 0.78 

La Niña 4 2.44 2.58 1.46 0.65 

El Niño 5 2.32 2.38 1.29 0.40 

Neutral 5 1.99 2.24 1.07 0.48 

La Niña 5 1.98 2.26 1.24 0.41 

El Niño 6 2.10 3.02 1.33 0.42 

Neutral 6 2.03 2.55 1.36 0.49 

La Niña 6 1.93 2.59 1.40 0.46 

El Niño 7 2.22 3.63 1.93 0.54 

Neutral 7 2.33 3.29 1.69 0.53 

La Niña 7 2.20 3.13 2.16 0.57 

El Niño 8 2.58 3.10 1.57 0.51 

Neutral 8 2.51 2.78 1.39 0.52 

La Niña 8 2.14 2.78 1.67 0.52 

El Niño 9 2.87 3.33 2.08 0.64 

Neutral 9 2.61 3.26 1.79 0.53 

La Niña 9 2.42 3.39 2.08 0.55 
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South Dakota Average Observed Seasonal 

 Mean Temperature (degrees F) per ENSO Phase 1980-2010 

Phase Cli. Div. Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF) 

El Niño 1 44.7 67.8 45.4 24.1 

Neutral 1 43.6 69.5 45.8 19.4 

La Niña 1 43.0 70.0 45.7 20.2 

El Niño 2 44.6 67.8 44.9 20.0 

Neutral 2 43.2 69.5 45.4 15.1 

La Niña 2 42.8 70.2 44.8 15.9 

El Niño 3 44.8 67.5 44.9 18.4 

Neutral 3 42.5 69.1 45.1 13.3 

La Niña 3 42.8 69.8 44.8 13.7 

El Niño 4 42.6 63.7 44.0 27.0 

Neutral 4 41.3 65.2 44.8 24.3 

La Niña 4 41.3 65.6 44.5 24.5 

El Niño 5 46.6 69.3 47.4 27.5 

Neutral 5 45.7 71.0 48.2 24.0 

La Niña 5 45.5 71.4 48.0 24.6 

El Niño 6 46.7 70.0 47.3 23.5 

Neutral 6 45.4 71.8 48.1 19.5 

La Niña 6 45.2 72.3 47.7 20.1 

El Niño 7 45.9 68.2 45.8 20.4 

Neutral 7 44.0 69.9 46.4 15.9 

La Niña 7 44.2 70.4 46.2 16.6 

El Niño 8 47.2 70.0 48.2 26.6 

Neutral 8 46.1 71.8 49.1 22.9 

La Niña 8 46.3 72.1 48.8 23.9 

El Niño 9 48.3 70.7 48.6 23.8 

Neutral 9 46.9 72.3 49.1 19.9 

La Niña 9 47.0 72.4 49.0 20.9 
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Nebraska Average Observed Seasonal 

 Precipitation (inches) per ENSO Phase 1980-2010 

Phase Cli. Div. Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF) 

El Niño 1 2.06 2.56 1.16 0.46 

Neutral 1 1.82 2.27 1.06 0.38 

La Niña 1 1.86 2.12 1.03 0.36 

El Niño 2 2.62 3.11 1.73 0.59 

Neutral 2 2.57 3.14 1.42 0.50 

La Niña 2 2.13 3.10 1.72 0.46 

El Niño 3 3.29 3.52 2.23 0.77 

Neutral 3 2.83 3.65 1.92 0.66 

La Niña 3 2.68 3.79 2.26 0.63 

El Niño 5 2.80 3.35 1.92 0.65 

Neutral 5 2.74 3.39 1.52 0.55 

La Niña 5 2.60 3.60 1.70 0.46 

El Niño 6 3.43 4.21 2.33 0.94 

Neutral 6 3.09 3.77 1.97 0.68 

La Niña 6 2.73 3.79 2.19 0.74 

El Niño 7 2.19 2.99 1.43 0.61 

Neutral 7 2.21 2.95 1.18 0.46 

La Niña 7 2.00 3.09 1.18 0.34 

El Niño 8 2.94 3.17 1.87 0.70 

Neutral 8 2.71 3.56 1.54 0.51 

La Niña 8 2.48 3.70 1.55 0.45 

El Niño 9 3.57 4.10 2.33 1.05 

Neutral 9 3.34 4.08 2.23 0.78 

La Niña 9 2.59 3.53 2.22 0.75 
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Nebraska Average Observed Seasonal 

 Mean Temperature (degrees F) per ENSO Phase 1980-2010 

Phase Cli. Div. Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF) 

El Niño 1 46.9 68.6 47.2 28.5 

Neutral 1 45.6 70.1 48.1 26.6 

La Niña 1 46.0 70.5 48.0 26.8 

El Niño 2 47.9 70.0 48.3 27.1 

Neutral 2 46.8 71.5 48.9 24.2 

La Niña 2 46.9 71.5 49.0 24.9 

El Niño 3 49.1 71.0 49.4 25.6 

Neutral 3 48.2 72.7 50.1 22.4 

La Niña 3 48.3 72.7 50.1 23.4 

El Niño 5 49.1 70.9 49.4 27.7 

Neutral 5 48.3 72.5 50.0 24.9 

La Niña 5 48.2 72.3 50.0 25.9 

El Niño 6 51.0 72.5 51.3 27.8 

Neutral 6 50.3 74.4 52.0 24.7 

La Niña 6 50.2 74.0 52.2 25.7 

El Niño 7 49.7 71.7 50.4 30.0 

Neutral 7 49.0 73.2 51.1 27.8 

La Niña 7 49.0 73.2 51.0 28.8 

El Niño 8 50.9 72.8 51.4 29.7 

Neutral 8 50.2 74.3 52.0 27.0 

La Niña 8 50.1 74.0 52.0 28.0 

El Niño 9 51.8 73.3 52.4 29.3 

Neutral 9 51.3 75.0 53.2 26.6 

La Niña 9 51.2 74.8 53.3 27.3 

 

 

 

 



244 

 

 

 

 

Kansa Average Observed Seasonal 

 Precipitation (inches) per ENSO Phase 1980-2010 

Phase Cli. Div. Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF) 

El Niño 1 2.32 3.09 1.46 0.73 

Neutral 1 2.42 2.96 1.22 0.52 

La Niña 1 2.05 3.24 1.18 0.37 

El Niño 2 3.13 3.81 1.89 0.97 

Neutral 2 2.89 3.69 1.93 0.68 

La Niña 2 2.47 3.37 1.86 0.64 

El Niño 3 3.95 4.54 2.49 1.27 

Neutral 3 3.63 4.80 3.07 1.04 

La Niña 3 3.06 4.22 3.01 1.06 

El Niño 4 2.05 3.27 1.36 0.81 

Neutral 4 2.21 2.77 1.19 0.54 

La Niña 4 1.98 2.85 1.18 0.39 

El Niño 5 3.24 3.99 1.86 1.02 

Neutral 5 3.11 3.69 1.97 0.80 

La Niña 5 2.80 3.78 2.13 0.85 

El Niño 6 4.17 4.56 2.82 1.38 

Neutral 6 3.85 4.65 3.05 1.27 

La Niña 6 3.29 4.35 3.49 1.31 

El Niño 7 1.89 3.33 1.30 0.82 

Neutral 7 1.94 2.65 1.14 0.53 

La Niña 7 1.89 2.53 1.30 0.40 

El Niño 8 3.30 4.16 2.00 1.14 

Neutral 8 3.03 3.50 2.04 0.85 

La Niña 8 2.90 3.78 2.11 0.91 

El Niño 9 4.35 4.61 3.52 1.78 

Neutral 9 4.28 4.32 3.34 1.51 

La Niña 9 4.08 4.75 3.53 1.60 
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Kansas Average Observed Seasonal 

 Mean Temperature (degrees F) per ENSO Phase 1980-2010 

Phase Cli. Div. Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF) 

