527 research outputs found

    In Vitro Expression of Full-Length and Truncated Bovine Respiratory Syncytial Virus G Proteins and Their Antibody Responses in BALB/c Mice

    Get PDF
    Bovine respiratory syncytial virus (BRSV) is a primary cause of lower respiratory tract disease in calves. Protection is incomplete following vaccination or natural infection, as re-infections are common. The objectives of this study were to create plasmid DNA constructs encoding the full-length, secreted, or conserved region of the BRSV G glycoprotein, and to compare and evaluate their expression in cell culture and potential to induce antibody responses in BALB/c mice. Transfection of COS-7 cells with plasmid DNA resulted in expression of the BRSV G region from each of the plasmid DNA constructs. Following inoculation of BALB/c mice with plasmid DNA, a significant and equivalent anti-BRSV G IgG response was elicited to the full-length and truncated BRSV G proteins. These constructs may be used to study host pathological and immunological responses

    Study of Dairy Manure N Cycling in Soil-Plant Continuum Using \u3csup\u3e15\u3c/sup\u3eN and Other Methods

    Get PDF
    Ruminant livestock manure impacts on N cycling in the soil-plant continuum. Most studies of manure N cycling are short-term and rely on indirect methods, i.e. apparent N recovery, fertiliser N equivalents or incorporate 15N into ammonium-N fractions. Direct and perhaps more precise measurements may be achieved by long-term studies using 15N incorporated into all manure N components. This paper summarises results of a 6- year trial to compare indirect and direct measures of manure N uptake by corn for 3 years after application

    Community Policing: Broken Windows, Community Building, and Satisfaction with the Police

    Get PDF
    The concept of community policing dominates the law enforcement profession today. One would be hard pressed to find an advertisement for a police chief’s position that does not require a thorough understanding of this method of policing. Like the Kansas City preventive patrol experiment and the Rand report on the criminal investigation process, the call for community policing has led to dramatic changes in the way that police carry out their responsibilities. In spite of its popularity, there have been a number of challenges to community policing from social scientists who are particularly concerned about the ‘broken windows’ model of policing. These challenges have not been received well by the law enforcement community, which argues that sociologists are wedded to the idea that crime is caused by the structural features of capitalist society, including economic injustice, racism, and poverty. The purpose of this article is to bridge the gap between these two positions. Yes, there is a place for community policing, and, yes, social problems do contribute to crime. The article starts by reviewing the development of community policing in the United States. An analysis of the theoretical constructs that support community policing then follows. Finally, we argue that there is sound theoretical evidence to support community policing, particularly those programmes that improve citizen satisfaction with the manner in which police carry out their responsibilities

    Crossing barriers in planetesimal formation: The growth of mm-dust aggregates with large constituent grains

    Full text link
    Collisions of mm-size dust aggregates play a crucial role in the early phases of planet formation. We developed a laboratory setup to observe collisions of dust aggregates levitating at mbar pressures and elevated temperatures of 800 K. We report on collisions between basalt dust aggregates of from 0.3 to 5 mm in size at velocities between 0.1 and 15 cm/s. Individual grains are smaller than 25 \mum in size. We find that for all impact energies in the studied range sticking occurs at a probability of 32.1 \pm 2.5% on average. In general, the sticking probability decreases with increasing impact parameter. The sticking probability increases with energy density (impact energy per contact area). We also observe collisions of aggregates that were formed by a previous sticking of two larger aggregates. Partners of these aggregates can be detached by a second collision with a probability of on average 19.8 \pm 4.0%. The measured accretion efficiencies are remarkably high compared to other experimental results. We attribute this to the rel. large dust grains used in our experiments, which make aggregates more susceptible to restructuring and energy dissipation. Collisional hardening by compaction might not occur as the aggregates are already very compact with only 54 \pm 1% porosity. The disassembly of previously grown aggregates in collisions might stall further aggregate growth. However, owing to the levitation technique and the limited data statistics, no conclusive statement about this aspect can yet be given. We find that the detachment efficiency decreases with increasing velocities and accretion dominates in the higher velocity range. For high accretion efficiencies, our experiments suggest that continued growth in the mm-range with larger constituent grains would be a viable way to produce larger aggregates, which might in turn form the seeds to proceed to growing planetesimals.Comment: 9 pages, 20 figure

    Crossing barriers in planetesimal formation: The growth of mm-dust aggregates with large constituent grains

    Get PDF
    Collisions of mm-size dust aggregates play a crucial role in the early phases of planet formation. It is for example currently unclear whether there is a bouncing barrier where millimeter aggregates no longer grow by sticking. We developed a laboratory setup that allowed us to observe collisions of dust aggregates levitating at mbar pressures and elevated temperatures of 800 K. We report on collisions between basalt dust aggregates of from 0.3 to 5 mm in size at velocities between 0.1 and 15 cm/s. Individual grains are smaller than 25 μm in size. We find that for all impact energies in the studied range sticking occurs at a probability of 32.1 ± 2.5% on average. In general, the sticking probability decreases with increasing impact parameter. The sticking probability increases with energy density (impact energy per contact area). We also observe collisions of aggregates that were formed by a previous sticking of two larger aggregates. Partners of these aggregates can be detached by a second collision with a probability of on average 19.8 ± 4.0%. The measured accretion efficiencies are remarkably high compared to other experimental results. We attribute this to the relatively large dust grains used in our experiments, which make aggregates more susceptible to restructuring and energy dissipation. Collisional hardening by compaction might not occur as the aggregates are already very compact with only 54 ± 1% porosity. The disassembly of previously grown aggregates in collisions might stall further aggregate growth. However, owing to the levitation technique and the limited data statistics, no conclusive statement about this aspect can yet be given. We find that the detachment efficiency decreases with increasing velocities and accretion dominates in the higher velocity range. For high accretion efficiencies, our experiments suggest that continued growth in the mm-range with larger constituent grains would be a viable way to produce larger aggregates, which might in turn form the seeds to proceed to growing planetesimals. © 2012 ESO

    Comparison of Different Parallel Implementations of the 2+1-Dimensional KPZ Model and the 3-Dimensional KMC Model

    Full text link
    We show that efficient simulations of the Kardar-Parisi-Zhang interface growth in 2 + 1 dimensions and of the 3-dimensional Kinetic Monte Carlo of thermally activated diffusion can be realized both on GPUs and modern CPUs. In this article we present results of different implementations on GPUs using CUDA and OpenCL and also on CPUs using OpenCL and MPI. We investigate the runtime and scaling behavior on different architectures to find optimal solutions for solving current simulation problems in the field of statistical physics and materials science.Comment: 14 pages, 8 figures, to be published in a forthcoming EPJST special issue on "Computer simulations on GPU
    • …
    corecore