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Abstract: For the first time, the experimental processing condition of a rotating directional solidifica-
tion is simulated in this work, by means of a grand-potential-based phase-field model. To simulate
the rotating directional solidification, a new simulation setup with a rotating temperature field is
introduced. The newly developed configuration can be beneficent for a more precise study of the
ongoing adjustment mechanisms during temperature gradient controlled solidification processes. Ad
hoc, the solidification of the ternary eutectic system Bi-In-Sn with three distinct solid phases α, β, δ is
studied in this paper. For this system, accurate in situ observations of both directional and rotating
directional solidification experiments exist, which makes the system favorable for the investigation.
The two-dimensional simulation studies are performed for both solidification processes, considering
the reported 2D patterns in the steady state growth of the bulk samples. The desired αβαδ phase
ordering repeat unit is obtained within both simulation types. By considering anisotropy of the
interfacial energies, experimentally reported tilted lamellae with respect to normal vectors of the
solidification front, as well as predominant role of αβ anisotropy in tilting phenomenon, are observed.
The results are validated by using the Jackson–Hunt analysis and by comparing with the existing
experimental data. The convincing agreements indicate the applicability of the introduced method.

Keywords: rotating directional solidification (RDS); phase-filed simulation; anisotropic interfacial
energies; tilted lamellar growth; ternary eutectics; Bi-In-Sn

1. Introduction

In recent years, the phase-field method has become a powerful and versatile technique
to study microstructure evolutions in different material systems within simulations [1–3].
By this technique, various patterns, evolved in the solidification processes, such as den-
drites [4–6], eutectics [7–9], and peritectics [10,11] have been investigated. A general
introduction to this method is given in [12]. Focusing on the eutectics, in all mentioned
simulation studies, the directional solidification (DS) processes have been investigated by us-
ing a Bridgman furnace setup. In this setup, the involved solid phases grow into the liquid
phase, guided by the applied temperature field. Depending on the system and the process
parameters, different growth morphologies and instabilities, such as tilted growth [13–16]
and oscillations in the solid phases boundaries [17,18], have also been reported in the
literature. Following the theory of Jackson and Hunt [19], for a constant velocity of the
applied temperature gradient and benefiting domain sizes, a straight lamellar growth of
isotropic solid phases is expected in two-dimensional simulations.

Next to the directional solidification process, a further experimental setup, called
rotating directional solidification (RDS), has been introduced by Oswald et al. [20] and Aka-
matsu et al. [21], in order to study the solidification of eutectic structures in thin samples.
This rotation leads to the curved trajectories of the solidified phases and to a variation of
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the growth velocities at the solidification front. In these experimental setups, the sample is
rotated with respect to an applied thermal gradient field with a predefined angular velocity.
Hence, the growth velocities of the solids for example, vary proportionally to the distance
from the center of rotation [20–22].

Accordingly, due to the significant effect of the solidification velocity on the pattern
formation [23–26], the existence of multiple velocities within a single experiment allows
studying the interaction of neighboring lamellae with different growth velocities. This
can give a better insight into the ongoing velocity-controlled mechanisms in the solidifi-
cation process and is considered as one of the main advantages of the RDS technique to
the DS process. A further advantage is the possibility to efficiently study the effects of
anisotropic behaviors in the interfacial energies γ on the pattern formation. For grains with
a negligible solid/solid interface anisotropy (floating grains), circular growth trajectories
have been observed in RDS experiments. On the contrary, a tilted growth of the solidified
phases, with respect to the solid/liquid interface normals, occurs for grains with significant
anisotropy amounts (locked grains) [21,22]. Rátkai et al. [27] have studied the effects of the
interfacial energy anisotropies on the pattern formation in binary eutectic Ag-Cu system
by means of the phase-field method. In order to mimic the process condition of the RDS
experiments, they have considered an angle between the anisotropy function long axis and
the solidification direction. As in their study no rotating disk nor rotating temperature field
is modeled, the obtained microstructures have waved lamellar patterns tending to semi-
circles by increase in the anisotropy strength (see Figure 5 of [27]). In addition, simulation
studies with possibility of a full rotation can give new insights in role of the anisotropy in
pattern formation, which have not so far been conducted in the literature.

Apart from the above mentioned advantages of the RDS technique, it is worth men-
tioning that the method is limited to thin sample observations or bulks of materials with 2D
growth patterns in steady states. The ternary eutectic system Bi-In-Sn is an example of such
a system with a 2D lamellar microstructure [28]. Moreover, due to its low melting point
(' 332 K [29]), Bi-In-Sn has become a practical material system for an in situ observation
of the ongoing mechanisms in solidification processes. In the works of [23,30–32], the
evolved microstructures from DS experiments are reported for different growth rates and
experimental conditions. Based on the results, three-phase lamellar patterns with αβαδ
stacking sequences are obtained in the stable growth regions of the floating grains, in
which α denotes the BiIn2 phases, β denotes the β− In phases, and δ represents the γ− Sn
crystalline phases, respectively. In their investigated 2D samples, Witusiewicz et al. [30]
have shown that the resultant amounts of the lamellar spacings for different solidification
velocities are in good agreement with the Jackson–Hunt relationship [19]. They also show
this agreement for previously reported results in bulk samples by Ruggiero et al. [31].
Later, in the work of Bottin-Rousseau et al. [23], which includes a very restricted velocity
range, it is shown that the Jackson–Hunt relationship constant (c = vλ2) agrees well with
the results of [30]. On the other hand, in case of locked grains, anisotropy can affect the
microstructure, in which small domains of αβδ or [αβ]a[αδ]b superstructure are observed,
wherein a and b are higher than unity integers [23]. Mohagheghi et al. [22] have conducted
an RDS study of the system Bi-In-Sn in thin samples and have observed the same αβαδ
stacking sequences as found in DS experiments with circular trajectories. This structure
is reported to be consistent for a wide variation range of the affecting parameters, such
as the sample thickness and the growth velocity. However, a tilted growth of the solid
phases has also been observed in the locked grains. It has been observed that the αβ
interface anisotropy has a more affective role in the formation of the inclined lamellae
compared with an anisotropy of the αδ interface [22]. This investigated behavior of the
interfacial anisotropies is another reason which makes the system Bi-In-Sn favorable for
the first investigations of the rotating directional solidification process within phase-field
simulations.