El Niño 1 50.8 73.0 51.7 31.4 

Neutral 1 50.2 74.4 52.4 29.4 

La Niña 1 50.1 74.5 52.5 30.7 

El Niño 2 52.9 75.1 53.9 31.4 

Neutral 2 52.5 76.8 54.7 29.1 

La Niña 2 52.4 76.5 54.8 29.9 

El Niño 3 53.9 74.9 54.7 31.6 

Neutral 3 53.6 76.5 55.2 29.5 

La Niña 3 53.1 76.1 55.5 29.7 

El Niño 4 52.1 74.1 53.1 32.7 

Neutral 4 51.7 75.6 53.9 30.9 

La Niña 4 51.6 75.5 54.1 32.3 

El Niño 5 54.3 76.2 55.4 33.3 

Neutral 5 54.0 78.1 56.3 31.4 

La Niña 5 53.9 77.6 56.6 32.0 

El Niño 6 54.9 75.5 55.8 33.3 

Neutral 6 54.6 77.1 56.3 31.6 

La Niña 6 54.2 76.7 56.9 31.6 

El Niño 7 54.2 75.5 55.0 34.5 

Neutral 7 53.8 77.0 56.0 33.2 

La Niña 7 53.9 77.1 56.2 34.5 

El Niño 8 55.4 77.1 56.8 34.9 

Neutral 8 55.5 78.9 57.6 33.5 

La Niña 8 55.3 78.6 57.9 34.3 

El Niño 9 56.2 76.4 57.4 35.5 

Neutral 9 56.2 78.2 58.0 34.2 

La Niña 9 55.7 77.8 58.4 34.4 
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ENSO and AO classification breakdown: 

Annual ENSO events: 8 El Niño, 6 La Niña, 17 Neutral 

Growing season (A-O) events: 10 El Niño, 11 La Niña, 10 Neutral 

JJA events: 7 El Niño, 6 La Niña, 18 Neutral 

AMJ events: not determined for crop residual analysis.  Average 3-month value of ENSO 

is only used in correlation analysis. 

 

Annual AO events: 4 negative events, 2 positive events, 25 neutral events 

Growing season (A-O) events: 2 positive events, 1 negative event, 28 neutral events 

JJA events: 3 negative events, 3 positive events, 25 neutral events 

AMJ events: not determined for crop residual analysis.  Average 3-month value of the 

AO is only used in correlation analysis. 

 

State Climate Divisions (SCDs) and Crop Reporting Districts (CRDs): 

CRDs and SCDs share the same boundaries in all states except for the states of Ohio, 

Michigan, and Missouri.  The number convention changes from 1, 2,…, 9 or 10 for SCDs 

to 10, 20, ..., 90 for CRDs. 

 

In Ohio, SCDs 1 and 4 coincide with CRDs 10 and 40.  

CRD 20 in OH is comprised of the following counties: Ottawa, Sandusky, Seneca, 

Wyandotte, Crawford, Richland, Ashland, Erie, Hurron, and Lorain.   

CRD 30 is all of SCD 3, plus Mahoning, Columbiana, and Wayne counties.  

CRD 50 is all counties of SCD 5 plus Knox and Ross counties.   

CRD 60 is comprised of Holmes, Tuscarawas, Carroll, Jefferson, Belmont, Harrison, and 

Coshocton counties.  

CRD 70 is comprised of the counties Preble, Montgomery, Greene, Clinton, Warren, 

Butler, Hamilton, and Clermont.   

CRD 80 contains the counties of Brown, Highland, Pike, Scioto, Jackson, Gallia, and 

Lawrence.  CRD 90 houses the counties of Guernsey, Muskingum, Perry, Morgan, Noble, 

Monroe, Hocking, Vinton, Athens, Washington, and Meigs.   

 

Missouri’s SCDs and CRDs differ in the following manner:  

CRD 10 is comprised of counties Atchison, Nodaway, Worth, Harrison, Holt, Andrew, 

Gentry, De Kalb, Daviess, Caldwell, Clinton, Buchanan, Platte, Clay, and Ray;  

CRD 20: Mercer, Grundy, Livingston, Carroll, Putnam, Schuyler, Adair, Macon, Linn, 

Sullivan, Chariton, and Randolph, 30: Scotland, Clark, Know, Lewis, Shelby, Marion, 

Monroe, Ralls, Audrain, and Pike; 

CRD 40: Cass, Johnson, Jackson, Lafayette, Bates, Henry, Vernon, St. Clair, and Cedar; 

CRD 50: Saline, Pettis, Benton, Hickory, Polk, Dallas, Camden, Morgan, Cooper, 

Howard, Boone, Moniteau, Cole, Miller, Laclede, Pulaski, Phelps, Maries, Osage, and 

Callaway.  
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CRD 60: Montgomery, Lincoln, Warren, St. Charles, Gasconade, Franklin, St. Louis, St. 

Louis City, Jefferson, Ste. Genevieve, Perry, St. Francoise, Washington, and Crawford;  

CRD 70: Barton, Jasper, Newton, McDonald, Dade, Lawrence, Barry, Greene, Christian, 

and Stone;  

CRD 80: Webster, Wright Texas, Dent, Iron, Madison, Bollinger, Wayne, Reynolds, 

Carter, Ripley, Shannon, Oregon, Howell, Ozark, and Taney;  

CRD 90: Cape Girardeau, Scott, Stoddard, Butler, Dunklir, Pemiscot, New Madrid, and 

Mississippi. 

 

Michigan: SCD 1 and 2 comprise CRD 10.  SCD 3 is CRD 20, SCD 4 is CRD 30,…SCD 

10 is CRD 90. 
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SCD maps can be found at: 

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/regional_monitoring/CLIM

_DIVS/states_counties_climate-divisions.shtml 

CRD maps available by state at: 

http://www.nass.usda.gov/Charts_and_Maps/Crops_County/boundary_maps/indexgif.asp 
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Appendix B Land Surface Heterogeneity Signature in Tornado Climatology? An 

Illustrative Analysis over Indiana, 1950-2012 

As published in Earth Interactions.   

 

Full Citation: Olivia Kellner and Dev Niyogi, 2014: Land Surface Heterogeneity 

Signature in Tornado Climatology? An Illustrative Analysis over Indiana, 1950–

2012. Earth Interact., 18, 1–32. doi: http://dx.doi.org/10.1175/2013EI000548.1. 

 

Abstract 

Land surface heterogeneity affects mesoscale interactions, including the evolution 

of severe convection. However, its contribution to tornadogenesis is not well known. 

Indiana is selected as an example to present an assessment of documented tornadoes and 

land surface heterogeneity to better understand the spatial distribution of tornadoes. This 

assessment is developed using a GIS framework taking data from 1950 to 2012 and 

investigates the following topics: temporal analysis, effect of ENSO, antecedent rainfall 

linkages, population density, land use/land cover, and topography, placing them in the 

context of land surface heterogeneity. 

Spatial analysis of tornado touchdown locations reveals several spatial 

relationships with regard to cities, population density, land-use classification, and 

topography. A total of 61% of F0–F5 tornadoes and 43% of F0–F5 tornadoes in Indiana 

have touched down within 1 km of urban land use and land area classified as forest, 

respectively, suggesting the possible role of land-use surface roughness on tornado 

occurrences. The correlation of tornado touchdown points to population density suggests 

a moderate to strong relationship. A temporal analysis of tornado days shows favored 

time of day, months, seasons, and active tornado years. Tornado days for 1950–2012 are 

compared to antecedent rainfall and ENSO phases, which both show no discernible 

relationship with the average number of annual tornado days. Analysis of tornado 

touchdowns and topography does not indicate any strong relationship between tornado 

touchdowns and elevation. Results suggest a possible signature of land surface 

heterogeneity—particularly that around urban and forested land cover—in tornado 

climatology. 
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1.  Introduction 

Efforts to identify active regions of severe weather and tornado climatology 

spanning different spatial and temporal scales has been completed over the last several 

decades (e.g., Agee 1970; Pryor and Kurzhal 1997; Concannon et al. 2000; Brooks et al. 

2003a; Brooks et al. 2003b; Schneider et al. 2004; Ashley 2007; Kis and Straka 

2010; Dixon et al. 2011). Specific investigations of tornadoes as related to teleconnection 

patterns such as the El Niño–Southern Oscillation (Agee and Zurn-Birkhimer 

1998; Rhome et al. 2000; Nunn and DeGaetano 2004; Mayes et al. 2007; Cook and 

Schaefer 2008) and synoptic features (Rose et al. 2004) have been completed as well. 

Research investigating tornadoes and population notes a possible feedback between 

higher tornado frequencies in areas of higher population and an increase in tornado 

reports with a surge in storm spotters in the late 1980s and early 1990s (Changnon 

1982; Twisdale 1982; Tescon et al. 1983; McCarthy and Schaefer 2004). Of recent 

concern to operational meteorologists, the media, and county emergency managers is the 

desensitization of the public to tornado warnings. A recent 5-yr climatology of tornado 

false alarm rates shows how difficult it still remains to accurately detect and warn for a 

tornado (Brotzge et al. 2011), providing more persuasive evidence of the need to 

document, study, and consider local features for the possibility of anomalous trends in 

tornado frequencies and distributions. 

There is growing body of literature (for a review, see Pielke et al. 2011) indicating 

land surface heterogeneity can impact the evolution of mesoscale convective systems. As 

discussed for instance in Holt et al. (Holt et al. 2006) and Niyogi et al. (Niyogi et al. 

2006), landscape heterogeneity may alter the mesoscale convergence and energetics of 

the storm system from the microscale to the mesoscale. Studies such as Kellner et al. 

(Kellner et al. 2012) and Bozeman et al. (Bozeman et al. 2012) suggest possible larger-

scale feedback of the land heterogeneity altering the storm track and sustenance of even 

tropical systems. Indeed, a number of factors need to work in concert with each other to 

lead to the evolution of a thunderstorm into a tornadic thunderstorm, and it is difficult to 

attribute surface processes as being a dominant factor. However, as discussed in 

Shepherd et al. (Shepherd et al. 2009), the intent of this climatology and spatial 
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assessment is to provide forecasters with additional local environmental factors they can 

consider in the forecast process as they seek to develop tornado watches or as they seek 

to issue a tornado warning on a storm. To that end, one additional goal of this assessment 

is to evaluate if there is any potential signature of landscape heterogeneity on tornado 

climatology, which until this time has been poorly studied. 

Observations of tornadoes occurred long before national databases began keeping 

official records (1950) with the first photographed tornado documented in August 1884 

approximately 20 miles southwest of Howard, South Dakota (Ross et al. 2011). The 

United States is well known for its “Tornado Alley,” a region primarily covering Texas, 

Oklahoma, Kansas, Nebraska, southwestern Iowa, eastern South Dakota, and eastern 

Colorado (Edwards 2011) that has an increased risk for strong and violent tornadoes (as 

adapted by Concannon et al. 2000). However, the Midwest (defined here as Wisconsin, 

Michigan, Illinois, Indiana, Kentucky, and Ohio) sees a fair amount of tornadoes, such as 

the 1965 Palm Sunday outbreak and the 1974 super outbreak. In recent years, some 

national tornado climatologies have identified the Midwest as a branch or corridor 

extending from Tornado Alley, where an increase in tornado frequency is documented, 

more specifically through Illinois and into Indiana, especially when reviewed for strong 

(F2–F5) tornadoes (Agee and Zurn-Birkhimer 1998; Concannon et al. 2000; Rauber et al. 

2005; Ashley 2007; Dixon et al. 2011). 

Tornadoes form in many environments and form with different types of 

convection, which are all observed in Indiana: quasi-linear convective system (QLCS) 

tornadoes (50% of Indiana’s reported tornadoes; e.g., Trapp et al. 2005), supercell 

tornadoes, low-top mini supercell tornadoes, landspout tornadoes, and gustnadoes, as 

well as tornado outbreaks (Agee and Jones 2009). The severe weather and tornadic 

environment on the Great Plains, by contrast, is more commonly impacted discrete 

cells/supercells (Smith et al. 2012). While national tornado climatologies show an 

increased frequency of tornadoes over Indiana, only two other climatologies for the state 

have been completed (Agee 1970; Pryor and Kurzhal 1997). This temporal and spatial 

climatology serves to complement these past studies, adding an additional decade of 

tornado data to the most current climatology for the state of Indiana (Pryor and Kurzhal 
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1997). The current sample size of annual tornado data and the amount of errors in the 

tornado databases the United States limits the scientific community’s ability to decipher 

significant trends (e.g., Doswell 2007; Kunkel et al. 2013). Hence, the scientific 

community is encouraged to update severe weather and tornado reports to increase the 

sample size and make note of any evolving trends, especially as the United States 

continues to experience climate variability. 

This climatology considers several variables instead of focusing on one: temporal 

analysis; ENSO; extreme climate events; population; and spatial distribution in relation to 

land surface characteristics such as land-use/land-cover (LULC) boundaries, topography, 

and surface roughness. The impact of LULC/land surface heterogeneity on mesoscale 

circulations and boundary layer destabilization has been studied for years (Clark and 

Arritt 1995; Pielke 2001; Mahmood et al. 2012) with tornadic environments analyzed as 

discussed in Cheresnick and Basara (Cheresnick and Basara 2005). It is studies such as 

these on land surface feedbacks to the storm environment that motivates this climatology 

to investigate the spatial distribution of tornado touchdown points in Indiana. Indiana is 

more specifically chosen for the following reasons: 1) uncertainties in tornado 

climatology datasets and the authors’ familiarity with the state’s weather and climate; 2) 

it is a land-locked state (except for those counties along Lake Michigan, which 

experience localized climate feedbacks), providing for local mesoscale feedbacks to 

develop across the state between land-cover and land-use transition zones instead of land 

and water boundaries; 3) a vast majority of tornadoes in Indiana are weak [i.e., enhanced 

Fujita scale 0 (EF0) to EF1] and are not driven by classic supercell dynamics: this 

suggests surface feedbacks can have a larger impact on surface heat and moisture fluxes 

that may interact with convective processes; and 4) the urban climate appears to influence 

or modify thunderstorms and rainfall patterns (e.g., Bornstein and Lin 2000; Niyogi et al. 

2011), of which Indiana has sharply contrasting urban locales surrounded by agriculture 

land use. 
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2.  Methodology 

The geospatial dataset developed for this Indiana tornado climatology is obtained 

and developed from the Storm Prediction Center (SPC) Severe Geographic Information 

System (SVRGIS) database. “Tornado” and “states” shapefiles (the tornado shapefile is 

for tornado touchdown points in 1950–2011; 2012 is still considered preliminary at the 

time of this study) are downloaded and queried to extract and create shapefiles for the 

Midwest (Ohio, Indiana, Kentucky, Michigan, and Illinois). The tornado shapefile is a 

point shapefile that plots the starting latitude and longitude of a tornado (touchdown 

location). A 2010 U.S. Census population density raster file is also obtained from the 

SPC SVRGIS website (http://www.spc.noaa.gov/gis/svrgis/) for population analysis. 

Multiple queries are completed on the tornado shapefile from the SVRGIS webpage to 

create a Midwest F0–F5 tornadoes shapefile to use for analysis. The ArcGIS 10.1 spatial 

analyst tool for point density is applied to the point shapefile dataset to create a spatially 

interpolated shapefile that shows the highest and lowest locations of tornado touchdown 

point density in Indiana (Figure 1). The touchdown point density file is a spatial plot of 

the calculated magnitude per unit area (square kilometers) of point features (tornado 

touchdown points) that fall within a neighborhood (defined as 28 000 km
2
, a default 

suggested value by the spatial interpolation algorithm within the GIS based on the 

size/area of the map data frame) around each cell. Simply put, it is the total number of 

points that fall within the specified neighborhood around a cell divided by the area of the 

neighborhood. “Natural breaks” is used to compute the density histogram with 18 classes. 