In order to simulate the RDS process, the utilized phase-field model is first intro-
duced and the temperature formulation, which is to resemble the effects of the rotating
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temperature field, is presented. Then, the thermodynamic modeling of the system is
shown, using the method from Noubary et al. [33] and the CALPHAD database from Wi-
tusiewicz et al. [29]. Next, the simulation setup and the used parameters are introduced.
To validate the generated material system, DS simulations are performed in the desired
growth velocity ranges of the experimental DS and RDS studies [22,30], respectively. The
mentioned validation is performed by Jackson–Hunt analysis and by comparing the ob-
tained results with the reported experimental data in the literature. Finally, the phase-field
studies of the rotating directional solidification are performed, resulting in the circular
trajectories of the solidified phases for the floating grains and inclined trajectories with
respect to the solid–liquid interface normals, for the locked grains. The obtained results
are compared with the existing experimental data of [21,22,30] In a last step, the made ob-
servations are summarized and discussed and an outlook to upcoming simulation studies
is given.

2. Methods

For the simulation studies in this work, the grand potential functional [34,35] serves
as the basis of the utilized phase-field model. The model is explicitly described in [36–38],
while its utilization in the simulation of the directional solidification process has been
reported for example in [13,38,39]. The following descriptions of the phase-field model
are implemented into the multi-physics phase-field-framework Pace3D, version 2.4 [40,41].
By considering N order parameters φα̂ for the involving phases, the local phase fractions
are stored in the vector φ. The phases are labeled by the Greek letters α, β, δ, . . . . To avoid
a confusion with the parameter of the interfacial energies γα̂β̂, the Greek letter γ is not

used to describe phases. The indices of the phases are marked with hat symbols (�̂), in
order to distinguish phase counters by a disparate labeling. The vector µ indicates the
corresponding K amounts of the chemical potentials µi. Based on an Allen–Cahn approach
and Fick’s law, the time evolution equations ∂

∂t of the coupled phase fields and the chemical
potentials are formulated as:

τε
∂φα̂

∂t
=− ε

(
∂a(φ,∇φ)

∂φα̂
−∇ · ∂a(φ,∇φ)

∂∇φα̂

)
− 1

ε

∂w(φ)

∂φα̂︸ ︷︷ ︸
:=rhs1,α̂

− ∂ψ(φ, µ, T)
∂φα̂︸ ︷︷ ︸

:=rhs2,α̂

− 1
N

N

∑̂
β=1

(rhs1,β̂ + rhs2,β̂)︸ ︷︷ ︸
:=Λ

, (1)

∂µ

∂t
=

[
N

∑
α̂=1

hα̂(φ)

(
∂cα̂(µ, T)

∂µ

)]−1(
∇ ·

(
M(φ, µ, T)∇µ− Jat(φ, µ, T)

)
−

N

∑
α̂=1

cα̂(µ, T)
∂hα̂(φ)

∂t
−

N

∑
α̂=1

hα̂(φ)

(
∂cα̂(µ, T)

∂T

)
∂T
∂t

)
, (2)

In Equation (1), a diffuse interface is exploited to model the phase evolution in the
simulation procedure. The gradient energy density a(φ,∇φ), the potential energy den-
sity w(φ), and the driving force ψ are the key parameters that define the shape of the
interface [38]. In order to resemble effects of anisotropy in the interfacial energies, a cubic
positive anisotropy as given in [42] is applied. In this formulation, the gradient energy
density is expressed as

a(φ,∇φ) = ∑
α̂<β̂

γα̂β̂

(
ac(qα̂β̂)

)2∣∣∣qα̂β̂

∣∣∣2 (3)
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with γα̂β̂ as the interfacial energy parameter, qα̂β̂ = φα̂∇φβ̂ − φβ̂∇φα̂ as the generalized gra-
dient vector and ac(qα̂β̂) as anisotropy function. The cubic positive anisotropy is defined as

ac(qα̂β̂) = 1− ζα̂β̂

3− 4

∣∣∣qα̂β̂

∣∣∣4
4∣∣∣qα̂β̂

∣∣∣4
 (4)

with ζα̂β̂ as its strength [42]. The potential energy density function is described in [38] and
includes the interfacial energies γα̂β̂ and the higher-order term γα̂β̂δ̂. This higher order term
is introduced, so as to suppress a third-phase appearance at the phase boundaries. γα̂β̂δ̂ is
adjusted to reflect the correct equilibrium angle conditions at the triple junctions [38,42].
The thickness of all interfaces is controlled by the parameter ε and its kinetics is described
by the relaxation coefficient τ [35]. In Equation (1), the Lagrange multiplier Λ is exploited to
accomplish the constraint ∑N

α̂=1 ∂φα̂/∂t = 0. In Equation (2), the evolution of µ is considered
to characterize the diffusion processes. The information of the diffusion coefficient matrix D
for the involved phases is included in the function M(φ, µ, T) [35] as the mobility, and the
function hα̂(φ) [43] interpolates between the different phases. As is common in phase-field
models, the widths of the interfaces are orders of magnitude larger than their physical
values [34], while the anti-trapping current Jat [44,45] helps to adjust the influences of these
nonphysically enlarged interface widths. The concentrations of the K chemical elements
in the involved phases, are saved in the vector cα̂(µ, T) including K components. The
driving force is defined by the grand potential deviations ∆ψ of the evolved phases. ψα,
for example, describes the grand potential of phase α. All grand potentials depend on the
phase-field vector, the chemical potentials and the temperature T and are stored in the
vector ψ(φ, µ, T). Together with the concentrations cα(µ, T) and the chemical potentials
µ, the grand potentials can be derived from CALPHAD databases, by using the general
method introduced in [33]. In this method, the volume and the pressure are assumed to
be constants, which ensures the thermodynamic consistency of the system. The numeric
algorithm to solve the system of Equations (1) and (2), includes a spatial discretization
scheme. Based on this scheme, the amounts of the phase-fields and chemical potentials
at current time t are considered as the inputs at each grid cell of the simulation domain.
Initially, the phase-fields at time t + dt are calculated from the inputs in which dt stands for
the considered time step. The outcome is utilized to calculate the chemical potentials at
t + dt. All these calculations are performed considering the amounts in the neighboring
cells in forming the discretization scheme [36]. The spatial derivations in the coupled set
of the partial differential equations is discretized with finite differences and their time
evolution is solved by an explicit Euler scheme [46].