Natural breaks is a method of classification that seeks to find natural classes within the 

dataset histogram by optimally reducing the variance within classes while maximizing 

the variance between classes (de Smith et al. 2013). The tornado touchdown density 

raster file is smoothed with a bilinear interpolation filter for aesthetic appeal. The F scale 

is used instead of the EF scale because a majority of tornadoes in the NCDC database and 

all of the tornadoes in the SPC SVR GIS files are classified with F-scale rankings. A 

Midwest tornado shapefile is used instead of an Indiana shapefile in order to provide 

continuity to the density map across state borders. The spatial density distribution maps 

represent a general spatial distribution pattern, not an exact density distribution pattern. 

http://www.spc.noaa.gov/gis/svrgis/
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This results from the use of several different map projections for the completion of this 

climatology that may result in plotting errors. 

3.  Discussion of Findings 

3.1. Temporal Data 

3.1.1. Tornado day and daily temporal distributions 

A tornado day climatology for 1950–2012 is completed for Indiana for all 

tornadoes (F0–F5), weak tornadoes (F0–F1), and strong tornadoes (F2–F5). A tornado 

day in this study is developed from the definition proposed in Changnon and Schickedanz 

(Changnon and Schickedanz 1969) and equates a tornado day as a day with at least one 

tornado report (see also Shepherd et al. 2009). This provides an idea of how many days 

are favorable for tornadogenesis in a given year and month across Indiana. Storm reports 

are not used because of a noted bias of multiple reports for the same tornado. Tornado 

day information for Indiana is reviewed by month in efforts to determine seasonality and 

spatial shifts in seasonality if any are present and by 30-yr moving average to see if 

tornado days in Indiana have decreased, remained the same, or increased over time. A 30-

yr moving average is used to follow the time frame of a climatic normal (Arguez and 

Vose 2011). 

The temporal distribution of tornadoes in Indiana is analyzed via tornado days and 

is displayed in Tables 1 and 2. Bar graphs show the hourly distribution of tornado reports 

for 1950–2012, indicating the most likely time of day to see a tornado as shown 

in Figures 2–4. The hourly distribution of tornadoes is determined via storm report data, 

as time of report is required to see the hourly distribution. The most active time of day for 

weak tornadoes in local standard time (LST) is 1600–1900 LST; strong tornadoes have 

two active times, 1400–1600 LST and 1700–2000 LST; and all tornadoes are most active 

at 1600–2000 LST. Note that some days listed in the first column of Table 1 are also 

listed in the second column but not in the third column of Table 1. This demonstrates that 

1) a majority of Indiana’s tornado days are more conducive to weak tornadoes and 2) all 

years having an F2–F5 tornado day count greater than one standard deviation above the 
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average occurred before the implementation of the Fujita scale in 1974, except for 1980. 

This shows the bias nature of higher F-scale rankings preceding the development of the 

Fujita scale (McCarthy 2003; McCarthy et al. 2006; Edwards et al. 2013). 

The 30-yr moving averages for annual tornado days are computed for all 

tornadoes, weak tornadoes, and strong tornadoes for the study region and are listed 

in Table 3. Regression analysis of the 30-yr moving averages for 1950–2012 show an 

insignificant very slight decrease in annual tornado days for all tornadoes, a slight 

increase in annual tornado days for weak tornadoes, and a slight decrease in annual 

tornado days for strong tornadoes. 

The 30-yr moving averages for annual tornado days are also found by climate 

division. Indiana has nine climate divisions, allowing for tornado day analysis at a finer 

spatial scale. Annual tornado days for all tornadoes (F0–F5) for 1950–2012 are found and 

show a 30-yr moving average decrease in the number of annual tornado days in climate 

divisions 2 (north central), 3 (northeast), 4 (west central), 5 (central), and 6 (east central). 

Climate division 1 (northwest) has a steady 30-yr moving average with an average of 2 

tornado days a year for 1950–75, 1 tornado day a year for 1976–92, and 2 tornado days a 

year for 1993–present. Climate divisions 7 (southwest), 8 (south central), and 9 

(southeast) all show a 30-yr moving average increase in annual tornado days for 1950–

2012. Climate divisions 7 and 8 see an increase in the 30-yr moving average number of 

annual tornado days from 1 tornado day a year to 3 days a year. Climate division 9 

experiences the greatest increase in annual tornado days through time, increasing from 1 

annual day on average to 4 annual days on average. Monthly analysis by climate 

divisions shows that the most tornado days for 1950–2012 are documented during the 

month of June in climate divisions 1, 2, 3, 4, 5, and 6, with the southernmost climate 

divisions peaking in monthly tornado days in May. These results highlight the scale 

dependency of the analysis. 
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3.1.2. ENSO and extreme precipitation relationships to tornado day distribution, 1950–

2012 

The 2012 drought is one example of an extreme climatic event potentially 

exacerbated by ENSO/La Niña. For this climatology, the oceanic Niño index (ONI) is 

used to determine El Niño, neutral, or La Niña years, with a minimum of 5 months of a 

0.5 or greater anomaly for an El Niño or at or below the −0.5 anomaly for a La Niña. A 

comparison of tornado days and ENSO phase during the warm season months of April–

September show no distinguishing trend in forecasting above or below active tornado 

seasons based on ENSO phase. Recently, Lee et al. (Lee et al. 2013) distinguish the trans-

Niño index (TNI) and its relationship to the number of detrended intense tornadoes in the 

United States. Their findings cannot be readily compared to this study, as this 

climatology reviews all tornado days and Lee et al. (Lee et al. 2013) focus on tornado 

outbreak years. Lee et al. (Lee et al. 2013) identify 7 years from their list of top 10 

extreme tornado outbreak years occurring with the transition of a La Niña to a different 

phase or occurring with a La Niña that persists beyond April and May while the TNI is in 

a positive phase: 1957, 1965, 1974, 1999, and 2008. Lee et al. (Lee et al. 2013) also 

identify the extreme years of 1983 and 1998 occurring with an El Niño transitioning to 

either a La Niña or neutral phase. Of these years, 1957, 1965, 1998, and 2008 are years 

listed in this tornado day climatology as years with annual tornado days one standard 

deviation or greater than the annual mean. Worth noting in this climatology are the years 

1954, 1965, and 1973, which have some of the highest number of tornado days in the 

dataset. Each of these active years coincides with a 1.3, 1.6, and 1.8 swing of ENSO 

anomaly of El Niño to La Niña (1954), La Niña to El Niño (1965), and El Niño to La 

Niña (1973) when compared to the previous warm season (April–September) average 

anomaly. These findings, along with Lee et al. (Lee et al. 2013), suggest it is the rate and 

degree to which the ENSO phase transitions that may serve as in indicator of a more 

active or less active year for tornado outbreaks and tornado days. Maps of tornado 

touchdown point density are generated for La Niña, neutral, and El Niño years to see if 

any spatial shifts occur in tornado touchdown based on ENSO phase. Each phase shows 
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spatial variation in the density of tornado touchdown points (Figures 5–7). Density 

difference maps between ENSO neutral touchdown points and El Niño touchdown points 

and between ENSO neutral touchdown points and La Niña touchdown points is provided 

in Figures 8 and 9. A marked decrease of tornado touchdown points is seen during ENSO 

neutral events primarily across northwestern Indiana (climate division 1). 

The 2011 tornado season is one the most active on record and is then followed by 

a relatively quiet season in 2012 with a majority of the country experiencing drought 

conditions through spring and summer. This study investigates the possibility of using 

drought years (85% of normal), normal years (those not 85% below normal or 15% above 

normal), and climatologically wet years (15% above normal) as indicators to expect more 

or less active tornado years. This process follows the wet/dry conditions and tornado 

occurrence as hypothesized in Shepherd et al. (Shepherd et al. 2009). Using an approach 

similar to Shepherd et al. (Shepherd et al. 2009), this study uses monthly state 

precipitation totals to determine cumulative antecedent rainfall amounts for 6 months 

prior (October, November, and December of previous year and January, February, and 

March of that year), 3 months prior (January, February, and March of that year), and 1 

month prior to tornado season (March of that year) and compares total rainfall amounts to 

the number of tornado days for that year. Resulting data classes are as follows: 6-month 

drought and 6-month normal; 6-month wet and 6-month normal; 3-month drought and 3-

month normal; 3-month wet and 3-month normal; 1-month drought and 1-month normal; 

and 1-month wet and 1-month normal. 

A weak to moderate statistically significant (unpaired t test) correlation of −0.34 

is found between 6-month normal rainfall and annual tornado days when classified into 

drought and normal 6-month cumulative rainfall classes (relationship: normal rainfall is 

equal to average or decreased tornado days). Alternatively, a weak, statistically 

significant correlation of 0.22 is found between 6-month drought conditions and annual 

tornado days when classified into drought and normal cumulative rainfall classes 

(relationship: drought is equal to increased tornado days). A weak, statistically significant 

correlation of −0.25 is found between 3-month total normal rainfall and annual tornado 

days when classified into drought and normal cumulative rainfall for the 3-month period 
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(relationship: normal rainfall is equal to average to decreased tornado days). When 

separating antecedent rainfall totals into wet and normal seasons, a weak to moderate 

statistically significant correlation of −0.30 is found between the 3-month cumulative wet 

conditions (relationship: wetter than normal is equal to decreased tornado days) and 

annual tornado days, and a weak, statistically significant correlation of 0.23 is found 

between normal rainfall and annual tornado days when separated into normal and wet 

classes (relationship: normal is equal to increased tornado days). 

These findings look to be opposite of those found by Shepherd et al. (Shepherd et 

al. 2009) and Andersen and Shepherd (Andersen and Shepherd 2011) for the southeast 

United States but may be self-consistent. In that, for the southeast, Shepherd et al. 

(Shepherd et al. 2009) find a decrease in tornado days during spring when drought is 

present prior to tornado season, suggesting that the dynamic energetics of the region is 

such that the tornadic potential of storm systems shifts from the southeast and is more 

prevalent over the Midwest. Results in this study suggest that a 1-, 3-, and 6-month 

antecedent soil moisture/rainfall feedback hypothesis is sensitive to the length of 

cumulative rainfall/soil moisture and different hydroclimatic responses stemming from 

different land use/land cover, different synoptic-scale storm tracks and subsequent 

mesoscale storm environments, or a combination of both for each location. In general, 

this analysis shows weak statistically significant correlations that wetter than normal 

conditions at 3 and 6 months result in decreased average annual tornado days and that 

drought conditions at 3 and 6 months result in increased average annual tornado days. 

3.2. Spatial analysis 

ArcGIS 10.1 is used to develop the F0–F5 tornado touchdown point density map 

mentioned in the following discussion of spatial analyses. The tornado touchdown 

density map is compared to 1) a U.S. Census Bureau 2010 population density (people per 

square kilometer) raster file; 2) land surface features such as urban centers; 3) large 

changes in elevation (with respect to the overall change of elevation within the study 

domain); and 4) areas of land surface or land-use heterogeneity. 
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3.2.1 Population and tornado touchdown point distribution 

Multiple studies in recent years highlight the population bias on the number of 

tornadoes reports, with the specific influence of tornado spotting and reporting through 

increased involvement of storm spotters (McCarthy 2003; McCarthy et al. 

2006; Anderson et al. 2007). Past population and tornado report studies agree with a 

general understanding that the more (fewer) people in a given area, the more (fewer) 

people that are likely to see and report a tornado (Anderson et al. 2007). Our assessment 

takes a simple approach to assessing the impacts of Indiana’s population distribution on 

tornado spotting and reporting: the 2010 U.S. Census population density (from SPC 

SVRGIS) is classified via natural breaks (previously described) into eight classes (class 1: 

0–237; class 2: 238–847; class 3: 848–1779; class 4: 1780–3309; class 5: 3310–6497; 

class 6: 6498–13 879; class 7: 13 880–28 122; and class 8: 28 123–64 482) and converted 

into shapefiles for buffer analysis. Classes 7 and 8 are not found in Indiana (the SPC 

SVRGIS population raster file is a national dataset) and are omitted from analysis. Buffer 

analysis is completed with buffers applied at 1-, 2-, 3-, and 4-km distances from 

population class to count tornado touchdown points within each search radius. Class 1 of 

population density is not used, as it captures population density most likely not 

within/near a population center. Population classes 2–6 are present in Indiana and are 

used to determine if there is a population bias with documented tornadoes in Indiana. 

Results show that a large percentage of Indiana tornadoes have in fact touched down in 

regions of lower population density, with only a few tornadoes touching down within 

several kilometers of highly populated areas (Table 4). The correlation between the 2010 

population density and number of reported tornadoes within 1–4 km is −0.80. 

Although buffer analysis provides information on proximity of features to other 

features, an ideal method for this study, buffer analysis results in some biases that 

contribute to the strong anticorrelation found between population density and tornado 

touchdown points. Indiana is predominantly a rural state but has a majority of the state’s 

population residing in urban centers. Because of this, Indiana’s largest populations reside 

in a small fraction of the state’s total land area. This results in a large decrease in the land 
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area encompassed by the applied buffers, thus decreasing the tornado count by default. 

The opposite is true for less populated land areas: larger amounts of land area occupied 

by smaller population density classes results in buffers covering a much larger amount of 

land area, capturing more tornado touchdown points. Therefore, it is likely that there is a 

population bias in tornado reporting present in Indiana. Weather professionals in the state 

of Indiana (and surrounding states) also agree that, in areas of low population density 

present in hilly and forested regions (e.g., southern Indiana), it is difficult to verify 

tornado touchdowns (D. McCarthy and J. Gordon, National Weather Service, 2013, 

personal communication). A similar point has been made with tornado detection in the 

Great Plains where land is largely agricultural and population is minimal. This scenario 

provides a decreased probability of visual observation/confirmation of a tornado and 

results in little to no damage indicators to verify tornado presence (Brooks et al. 

2003a; Anderson et al. 2007). 

3.2.2. Land surface heterogeneity 

Studies have been completed for years showing that boundary layer feedbacks 

from LULC transition zones differing in latent and sensible heat fluxes can generate or 

enhance convection provided synoptic conditions are favorable for convection initiation 

(Clark and Arritt 1995; Pielke 2001; Niyogi et al. 2006; Niyogi et al. 2011; Boyles et al. 

2007; Mahmood et al. 2010). Although roughly 50% of Indiana’s tornadoes are QLCS 

tornadoes (Trapp et al. 2005) whose parent storms develop with strong synoptic forcing, 

there does appear to be more active regions of tornado touchdown points in Indiana that 

coincide with LULC. Indiana has two major LULC transition zones close to regions of 

enhanced tornadic activity: 1) forested hills of southern Indiana (topographic and 

vegetation variation) to flat farmland on the till plains and 2) larger, relatively urban areas 

such as Lafayette, Ft. Wayne, Indianapolis, and South Bend surrounded by rural farmland. 

A visual, spatial analysis of the possible land surface feedbacks between tornado 

touchdown locations and different land-use classifications, along with topography, is 

shown in Figures 10–13. The following two hypotheses are plausible for these regions: 1) 

Forested hills of southern Indiana to flat farmland on the till plains can generally present 
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atmospheric boundaries of moist static energy and surface roughness. If the synoptic 

environment is such that storm motion is southwest to the northeast, increased moist 

static energy (i.e., increased CAPE) from the forest may act to fuel the storm with surface 

roughness changes, resulting in local vorticity generation. 2) Urban environments result 

in temperature, moisture, and wind gradients/zones that can serve as sources of vorticity 

for storm ingestion and development into tornadoes. By default, urban areas result in a 

population bias to tornado reporting, but numerous accounts of tornadogenesis along 

local boundaries of moisture, temperature, or wind-shift lines (e.g. Markowski et al. 1998) 

support the possibility of urban environment contribution to localized increases in 

tornadogenesis near urban areas. 