As the evolved microstructures of the bulk samples are experimentally reported to be
2D in the steady states [28], the investigated samples in this work are considered to be two-
dimensional, and a 2D heat distribution is assumed in the temperature field formulation.
However, the derived formulation can still be used in the 3D cases of such material systems.
Considering the solution of the heat equation in steady-state ∇2T = 0, the temperature
formulation can be expressed as following in form of a linear function with space and time
as its variables:

T(x, t) = T0 + GDS(x− vt). (5)

As utilized in the works of [13,47,48] for DS simulations, in this formulation T0
indicates the base temperature, GDS denotes the temperature gradient, v is the temperature
gradient velocity, t represents the simulation time, and x refers to the growth direction,
respectively. Hence, a linear temperature increase occurs in the solidification direction,
with an overall decrease over time. In case of RDS simulations, despite rotating the sample
as described in the depicted experimental setup in Figure 1a, a rotation of the temperature
profile is realized within the Pace3D framework. By considering a rotating temperature
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field, the same physical effects can be reproduced with a reduced computational effort.
In order to derive such a temperature formulation, moreover to satisfaction of the heat
distribution equation, the following constraints should be considered:

(i) The sought formulation for the temperature has to represent the effects of the hot
and cold isothermal blocks, the effects of the temperature profile in between, and
the caused variations of the temperature, due to the rotation. To resemble the near
uniform distribution of the heat in the vicinity of the blocks, a low temperature
gradient is required in these segments, whereas in the segments nearer to the
disk center, containing the solidification front, a sharper temperature change
is necessary. Hence, a linear function for the whole simulation domain with a
constant temperature gradient amount, as described in Equation (5), is not favored.
By using such a function, the system temperature can rise dramatically with
increasing distance from the rotation center, which can lead to a destabilization of
the modeled material system, specially in large domain simulations.

(ii) To ensure a correct calculation of the evolution equations (Equations (1) and (2)), a
continuously differentiable function is needed for the temperature, with respect
to the space, in which differing amounts of the derivatives can exist in different
space points. Based on this constraint, a piecewise function, composed of three
linear functions with different temperature gradients can not be considered due to
non-continuity of the first derivatives in the connection points.

H
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x )
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(T
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Figure 1. (a) Schematic illustration of the setup in the rotational solidification experiment, based on
Mohagheghi et al. [22], (b) General form of the utilized temperature profile at time = 0, used in this
paper. The areas with a high and low temperature gradient, respectively, indicate the solidification
front and the areas with hot and cold blocks.

One option to fulfill these constraints is the usage of a tan−1 function, as schematically
illustrated in Figure 1b. In this case, the upper and lower asymptotes of the function can
resemble the hot and cold temperature blocks or the desired maximum and minimum
temperatures in the simulation domain. The higher temperature gradient in the middle,
physically represents the sharper temperature change at the disk center in comparison
with the outer side. With this, well-defined solidification and melting fronts can establish
themselves within the simulations. In order to formulate the discussed temperature profile,
the start setting without disk rotation is considered first. By using the applied coordinate
system of Figure 1a, the temperature is formulated as a function of y, in the form:

T(y) = Tm + A0 · tan−1
(

GRDS · y
A0

)
, (6)

in which Tm is the temperature and GRDS is its gradient in the rotation center (x = 0, y = 0).
A0 is a constant coefficient to determine the amounts of the mentioned asymptotes. In this
formulation, dT

dy |y=0 will be equal to GRDS, as expected. Next, the rotational matrix is used
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to model the angle of rotation θ = ωt, depending on the time t, with an angular velocity of
ω. The new coordinate system (x′ − y′) is obtained as:

[
x′

y′

]
=

[
cos(ωt) −sin(ωt)
sin(ωt) cos(ωt)

][
x
y

]
=

[
x · cos(ωt)− y · sin(ωt)
x · sin(ωt) + y · cos(ωt)

]
. (7)

The combination of Equations (6) and (7) results in the final space- and time-dependent
formulation for the rotating temperature profile:

T(x, y, t) = Tm + A0 · tan−1
[

GRDS

A0

(
x · sin(ωt) + y · cos(ωt)

)]
. (8)

The used parameters for Tm and A0 are given in Table A3 in the Appendix A. With
these parameters and utilization of Equation (8), the average deviation form the exact
solution of the steady-state heat equation ∇2T in the simulation points is calculated as
2.5 · 10−25. This deviation is negligible in authors’ opinion. The introduced description of
a rotating temperature field is used to perform the subsequently shown RDS phase-field
simulation studies. It is worth mentioning that the implemented temperature formulation
is independent from the investigated material system.

3. Simulations and Results

In this section, the modeling of the material system Bi-In-Sn is described for the
simulation of the directional and the rotating directional solidification processes. The
thermo-physical properties of the system are summarized in Table A4 of Appendix A.
Additionally, the used simulation setups are introduced for both cases and consequently
obtained results are presented.