3.2.3. Land-use Classification Buffers 

While currently not explicitly considered as part of the operational forecast 

process for the probability of tornado development, surface roughness has been analyzed 

for impacts on vortex dynamics for decades. Dessens (Dessens 1972) conducted a series 

of simple experiments exploring the effects of surface roughness on an air tornado model 

using two surface types: a smooth plate to simulate smooth flow and a wood plate with 6-

mm pebbles to simulate a rough surface. Dessens’s findings show that surface roughness 

acts to decrease the radius of maximum velocity while increasing the value of maximum 

vertical velocity (essentially increased stretching of the vortex column). This suggests 

that surface roughness resulting from features such as trees and houses results in a greater 

difference between the pressure gradient force and the centrifugal force at the ground 

boundary layer. This leads to larger convergence in this layer and a subsequent increase 

of vertical velocities in the vortex core. Dessens’s (Dessens 1972) results lend support 

that land surface features may play a role in tornado touchdown location, as also found in 

our analysis. Diamond and Wilkins (Diamond and Wilkins 1984) show through 

laboratory experiments that the translation of tornadoes from different types of land cover 

(e.g., smooth to rough) can affect vortex size and structure resulting in the generation of a 

secondary vortex. These studies suggest important feedbacks occurring between the land 

surface and tornadoes. However, questions still remain regarding how storm-scale 
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dynamics control storm evolution and tornado development and when boundary layer 

land surface features may contribute to the storm evolution and/or tornado development 

(Elsom and Meaden 1982; Niyogi et al. 2011). 

For the study domain, land-use/land-cover classification is completed using the 

2005 enhanced historical land-use and land-cover datasets from the U.S. Geological 

Survey to assess the possible role of surface roughness associated with different types of 

LULC on tornadogenesis in Indiana. Polygon shapefiles of LULC data for Indiana are 

downloaded and separated into forest, urban, agriculture, barren, wetlands/water bodies, 

and rangeland shapefiles. Rangeland classification (land dominated by grasses and 

shrubs; Anderson et al. 1976) accounts for little land-cover classification in Indiana and 

contains no tornado touchdown points and thus is not part of the analysis. The majority of 

Indiana’s land surface is agricultural; thus, it is not used in buffer analysis because of the 

bias it creates with tornado touchdown points being within a specified distance of 

agriculture land. Buffer analyses are completed on forest, urban, barren, and 

wetlands/water body shapefiles at 1 and 2 km for all tornadoes (F0–F5) and strong 

tornadoes (F2–F5). 

The results from buffers on all tornadoes and strong tornadoes show little 

variation in the number of tornado touchdown points in relation to land-use category. For 

all tornadoes, buffer analysis shows 61% touching down within 1 km of urban land use, 

43% touching down within 1 km of forest land use, 12% touching down within 1 km of 

wetland/water body land use, and 8% touching down within 1 km of barren land use. The 

2-km buffer on all tornadoes results in 78% touching down within 2 km of urban land use, 

65% touching down within 2 km of forest land use, 26% touching down within 2 km of 

wetland/water body land use, and 20% touching down within 2 km of barren land use. 

The decrease in percentage of tornado touchdown points as surface roughness decreases 

by land-use or land-cover type suggests the possible impact of surface roughness on 

boundary layer structure and tornado feedbacks. 

Buffer analysis on strong tornado touchdown points shows similar spatial patterns 

in relation to land-use and land-cover classifications of urban, forest, wetland/water body, 

and barren land use. For strong tornadoes, buffer analysis shows 64% touching down 
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within 1 km of urban land use (Figure 14), 42% within 1 km of forest land use, 11% 

within 1 km of wetland/water body land use, and 7% within 1 km of barren land use. The 

2-km buffer on strong tornadoes results in 80% touching down within 2 km of urban land 

use, 63% within 2 km of forest land use, 25% within 2 km of wetland/water body land 

use, and 21% within 2 km of barren land use. Again, the decrease in number of tornado 

touchdown points appears related to the decrease in surface roughness associated with 

land-use or land-cover type. While findings from this analysis lend support to increased 

tornado touchdowns in or near close proximity to land use or land cover associated with 

increased surface roughness, tornado touchdowns are documented to have impacted all 

land-use and land-cover types. Thus, although tornadoes in Indiana appear to favor 

touching down in or near regions of increased surface roughness, no causality can be 

identified from the analysis, and it is not to say that tornadogenesis should be disregarded 

over other land-use or land-cover types. 

3.2.4. City centroid and urban area buffers 

A city or town centroid is the geographic center of that city or town. This differs 

from the land-use categorization of urban area or land cover, as the land-use 

categorization is an area of land and the city centroid is a point. Incremental 1-km 

circular buffers at 1, 2, 3, …, and 20 km are applied around an “IN_Cities” point 

shapefile, which is inclusive of 70 cities, towns, census designated places, and 

consolidated cities in Indiana (Figure 15). A count of the number of tornado touchdown 

points within each search radius is determined and converted to a percentage of total 

tornadoes (1285 in all in the dataset for 1950–2011) within that distance. A regression 

analysis (Figure 16) is completed between the percentage of tornado touchdown points 

lying within the search radius and the distance of the search radius, revealing a linear 

trend in the number of observed tornado touchdown points with increasing distance from 

the city or town center. These findings are similar to those discussed in Elsom and 

Meaden (Elsom and Meaden 1982). The change in percentage of tornado touchdown 

points between 1-km buffer intervals experiences an increase of one standard deviation 

above the mean percentage change (2.8% km
−1

) at the 2-, 14-, and 15-km range from the 
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centroid location. To identify any possible relationship between urban land areas in 

square kilometers, the same buffer analysis process is completed on an urban area 

shapefile for 1–10-km distances. When analyzing the number of tornado touchdown 

points in relation to a distance from urban land areas 20 km
2
 in area and greater, a linear 

trend is also found. When looking at the change in percentage of tornado touchdown 

points between 1-km intervals there are again two buffers that show an increase of one 

standard deviation above the mean percentage change (1.9% km
−1

) at the 3- and 8-km 

range from the edge of the urban area. These “rings” of slightly increased tornado 

touchdown points are similar to the suggested “tornado belt” coined by Fujita (Fujita 

1973) after Fujita’s review of 14 tornadoes around Tokyo from 1962 to 1971 (Elsom and 

Meaden 1982). The noted increase in percentage of tornado touchdown points at 2, 14, 

and 15 km for city centroids and 3 and 8 km for urban areas greater than 20 km
2
 suggest 

the possibility of preferential occurrence of tornadoes with respect to urban boundaries 

that develop near these locations. 

3.2.5. Elevation/topography 

Coleman (Coleman 2010) and Bosart et al. (Bosart et al. 2004) discuss the 

possible role of topography on the generation of increased local vorticity, contributing 

favorable to tornadogenesis with an emphasis on river valleys and mountains/hills and 

associated valleys. To investigate the possibility of this occurring in Indiana, a digital 

elevation model (DEM) in raster format is downloaded and used to develop a digital 

elevation model shapefile. The slope tool in ArcGIS is used to compute changes in slope 

(in degrees) to assess if changes in elevation have any impact on tornado development 

within close proximity to sharp changes in elevation. Surface slope changes are 

categorized as 1) change in slope of 5° or more or 2) change in slope of less than 5° 

between each grid cell of the raster surface. The 5° change in slope over one DEM grid 

cell is selected because it represents an elevation change of roughly one-half of the total 

elevation change between Indiana’s highest and lowest points (383 and 98 m, 

respectively). The raster surface is comprised of cells 94 m by 94 m; thus, the change in 

slope is computed over a distance of 94 m. 
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All tornadoes are once again reviewed in relation to elevation changes. Of all 

tornado touchdown points, 180 (14%) are located within 1 km of surface slope changing 

by 5° or more. Increasing the search distance to 2 km increases the amount of tornado 

touchdown points to 271 (21%). Strong tornadoes result in the same values: 53 of 380 

(14%) strong tornadoes have touched down within 1 km of surface slope changing by 5° 

or more and 81 of 380 (21%) strong tornadoes have touched down within 2 km of surface 

slope changing by 5° or more. Changing the search radius to determine the number of 

tornadoes touching down within 1 km of surface slope changes of less than 5° results in 

1281 of 1285 tornado touchdown points (F0–F5) being selected. For strong tornadoes, all 

380 tornado touchdown points are selected. Changes in topography over short distances 

do not appear to have as strong as a relationship to the spatial location of tornado 

touchdowns in the relatively flat landscape across Indiana as compared to land-use type. 

However, the increased number tornado touchdown points east of the Knobstone 

Escarpment (a steep slope or cliff that results from erosion or faulting processes and 

separates two relatively level or more gently sloping areas of terrain) where the 

Scottsburg Lowlands rise into the Muscatatuck Plateau and Dearborn Uplands (Figure 17) 

suggest possible terrain feedbacks such as those mentioned by Coleman (Coleman 2010) 

and Bosart et al. (Bosart et al. 2004). 

4.  Conclusions 

Tornado day analysis for all, weak, and strong tornadoes in 1950–2012 shows a 

distinct spring tornado season in Indiana with a majority of tornado days more conducive 

to weak tornadoes. In Indiana, tornado days occur most frequently during the months of 

June, May, and July (descending order). These three months are also the defining season 

for weak tornado days. A slight shift in tornado day occurrence for strong tornadoes is 

seen with the greatest number of strong tornado days occurring during the months of 

April (37 days), June (37 days), and May (30 days) for the 1950–2012 period. These 

findings are comparative to the average tornado frequency by month (1991–2010) as May, 

June, and April (in descending order) (National Climatic Data Center 2013). Total 

tornado days per year have not increased through time and, when reviewed at 30-yr 
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climatological intervals, show a slight insignificant decrease in the average number of 

tornado days per year for all, weak, and strong tornadoes in Indiana similar to findings at 

the national level as discussed by McCarthy and Schaefer (McCarthy and Schaefer 2004). 

Thus, no trend or conclusions regarding tornado days per year for 1950–2012 can be 

made from this analysis, agreeing with findings presented in Kunkel et al. (Kunkel et al. 

2013). From 1950 to 2012, the years that are most active in Indiana (total tornado days 

per year that are one standard deviation or greater) span the entire time frame of this 

study (1950–2012). However, reviewing tornado day data in terms of just strong 

tornadoes, there has not been an active year in Indiana since 1980. All other active years 

are 1968 or earlier, the time frame of historic tornado records that some studies suggest 

show a bias toward over classification of tornado intensity because of the procedures 

used to assign F-scale ranking prior to the development of the F scale (McCarthy 

2003; McCarthy et al. 2006;Edwards et al. 2013). The most active time of day for weak 

tornadoes in local standard time (LST) is 1600–1900 LST; strong tornadoes have two 

active times, 1400–1600 LST and 1700–2000 LST; and all tornadoes are most active at 

1600–2000 LST. 

The spatial analysis of this climatology (touchdown distribution across the state) 

agrees with the findings of Ashley (Ashley 2007), Concannon et al. (Concannon et al. 

2000), and Dixon et al. (Dixon et al. 2011). There are pronounced areas throughout 

central Indiana that show locales of enhanced tornado occurrences. The spatial location 

of increased tornado touchdown points in the northern portion of the state can be largely 

attributed to outbreak events, whereas the central Indiana axis of enhanced tornado 

activity is influenced by a larger variety of tornado events. 

ENSO phases are not found to be related to the number of tornado days but do 

appear to impact the spatial distribution of tornado events across the state. The map of El 

Niño tornado touchdowns show that tornado touchdown points are more widespread but 

concentrated across central Indiana. The neutral phase map shows a pronounced region of 

tornado touchdown points that coincides with the overall F0–F5 tornado touchdown point 

distribution. The La Niña maps show that tornado touchdown points appear to be 

centrally located around Indianapolis and in a cluster in southwest Indiana but are more 
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widespread across northern Indiana. A predominant ENSO phase does not appear to 

favor more or fewer tornado days in a given year across Indiana; however, the rate and 

intensity at which ENSO phase changes occur may impact the tornado season (Lee et al. 

2013). Antecedent cumulative rainfall amounts 6 and 3 months prior to a given year’s 

tornado season when separated into normal and drought conditions, along with 3 months 

prior when separated into normal and wet conditions appear to have a slight trend toward 

fewer annual tornado days for the following season/year. 

Antecedent rainfall analysis of drought and normal conditions and then wetter 

than normal and normal conditions at 1, 3, and 6 months is completed for the study 

domain to identify possible soil moisture memory feedbacks to the convective storm 

environment. This analysis shows weak, statistically significant correlations that wetter 

than normal conditions at 3 and 6 months result in decreased average annual tornado days 

and that drought conditions at 3 and 6 months result in increased average annual tornado 

days. 

Population distribution appears to play a role in the recorded number of tornadoes 

in Indiana, with the largest density of tornado touchdown points near the most densely 

populated county in the state. However, population bias may not be the sole contributing 

factor to the spatial distribution of tornado reports. Buffer analysis completed with city 

centroids and urban land areas shows a large percentage of total tornadoes touching down 

in low population density areas. This is likely a result of buffer analysis and population 

density clustering, as explained previously. Until tornado touchdown verification 

processes in some parts of the study domain are improved, the consensus of tornado 

touchdown locations having a population bias cannot be confidently made. 

Land surface heterogeneity and associated surface roughness of land surface type 

appear to have a relationship with tornado touchdown locations in the study domain. 

Buffer analysis on land-use types show that for all tornadoes 61% have touched down 

within 1 km of urban land use and 43% have touched down within 1 km of forest land 

use. A total of 64% and 42% of strong tornadoes have touched down in urban and forest 

land-use types, respectively. The percentage of tornadoes touching down within 1 km of 

land use with decreased surface roughness (water bodies and barren land use) is found to 
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be much lower. Changes in topography over short distances do not appear to have as 

strong as a relationship to the spatial location of tornado touchdowns in the relatively flat 

landscape across Indiana as compared to land-use type. 

Recent assessment of urban thunderstorms over the Indianapolis region (Niyogi et 

al. 2011) shows a possible relationship between urban landscapes and thunderstorm 

structure and life cycles. Pryor and Kurzhal (Pryor and Kurzhal 1997) suggest a trend of 

tornado touchdown points from 1950 to 1995 being located in counties with high surface 

roughness values and decreased population densities. The concentric rings/buffers at 1-

km intervals of tornado touchdown points from cities and towns in Indiana show similar 

distributions as those discussed in Elsom and Meaden (Elsom and Meaden 1982) in 

greater London for weak tornadoes and in Fujita (Fujita 1973) for tornadoes around 

Tokyo. Topographic and elevation influences visually appear to play a possible role in 

Indiana tornado touchdown locations as well: most specifically, east of the Knobstone 

Escarpment, where terrain-induced surface vorticity as described by Coleman (Coleman 

2010) and Bosart et al. (Bosart et al. 2004) could be generated provided surface wind 

conditions or other features of the storm environment act favorably in this area. 

The comprehensive tornado climatology presented herein investigates and 

assesses the possible role that different climatological features such as ENSO, antecedent 

rainfall conditions, population density, land use/land cover, and topography have on 

tornado climatology in Indiana. It is apparent that there are local as well as climate 

variability feedbacks to the 1950–2010 tornado climatology. Changes in surface 

roughness and surface energy budgets associated with land surface heterogeneity appear 

to play a possible role in tornado touchdown locations because of the generation of local 

vorticity boundaries. Identification of land-use transition zones in convectively unstable 

environments while forecasters try to identify tornadogenesis may be worth considering 

as part of the forecast process in the future upon further analysis of land surface 

heterogeneity and tornado climatology. The GIS framework used in this study presents 

some limitations and uncertainties in the spatial climatology, especially with buffer 

analysis. Despite the visible population bias present in figures, tornado verification in 
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regions of the study domain remain a challenge, lending support to the premise that land 

surface heterogeneity may impact tornado climatology in Indiana. 
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Tables 

Table 1 (A-C):  (A) A list of the active tornado day years for all tornadoes defined by 

having the total number of tornado days one standard deviation (4 days) or more above 

the mean (9 days). (B) A list of the active tornado day years for weak tornadoes defined 

as defined by having the total number of tornado days one standard deviation (4 days) or 

more above the mean (7 days). (C) A list of the active tornado day years for strong 

tornadoes defined as having the total number of tornado days one standard deviation (3 

days) or more above the mean (3 days). 