3.1. Modeling the System Bi-In-Sn

To ensure a thermodynamically consistent modeling of the system Bi-In-Sn, the driving
forces for the phase transitions within the phase-field simulations are calculated based
on the thermodynamic Gibbs energies, stored in the CALPHAD database, taken from
Witusiewicz et al. [29]. In the solidification process, a new computationally efficient formu-
lation of the Gibbs energies is generated for all involved phases, on the basis of the stored
information. From these new Gibbs energy formulations, other thermodynamic properties,
such as the chemical potentials and the grand potentials, can be calculated [49]. In the
course of this endeavor, the general procedure introduced in [33], for the approximation
of the Gibbs energies of the ternary eutectic material systems, is used in this work. This
approximation procedure contains the following five essential steps: In the first step, the
equilibrium concentrations for the given working temperatures below the melting point
are determined for all involved phases, using the CALPHAD databases. This is completed
by using the commercial tool Thermo-Calc [50]. Next, the Gibbs energies for these phases
are calculated in the vicinity of the equilibrium concentrations for the investigated temper-
atures. In the next step, new Gibbs energy formulations are approximated independently
for each phase and temperature, based on the calculated values, using second-order poly-
nomials. The use of second-order polynomials for the approximation of free energies is also
suggested by Yang et al. [51]. Subsequently, the generated Gibbs energies are interpolated
to model temperature-dependent functions. In the last step, the resultant functions are
validated by measuring the maximum and average deviations between the CALPHAD

data and the approximated data, as well as by rebuilding the equilibrium conditions of
the phases. It has to be mentioned that the used method of [33] is limited to binary and
ternary systems without stoichiometric phases. As the observed system Bi-In-Sn fulfills
these conditions, this method is selected for the modeling. An alternative approach for the
modeling of stoichiometric phase is introduced, for example, in [52].
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For a working temperature of Tw = 331 K, taken from the CALPHAD database [29],
Table 1 exemplarily shows the results of the equilibrium calculations in step one. The
calculated equilibrium concentrations are in good correlation with the experimentally
reported near eutectic compositions in [28,30]. For the approximation of the Gibbs en-
ergies, second-order polynomials of the form G(cBi, cIn, T) = a0(T) cBi

2 + a1(T) cIn
2 +

a2(T) cBi cIn + a3(T) cBi + a4(T) cIn + a5(T) are used. The generated parameters, ai with
i = 0, 1, ..., 5, for the phases BiIn2, β− In, γ− Sn and liquid, are summarized in Table A1
of Appendix A. To validate the approximated functions, the derived values of the Gibbs
energies and the chemical potentials from these functions are listed in Table A2, for the
exemplary temperature of 331 K, together with the calculated values from the CALPHAD

database for this temperature. For all phases, the maximum deviation between the derived
and calculated Gibbs energy amounts is less than 0.1%, while the maximum deviation
between the chemical potentials is less than 2%. In Figure 2, the equilibrium conditions of
the involved phases at different temperatures are directly compared with the calculated
equilibrium states of the CALPHAD data, so as to test the validity of the approximated
functions for a larger temperature range. As can be seen, the formulations represent the
equilibrium concentrations of the elements (including the solubility shifts) for a large range
of the temperature variation beneath the eutectic reaction. These observations demonstrate
a good agreement between the CALPHAD data and the approximated functions, making
good prerequisites of simulation studies in the upcoming sections.

Table 1. Equilibrium concentrations of the involved solid phases in Bi-In-Sn system with eutectic
composition at T = 331 K, as an exemplary temperature, based on Witusiewicz et al. [29]. The
concentrations of the liquid phase represent the concentration of the non-variant reaction at the
eutectic temperature Teut..

Phase cBi in mol-% cIn in mol-% cSn in mol-%

γ− Sn 14.84 39.21 45.95
BiIn2 32.01 66.67 1.32
β− In 8.02 66.96 25.02
liquid 20.37 60.36 19.27
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Figure 2. Comparison of the equilibrium concentrations of the evolving phases, occurring during
the eutectic solidification of the Bi-In-Sn ternary system, with the CALPHAD database. In (left)
the concentrations of Bi, and in (right) In concentrations are depicted. The solid lines denote the
approximated Gibbs energy functions in this work, while the points refer to the CALPHAD database
of [29].
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3.2. Simulation Setup and Parameters

To validate the resulting microstructures of the subsequently performed simulations
for the rotating directional solidification, directional solidification simulations are executed
in advance. The utilized setup for the DS simulations, for example, is described in the
works [13,48]. In this configuration, the initial filling of the phases consists of the solid
phases with the desired αβαδ arrangement beneath the liquid phase. In order to resemble
the infinite liquid flux in the simulation, a Dirichlet boundary condition is imposed to the
ultimate liquid side. The opposite side, including the initial filling of the solid phases, is
modeled by a Neumann boundary condition. Periodic boundary conditions are applied in
the directions perpendicular to the growth direction, leading to the repetitive alignments
of the lamellae. By using a moving window technique [36,53] a consistent growth of
the solids is enabled, with a constant growth velocity and a constant solidification front
temperature. This technique enables reduction in the effective domain size by shifting out
the solidified phases from the simulation domain (see Figure 2 of [36]) and by subsequently
applying an appropriate domain of the liquid phase at the opposite site. With this an
infinite domain can be calculated in a fixed simulation domain. In simulation studies of
systems in which solid/solid interactions can be neglected (such as in the current case with
Dα̂S = 0), this technique can reduce the computational effort and increase the accuracy
considerably. In DS simulations, the interfacial energies are assumed to be isotropic
(ζα̂β̂ = 0 in Equation (4)) and the temperature profile is set as Equation (5). Consequently,
the investigated solidification velocities and the temperature gradient are taken from the
experimental work of Witusiewicz et al. [30]. The authors of this reference indicate the
microstructure, grown with a solidification velocity of v = 0.5 µm s−1 and a constant
temperature gradient of G = 8 K mm−1, as the most perfect regular coupled growth with
lamellar structure. For this condition, an average lamellar spacing of 23.4 µm is reported.
Hence, in the following DS simulation studies, the microstructure evolution during the
directional solidification is investigated for the growth velocity v2 = 0.5 µm s−1 and two
further velocities: v1 = 0.394 µm s−1 and v3 = 0.678 µm s−1. All three velocities are in
the subsequently investigated velocity range of the RDS simulations. For each velocity, a
two-dimensional simulation study with differing simulation domain widths is performed.
Hereby, the domain widths for v1 are varied from 20 µm to 36 µm, the domain widths for
v2 are varied from 15 µm to 35 µm and the domain widths for v3 are varied from 14 µm to
30 µm. The simulations are performed for up to 48 h to calculate 35 million time steps, by
using 20 cpus.

Next, the setup for the RDS simulations is schematically introduced. The concentration
field for the initial step of these simulations is schematically illustrated in the left half
of Figure 3. In the right half of the image, the initial temperature field is shown. These
half-domain illustrations are only used for the sake of brevity, whereas both fields affect
the whole domain simultaneously. As the used multi-physics phase-field-framework
Pace3D normally deals with rectangular simulation domains, a barrier section, similar
to the works of [54–56], is introduced to create a circular simulation domain. In such a
barrier region, neither the evolution equations (Equations (1) and (2)) nor the temperature
profile (Equation (8)) are calculated. Due to the curved barrier region, the approximation
of the gradient normals to the boundary can not be assumed as a linear problem, such as
in [54–56]. At the boundaries of the curved barrier regions numerical instabilities can occur
as a result of the contacting phase field. To omit these instabilities, a one cell thick layer of
one of solid phases can be located permanently around the barrier. Hence, the barrier will
always be in contact with a stable and converged phase field. Phase β, as an exemplary
solid phase, is selected for this purpose, as it has the highest phase fraction of all solidifying
phases. Due to this, a stability in the barrier boundary is expected. It has to be mentioned
that, although this solid phase placement solves the mentioned problem in the barrier
boundaries, it can affect the resultant phase fractions, as well as the lamellar spacings of
the solidified phases. Considering the purpose of current work in RDS simulations which
is a qualitative comparison of the obtained results with the available experimental data
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rather than reproducing them quantitatively, this effect is neglected by not considering
near-barrier lamellae. With this, the impact of the boundary conditions on the finally drawn
conclusions of the investigations is minimized.

At the middle of the domain melting and solidification conditions are located next
to each other, which leads to a growth velocity of zero in the rotation center. In the
experiments, this results in the formation of a single-phase area around the rotation cen-
ter [22,57,58]. Due to the limited available computational resources a reduced number
of evolving lamellae is investigated in a smaller domain compared to the experiments.
Hence, such a single-phase region can lead to an instability of the growth conditions in
the simulations as it affects the overall equilibria of the phase fractions in the domain. To
avoid such unwanted effects on the growth of the neighboring solid phase arrangements, a
second circular barrier section is introduced in the middle of the simulation domain. This
barrier section is also surrounded by a one cell thick layer of the β phase.

The right hand side of Figure 3 shows the initial temperature field in a similar color
labeling as Figure 1b. The region with a high temperature gradient is indicated by the
green dotted lines. The area between these lines includes the solidification, as well as the
melting front. Size of the used original square domain is 965× 965 cells (301.8× 301.8 µm).
Bottom part of the domain with the lower temperature Tmin, contains an initial amount
of 13 sets of the desired αβαδ arrangement, all with a lamellar spacing of 23.4 µm. Due
to the selected proportion of the inner and other radii of ro

ri
' 4.55, which is similar to

the radii proportions in Figure 5 of [22], five of the initial αβαδ lamellar sets build the
growth front and the melting front of the simulation, respectively. The remaining three
lamellar sets are placed beneath the barrier section around the rotation center. The upper
half of the domain with the higher temperature Tmax is filled with the liquid phase. In
this formulation, the direction of the temperature profile rotation is in opposite of the disk
rotation in experimental works.

Concentration field Temperature field

High GRDS area

T = Tmax

liquid

Barrier

T = Tmin

ri

ro

Ω

experimental

disk rotation

simulative T
rotation

M
elting direction

Growth direction

Figure 3. Schematic illustration of the rotating directional solidification simulation setup. The
semicircle illustrates the concurrent influence of the concentration and temperature fields on the
total domain.
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By using an angular velocity of ω = 0.309 °s−1, the investigated velocities v1 to v3,
from the DS simulations, adjust toward the centers of the three middle lamellae sets in the
growth front, as well as in the melting front. Two different RDS simulations are performed
in the following using a total number of 192 cpus, respectively. The first simulation is
conducted with isotropic and the second with anisotropic interfacial energies. In the second
case, all interfacial energies between the solid phases are determined to be anisotropic with
equal strength. Both simulations are performed for two full rotations of 4π rad. The second
rotations of 2π rad are carried out to check the stability of the system in formation of the
solidification and the melting fronts, as well as the correct establishment of the obtained
circular trajectories. Further, the convergence of the resultant lamellar spacings in the
solidified phases is tested within the second rotation. The simulation of a complete 2π rad
rotation demands an approximate calculation time of four weeks.

The system and process parameters used for the DS and for the RDS simulations are
summarized in Table A3 of Appendix A. In the next section, the achieved simulation results
are reported and discussed.

3.3. Directional Solidification (DS) Results

The obtained simulation results for the directional solidification cases are illustrated in
Figure 4. The top segment of the figure shows the stable growth of three solid phases into
the liquid phase with an αβαδ stacking sequence. The domain size for this simulation is
75× 150 cells equal to 23.4× 46.8 µm. Using a moving window technique results in a final
domain size of 23.4× 237.12 µm. The evolving microstructure includes initial oscillations
in the solid phase boundaries. These oscillations refer to the beginning of the simulation,
where the curved interfaces between solid and liquid are established. The color bar shows
the concentration of Bi in the phases involved, indicating a good agreement with the
CALPHAD data of Figure 2 for these phases. Additionally, the diagram in Figure 4 depicts
the Jackson–Hunt curves of the simulated system for the velocities v1 to v3. Each curve is
constructed on the basis of the measured amounts of the resultant undercoolings at the
different lamellar spacings. The general shapes of the curves clearly show a minimum
undercooling-spacing points at λext and correlate well with the velocity dependent behavior
expected from the Jackson–Hunt theory, which has also been observed in simulation studies
of other material systems [33,49], in the literature. For each solidification velocity, the
spacing at which the individual minimum of each curves occurs is labeled with λext. The
achieved amounts of λext for v1, v2 and v3 are equal to 24.96 µm, 21.84 µm and 19.34 µm,
respectively. As it will be shown later, a good accordance between these amounts and
experimentally reported data exists.