A) Years 1 Standard Deviation 

above Average  

Annual Number of Tornado 

Days (F0-F5) 1950-2012 

B) Years 1 Standard Deviation 

above Average  

Annual Number of Tornado 

Days (F0-F1) 1950-2012 

C) Years 1 Standard Deviation 

above Average  

Annual Number of Tornado 

Days (F2-F5) 1950-2012 

1954: 20 days 1978: 14 days 1954: 12 days 1996: 11 days 1954: 11 days 1963: 7 days 

1961: 15 days 1992: 14 days 1973: 18 days 1998: 13 days 1956-‘58: 7 days 1965: 11 days 

1965: 19 days 1998: 14 days 1975: 13 days 2003: 17 days 1960: 6 days 1967: 9 days 

1973: 21 days 2003: 17 days 1978: 14 days 2006: 11 days 1961: 13 days 1968: 6 days 

1975: 13 days 2011: 15 days 1992: 13 days 2008: 11days 1962: 6 days 1980: 7 days 

      2011: 14 days     

Table 2 (A-C): (A) A list of the total number of tornado days for all tornadoes (F0-F5) by 

month 1950-2012.  The three most active months defining Indiana’s “tornado season” are 

the months of May, June, and July. (B): A list of the total number of tornado days for 

weak tornadoes by month 1950-2012.  The three most active months defining Indiana’s 

“tornado season” for weak tornadoes only are the months of May, June, and July. (C): A 

list of the total number of tornado days for strong tornadoes by month 1950-2012.  The 

three most active months defining Indiana’s “tornado season” for strong tornadoes only 

are the months of April, May, and June. 

A) Number of F0-F5 Tornado 

Days 

by Month, 1950-2012 

B) Number of F0-F1 Tornado 

Days 

by Month, 1950-2012 

C) Number of F2-F5 Tornado 

Days 

by Month, 1950-2012 

January 10 July 89 January 8 July 73 January 4 July 24 

February 12 August 49 February 10 August 36 February 4 August 14 

March 35 September 29 March 26 September 21 March 22 September 11 

April 78 October 20 April 64 October 16 April 37 October 8 

May  104 November  17 May  84 November  11 May  30 November  10 

June 128 December 6 June 98 December 3 June 37 December 4 
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Table 3 (A-C): (A) A list of the 30 year moving average number of tornado days per year 

for all tornadoes 1950-2012.  (B): A list of the 30 year moving average number of 

tornado days per year for weak tornadoes.  (C): A list of the 30 year moving average 

number of tornado days per year for strong tornadoes.   Regression analysis shows a very 

slight decrease (-0.0036 slope) in F0-F5 annual average tornado days 1950-2012; a slight 

increase (0.0405 slope) in F0-F1 annual average tornado days 1950-2012; and a slight 

decrease (-0.032 slope) in F2-F5 annual average tornado days 1950-2012. 

(A) 30 year Moving Average 

Annual Number of Tornado 

Days 

1950-2012 (F0-F5) 

(B) 30 year Moving Average 

Annual Number of Tornado Days 

1950-2012 (F0-F1) 

(C) 30 year Moving Average 

Annual Number of Tornado 

Days 

1950-2012 (F2-F5) 

11 days: 2011 11 days: 2011 5 days: 1950-1954 

10 days: 1950-1957, 2000-2003, 

2004-2009 
10 days: 2003, 2010 4 days: 1955-1961 

9 days: 1958-1977, 1984-1999 9 days: 1986-2002, 2004-2009 
3 days: 1962-1967, 2004-

2005, 2007-2008, 2011 

8 days: 1978-1983 8 days: 1963, 1965, 1967-1985 
2 days: 1968-2003, 2006, 

2009-2010 

7 days: 2012 7 days: 1951-1962, 1964, 1966, 2012 1 day: 2012 

 
6 days: 1950 

 

 

Table 4: Percentage of total tornado touchdown points 1950-2011 that fall within the 

designated distance in miles from the given population density (people per square km 

based on a national dataset) class.  Only those population classes present in Indiana are 

included in this analysis. 

Percentage of Total Tornadoes 1950-2012 (1285 total) within  

1-4 km of Different 2010 Population Density 

 Classes (People/km
2
) 

Class Class Range: 1 km 2 km 3 km 4 km 

Class 2 238-847 39 51 60 67 

Class 3 848-1,779 24 30 35 41 

Class 4 1,780-3,309 10 13 16 19 

Class 5 3,310-6,497 1 2 3 4 

Class 6 6,498-13,879 0 0 0 1 
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Figures 

 
Figure 1: Tornado touchdown point density file for all tornadoes (F0-F5) from 

1950-2011. 
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Figure 2:  Hourly distribution of reported F0-F5 tornadoes in Indiana 1950-2012. 

 

Figure 3: Hourly distribution of reported F0-F1 tornadoes in Indiana 1950-2012. 
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Figure 4: Hourly distribution of reported F2-F5 tornadoes in Indiana 1950-2012. 



282 

 

 

 

Figure 5: F0-F5 tornado touchdown point density map during La Niña years 1950-2011.  

A La Niña year is one in which a minimum of 5 months of the ONI index was at or below 

the -0.5 anomaly. 
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Figure 6: F0-F5 tornado touchdown point density map during ENSO Neutral years 1950-

2011 (those years not classified as El Niño or La Niña). 
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Figure 7: F0-F5 tornado touchdown point density map during El Niño years 1950-2011.  

An El Niño year is one in which 5 months or more of a 0.5 or greater anomaly was 

present. 
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Figure 8: 1950-2011 F0-F5 tornado touchdown point density map showing the difference 

between ENSO Neutral years tornado touchdown point density and El Niño tornado 

touchdown point density.  Where density values are positive, the ENSO Neutral point 

density value exceeds the El Niño point density value.  Where density values are negative, 

the ENSO Neutral point density value is less than the El Niño point density value. 
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Figure 9: 1950-2011 F0-F5 tornado touchdown point density map showing the difference 

between ENSO Neutral years tornado touchdown point density and La Niña tornado 

touchdown point density. Where density values are positive, the ENSO Neutral point 

density value exceeds the La Niña point density value.  Where density values are 

negative, the ENSO Neutral point density value is less than the La Niña point density 

value. 
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Figure 10: F0-F5 tornado touchdown point density with urban LULC categories as 

designated by the USGS land cover classification. 
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Figure 11: F0-F5 tornado touchdown point density with forest land as designated by the 

USGS land cover classification.  
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Figure 12: F0-F5 tornado touchdown point density with the 2010 U.S. Census population 

density of people per square km.  While the densest regions (higher count in a given area) 

of tornado touchdown points in Indiana lie in close proximity to regions of high 

population, the statistical signal is not significant enough to dismiss land-surface 

feedbacks to the storm environment. 
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Figure 13: F0-F5 tornado touchdown point density with DEM elevation contours (lines of 

equal elevation) displayed in gradient color so that lower elevations are dark grey lines 

and highest elevations are white lines.   
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Figure 14: Map of Indiana showing USGS land cover classifications of wetlands/water 

bodies, range land, urban areas, barren land, and agriculture.  Tornado touchdown points 

within 1 mile of an urban land use classification are in purple.  Yellow points represent 

those tornado touchdown points not within a mile of an urban land cover classification. 
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Figure 15: Zoomed-in map of land use classifications, city centriods (yellow points) and 

1, 2, and 3 mile buffers.  Tornado touchdown points are in purple.  This image 

corresponds to Indianapolis, the largest area of urban to rural heteorogeneity in Indiana. 
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Figure 16: Regression plot of city centriod buffer distance and the percentage of F0-F5 

tornadoes occuring within the specified distance.  A near geometric relationship exists 

between the two, showing that a small amount of tornado touchdown points are close to 

city centers and increase in number with distance from the city. 
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Figure 17: F0-F5 tornado touchdown point density map with region of increased tornado 

touchdown points (circled in yellow) east of the Knobstone Escarpment (thick black line) 

where the Scottsburg Lowlands (east of black line and west of white line) rise to the 

Muscatatuck Plateau and Dearborn Uplands (east of white line and south of grey line).
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