Instantly, based on the achieved theoretic validation of the modeled and simulated
system in DS studies, the investigation of the rotating directional solidification simulation
are performed in the following section. The results of the DS and RDS simulations are
subsequently compared with the experimental predictions reported in [22,28,30].

3.4. Rotating Directional Solidification (RDS) Results

Figure 5 shows the obtained RDS simulation at different growth times for the isotropic
simulation. In Figure 5a, on the left, the initial filling of the phases at t = 0 is visualized
by the concentration field of Bi, using the same color labeling as for the DS simulations
in Figure 4. Due to the upcoming growth and melting events, the initial filling in the
domain will melt as a result of temperature rise in the direction of the temperature field
rotation, except for the growing solid/liquid interface. For the sake of simplicity, straight
lamellae are filled, rather than the circular trajectories. In Figure 5a, on the right, the
temperature distribution is depicted as formulated in Equation (8). In the simulation
domain, two segments with almost unified colors of orange and blue can be observed,
where one is at the top and one at the bottom of the simulation domain. Between these
segments, there is a small area with a strong color transition. The uniform colors in
both segments describe a low temperature gradient of 0.786 K mm−1, while the color
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transition describes a multiple times larger gradient, with a maximum of 240 K mm−1, in
its center. Apart from the rotated temperature profiles, the other sub-figures of Figure 5
show the evolved microstructures at different simulation times. Good accordances of the
solidification and melting front positions with the rotation of the temperature profile is
achieved. Furthermore, similar to the DS simulations, the obtained concentrations for
the elements Bi and In, in the phases observed at all times, are in good agreement with
the plotted CALPHAD data of Figure 2. In Figure 5c, oscillations of the solidified phase
boundaries can be observed after a rotation angle of approximately 120°. Similar to the DS
simulations, the oscillations in the solid phase boundaries denote the transition region to
the steady state condition. However, this effect occur after a certain solidification time, and
not in the initial time steps, as is the case in the DS simulations.

Periodic B.C.
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v = 0.678 µms−1 v = 0.5 µms−1 v = 0.394 µms−1
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Figure 4. Top: Phase-field simulation result of the directional solidification in the Bi-In-Sn ternary
eutectic system, with a solidification velocity of 0.5 µm s−1 and an applied temperature gradient
of 8 K mm−1. Yellow: α = BiIn2, blue: β = β − In, violet: δ = γ − Sn, and red: liquid phases,
respectively. Plot: Jackson–Hunt curve of the achieved undercoolings in different spacings.
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(a) (b)

(c) (d)

(e)

Concentration of Bi in mol% (in left figures)

7.800 14.00 20.01 26.01 32.02

Temperature (in right figures) , Teut = 332 K

331.079 331.435 331.790 332.146 332.501

Figure 5. Simulation results for the isotropic system at different times, with a clockwise growth
direction and a time step width of dt (see Table A3). (a) t = 0, (b) t = 24.2e6 · dt, (c) t = 48.4e6 · dt,
(d) t = 72.6e6 · dt, and (e) t = 96.8e6 · dt. At any stage, the left figure shows the phase fields
(concentration of Bi) and the right figure shows the temperature field. Simulation domain size:
301.8× 301.8 µm, ro = 150.9 µm, ri = 33.15 µm, ω = 0.309 °s−1.

In Figure 6a, the results of the different time steps are summed up in one frame, show-
ing the circular trajectories of the phase growth for one full rotation. The central three of the
five initially filled lamellae are still intact with the stacking sequence αβαδ. In their center,
these three lamellae sequences solidify with the growth velocities of v2π

1 = 0.394 µm s−1,
v2π

2 = 0.541 µm s−1, v2π
3 = 0.678 µm s−1. The directional solidification process of the

lamellae sequences with similar velocities has previously been investigated in Section 3.3.
Depending on these velocities, the lamellar spacings of the central three lamellae stack-
ings are adjusting subsequently. These adjustments result in a rearrangement of the
microstructure, which leads in the elimination of some phases next to the inner and outer
boundaries. Similar effects can also be seen in the boundary regions of the experimental
results from [21,22]. Due to these eliminations the initially set stacking of αβαδ is disturbed
until the later elimination of the δ phase at a growth of approximately 120°. This elimina-
tion leads to the previously observed oscillations in Figure 5c. Due to the growth of the
thin β phase layer at barrier boundary, a stable growth in the expected αβαδ stacking is
established. The growth of the β phases at the boundaries, on one hand, is balancing the
adjustments of the central lamellar stackings, but on the other hand this growth could also
lead to the initial elimination of some solid phases next to the inner and outer boundaries.
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(a)

(b)

(a)

(b)

(a)

(b)

v2π3 v2π2 v2π1

v2π1 = 0.394 µms−1

v2π2 = 0.541 µms−1

v2π3 = 0.678 µms−1

v4π3 v4π2 v4π1

v4π1 = 0.421 µms−1

v4π2 = 0.572 µms−1

v4π3 = 0.695 µms−1

Figure 6. (a) Combination of the results of all simulation times for isotropic system in Figure 5,
forming the 2π rad rotation image and the zoomed area of the evolved lamellae, with v2π

1,2,3 growth
velocities in their center. (b) The same configuration, at a rotation of 4π rad.

In the sub-figure Figure 6b, the result after a rotation of 4π rad is shown. For this
rotation, a stable continuous growth of the evolving lamellae can be observed, without any
additional oscillations in the solid phase boundaries or any other unexpected phenomena.
As the rotating centers of the disk (Ω in Figures 1 and 3) and of the temperature field
coincide, the desired circular trajectory for the growth of the solid phases results in the
simulations. This agreement has not been reached in the mentioned experimental work
of Mohagheghi et al. [22]. Due to the misalignment of the rotating centers, spiral growth
trajectories of the solidified phases occur in the experimental micrographs, respectively.
Furthermore, as the interfacial energies of the evolving phases are set isotropically in this
simulation, no tilted growth with respect to the thermal gradient direction is observed. This
observation is in agreement with evolution of the floating grains in the experiments [21,22].
The resultant growth velocities in the centers of the evolved lamellae are also shown

in Figure 6, leading to the discrepancies of |v
4π
1

v2π
1

= 6.5%, |v
4π
2

v2π
2

= 5.7%, |v
4π
3

v2π
3

= 2.5%.

After the successful validating of the new simulation setup for RDS with isotropic
material parameters, the influence of anisotropic interfacial energies is presented in Figure 7
after 2π rad and 4π rad rotations. The strength of anisotropy (ζ in Equation (4)) is set
to an amount of 0.15 for all interfaces as illustrated in the Wulff plot of Figure 7a. The
correlation of the lamellae with respect to the applied thermal gradient is achieved in
accordance to the experimental works (see Figure 9 of [21] and Table 3 of [22]). For a more
precise view on the anisotropy effects, the evolution of the lamellae after π/4 rad rotation
is highlighted by an enlargement. As it can be seen, in the locked grains, the tilting is more
pronounced in the αβ interfaces (yellow to blue) rather than the αδ interfaces (yellow to
violet). In addition, Figure 7b shows the deviation of these anisotropic phase boundaries
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(colored phases) from the solid black lines denoting the isotropic simulation of Figure 6a
for the middle lamellar stacking. In this sub-figure, the green line depicts the transition
of the outer αβ phase boundary towards the rotation center at a rotational angle of π/4,
whereas the red line delineates the same for the αδ phase boundary. The proportion of
these two results has an amount of 1.45 and indicates more sensitivity of the αβ interface to
the applied anisotropy compared to the αδ interface. This observation is in accordance with
visual perception of [22], in which αβ interfaces are the main responsible for the formation
of the crystallographically-locked grains. Similar to the isotropic simulation in Figure 6,
the simulation with anisotropic interfacial energies show the elimination of some lamellae
at the beginning of the first rotation and an oscillation of the solid phase boundaries after a
rotation of approximately 120°. During the second rotation, a stable continuous growth
of the evolving lamellae is observed either, without any additional disturbances of the
growth morphology.

In Figure 8, the resultant amounts of λext, in the DS and RDS simulations, and the
experimental measurements of DS data in [30] are illustrated. The dashed magenta line
is based on the average amounts of the achieved lamellar spacings for three different
solidification velocities from DS experiments [30]. These data are depicted with solid trian-
gles, and the highlighted surrounding area covers the experimentally observed minimums
and maximums of the resultant lamellar spacings. The black unfilled circles illustrate the
resulting lamellar spacings λext of the DS simulations after a simulation time of 17.5e6× dt,
and the solid red circles attain the results after the full simulation time of 35e6× dt. The cor-
relation between the filled and unfilled circles shows the convergence of the DS simulations
to the steady state. As can be seen, the results of these simulations are mainly located in the
highlighted region of the experimental DS data. This indicates a good accordance between
the simulations and experiments for directional solidification. The green squares represent
the results of the rotating directional solidification simulation with isotropic interfacial
energies, RDSiso, after a rotation of 2π and 4π rad. Similarly, brown pentagons denote
the simulation with anisotropic interfaces, RDSaniso, at the same rotational angles. For the
isotropic simulation, the expected Jackson–Hunt relationship between growth velocity v
and evolving lamellar spacing λ is observed. This correlation is more pronounced after
the second rotation. For the case of RDSaniso, this theoretic relationship is only found after
the second rotation. The lamellar stackings with the slowest growth velocity has a smaller
spacing than the lamellar stacking with the middle velocity after the first rotation, which is
in contrast to the theory of Jackson and Hunt. This shows the effect of the anisotropy on the
adjustment of stable growth conditions. Due to the applied anisotropic interfacial energies,
the establishment of stable growth conditions requires a larger growth distance. This can
be observed during the second rotation of RDSaniso, in which stable growth conditions
are obtained.

As a general conclusion of Figure 8, the obtained spacings indicate the convergence of
the simulations and the correlation with the reported experimental results in representation
of the anticipated lamellar spacings for DS simulations and qualitative agreements for the
RDS simulations.
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θ = 2π rad

θ = 4π rad
γα̂β̂

γ
α̂
β̂

ζα̂β̂=0 (Isotropic)
ζα̂β̂=0.15

θ = 2π rad

θ = 4π rad
γα̂β̂

γ
α̂
β̂

ζα̂β̂=0 (Isotropic)
ζα̂β̂=0.15

(a)

(b)

Figure 7. Effects of anisotropy in the interfacial energies on pattern formation. (a) The Wulff plot for
anisotropy amount of 0.15 as well as the obtained microstructure at θ = 2π and θ = 4π rotations.
(b) Comparison between the anisotropic simulation (colored phases) and the isotropic simulation
of Figure 6 (black solid lines). Length of green line = 5.56 µm whereas red line length = 3.83 µm
showing dominance of ζαβ in tilting phenomenon.
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Figure 8. Comparison of the obtained Jackson–Hunt lamellar spacings for different solidification
velocities in DS simulations (Figure 4), with the experimental results of Witusiewicz et al. [30].
vnπ

i indicate the amounts for RDS simulations after nπ rad rotations (see Figure 6), respectively.
Superscript iso stands for the isotropic simulation, whereas, aniso denotes the simulation with
incorporation of anisotropy.

4. Summary and Outlook

In this work, phase-field simulations of the rotating directional solidification are
performed, which are mentioned in the literature for the first time. This enables a precise
study of the most important affecting parameters of the pattern formation, such as the
solidification velocity, which can be studied as a process parameter, or the anisotropy of the
interfacial energies, which can be regarded as a system parameter. In order to simulate this
process, the effect of a rotating sample on the microstructure evolution, caused during the
solidification, is rebuilt by an imprinted rotating temperature field. The modeled Bi-In-Sn
system is validated in two-dimensional simulations of the DS process and is subsequently
used to perform the simulation of the RDS process. By using isotropic interfacial energies,
circular trajectories with the expected αβαδ repeat units are obtained, which represent
the expected microstructure of the floating grains in RDS simulations. Furthermore, by
introducing anisotropy of the interfacial energies into the material system, the growth
of tilted lamellae is observed. In this case, the experimentally reported dominance of
the αβ interfaces in the formation of the locked grains is recovered in the phase-field
simulations. It has to be mentioned that, the effect of the applied thin β phase layer on
the resulting microstructures can not be ascertained in its full extent. As the adjustment
of the solid phases is influenced by several parameters, such as the growth velocities, the
surrounding phases and the boundary conditions, an independent investigation of the
different influences is required in forthcoming studies. For this, the implementation of a
new barrier formulation without the need of an additional thin solid phase layer is planned,
to improve the calculations of the interactions between the phase fields, concentration
fields and a curved barrier section for upcoming investigations in future works. However,
the presented results in this work show the general applicability of the presented method
to investigate different growth morphologies within RDS simulations, which lays the
foundation for further investigations. The effect of angular velocity variations on the
microstructure evolution, for example, can be studied within the presented simulation
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setup. Initial simulations have already shown that an increase in the angular velocity ω
can lead to instabilities, such as oscillations of the phase boundaries and the elimination of
lamellae. Such behavior has also been observed in experimental works [23,28]. In addition,
the systematic variation of anisotropic interfacial energies strength, is a further possible
topic for upcoming research, which can be investigated with the presented RDS setup.
The presented simulation setup is suitable for any eutectic material system which has 2D
pattern in its stable growth, independent from the number of evolving phases.
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Appendix A

Table A1. The approximated Gibbs energy functions for the Bi-In-Sn eutectic system, used for the
phase-field simulations in this work, based on the introduced method of [33].

Parameters for the Gibbs Energy Function

BiIn2 β− In

a0(T) 3014.607T − 896, 340.473 −143.363T + 55, 902.219
a1(T) 7087.078T − 2, 189, 377.1803 138.230T − 37, 075.096
a2(T) 3296.242T − 929, 782.259 355.122T − 115, 506.027
a3(T) −4116.795T + 1, 186, 641.527 −255.378T + 78, 337.588
a4(T) −10, 523.232T + 3, 220, 675.0386 −198.487T + 51, 646.124
a5(T) 4106.939T − 1, 263, 269.831 3.884T − 15, 477.151

γ− Sn liquid

a0(T) −871.762T + 301, 469.411 −13.421T + 13, 192.535
a1(T) 122.777T − 26, 128.366 12.381T + 4229.506
a2(T) 348.878T − 139, 478.362 23.675T − 5488.634
a3(T) 22.402T − 5281.841 −20.932T − 1575.961
a4(T) −154.236T + 40, 925.907 −14.338T − 8078.906
a5(T) −30.836T − 6902.264 −70.776T + 8898.941

http://img.mdpi.org/data/contributor-role-instruction.pdf
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Table A2. 331 K is an exemplary temperature below the eutectic point, which is used to calculate and
compare the amounts of the Gibbs energies g and the chemical potentials µ for the phases involved.
cal: CALPHAD, app: approximated, eq: equilibrium.

Comparison of Calculated Values from Gibbs Energy Functions
and the CALPHAD Database in J mol−1.

BiIn2 β− In γ− Sn liquid

geq
cal|331K −20, 885.512 −20, 047.493 −19, 650.776 −20, 315.829

geq
app|331K −20, 879.5 −20, 042.9 −19, 632.7 −20, 315.536

µ
eq
app,0 =

∂gapp
∂cBi
|331K −3522.53 −3470.85 −3449.36 −3521.90

µ
eq
app,1 =

∂gapp
∂cIn
|331K −2294.85 −2266.95 −2315.73 −2294.48

Table A3. Summary of the dimensionless simulation and numerical parameters, as well as their
amounts in physical units, for simulation studies of the Bi-In-Sn system—α : BiIn2, β : β − In,
δ : γ− Sn, L : liquid, S : Solid, iso : isotropic simulation, aniso :: anisotropic simulation.

Parameter Simulation Value Physical Value

γαβ,γβδ,γβL 9.26 · 10−4 0.2888 J m−2

γαδ,γαL 2.78 · 10−4 0.0866 J m−2

γδL, 4.63 · 10−4 0.1444 J m−2 [59]
γα̂β̂δ̂ 15·γ -
A0 0.001374 0.456 K
Tm 0.99937 331.79 K
Teut. 1 332 K [29]
Dα̂L 0.62 10−9 m2s1 [60]
Dα̂S 0 0 m2s1

GDS 7.52 · 10−6 8 K mm−1

GRDS 7.4 · 10−6 − 2.255 · 10−4 0.786–240 K mm−1

ω 3.24 · 10−7 0.309 °s−1

Teut 1 332 K
dx 1.0 0.312 µm
dt 0.2 1.2 · 10−5 s
ταL,τLα 1.45
τβL,τLβ 2.73
τδL,τLδ 1.31
ζ iso

α̂β̂
0 -

ζaniso
α̂β̂

0.15 -

Table A4. Thermo-physical properties of Bi-In-Sn system at melting point from [61].

Property Amount Unit

Thermal expansion coefficient 6.11 °C−1

Average density 8.81 g/cm3
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