77 research outputs found

    A dynamical model for longitudinal wave functions in light-front holographic QCD

    Full text link
    We construct a Schrodinger-like equation for the longitudinal wave function of a meson in the valence qq-bar sector, based on the 't Hooft model for large-N two-dimensional QCD, and combine this with the usual transverse equation from light-front holographic QCD, to obtain a model for mesons with massive quarks. The computed wave functions are compared with the wave function ansatz of Brodsky and De Teramond and used to compute decay constants and parton distribution functions. The basis functions used to solve the longitudinal equation may be useful for more general calculations of meson states in QCD.Comment: 12 pages, 2 figures, RevTeX 4.1; expanded discussion, with calculation details moved to appendice

    Emerging Roles for MicroRNAs in Perioperative Medicine

    Get PDF
    MicroRNAs (miRNAs) are small, non-protein-coding, single-stranded RNAs. They function as posttranscriptional regulators of gene expression by interacting with target mRNAs. This process prevents translation of target mRNAs into a functional protein. miRNAs are considered to be functionally involved in virtually all physiologic processes, including differentiation and proliferation, metabolism, hemostasis, apoptosis, and inflammation. Many of these functions have important implications for anesthesiology and critical care medicine. Studies indicate that miRNA expression levels can be used to predict the risk for eminent organ injury or sepsis. Pharmacologic approaches targeting miRNAs for the treatment of human diseases are currently being tested in clinical trials. The present review highlights the important biological functions of miRNAs and their usefulness as perioperative biomarkers and discusses the pharmacologic approaches that modulate miRNA functions for disease treatment. In addition, the authors discuss the pharmacologic interactions of miRNAs with currently used anesthetics and their potential to impact anesthetic toxicity and side effects

    Regulated ion transport in mouse liver cyst epithelial cells

    Get PDF
    AbstractDerived from bile duct epithelia (BDE), secretion by liver cyst-lining epithelia is positioned to drive cyst expansion but the responsible ion flux pathways have not been characterized. Cyst-lining epithelia were isolated and cultured into high resistance monolayers to assess the ion secretory pathways. Electrophysiologic studies showed a marked rate of constitutive transepithelial ion transport, including Cl− secretion and Na+ absorption. Na+ absorption was amiloride-sensitive, suggesting the activation of epithelial sodium channels (ENaC). Further, both cAMPi and extracellular ATP induced robust secretory responses. Western blotting and immunohistologic analysis of liver cyst epithelia demonstrated expression of P2X4, a potent purinergic receptor in normal BDE. Luminometry and bioassaying measured physiologically relevant levels of ATP in a subset of liver cyst fluid samples. Liver cyst epithelia also displayed a significant capacity to degrade extracellular ATP. In conclusion, regulated ion transport pathways are present in liver cyst epithelia and are positioned to direct fluid secretion into the lumen of liver cysts and promote increases in liver cyst expansion and growth

    Using Gauge Coupling Unification and Proton Decay to Test Minimal Supersymmetric SU(5)

    Get PDF
    We derive a one-loop expression, including all thresholds, for the mass of the proton decay mediating color triplets, MDcM_{D^c}, in minimal supersymmetric SU(5). The result for MDcM_{D^c} does not depend on other heavy thresholds or extra representations with SU(5) invariant masses which might be added to the minimal model. We numerically correct our result to two-loop accuracy. Choosing inputs to maximize MDcM_{D^c} and τP\tau_P, within experimental limits on the inputs and a 1 TeV1~TeV naturalness bound, we derive a strict bound α3>0.117\alpha_3>0.117. We discuss how this bound will change as experimental limits improve. Measurements of α3\alpha_3 from deep inelastic scattering and the charmonium spectrum are below the bound α3>0.117\alpha_3>0.117 by more than 3σ3\sigma. We briefly review several ideas of how to resolve the discrepancy between these low values of α3\alpha_3 and the determinations of α3\alpha_3 from LEP event shapes.Comment: 10 pages (2 figures not included, available upon request), MIU-THP-94/6

    Bremsstrahlung Suppression due to the LPM and Dielectric Effects in a Variety of Materials

    Get PDF
    The cross section for bremsstrahlung from highly relativistic particles is suppressed due to interference caused by multiple scattering in dense media, and due to photon interactions with the electrons in all materials. We present here a detailed study of bremsstrahlung production of 200 keV to 500 MeV photons from 8 and 25 GeV electrons traversing a variety of target materials. For most targets, we observe the expected suppressions to a good accuracy. We observe that finite thickness effects are important for thin targets.Comment: 52 pages, 13 figures (incorporated in the revtex LaTeX file

    Hypoxia-inducible factor 2-alpha-dependent induction of amphiregulin dampens myocardial ischemia- reperfusion injury

    Get PDF
    Myocardial ischemia-reperfusion injury (IRI) leads to the stabilization of the transcription factors hypoxia-inducible factor 1-alpha (HIF1-alpha) and hypoxia-inducible factor 2-alpha (HIF2-alpha). While previous studies implicate HIF1-alpha in cardioprotection, the role of HIF2-alpha remains elusive. Here we show that HIF2-alpha induces the epithelial growth factor amphiregulin (AREG) to elicit cardioprotection in myocardial IRI. Comparing mice with inducible deletion of Hif1a or Hif2a in cardiac myocytes, we show that loss of Hif2-alpha increases infarct sizes. Microarray studies in genetic models or cultured human cardiac myocytes implicate HIF2-alpha in the myocardial induction of AREG. Likewise, AREG increases in myocardial tissues from patients with ischemic heart disease. Areg deficiency increases myocardial IRI, as does pharmacologic inhibition of Areg signaling. In contrast, treatment with recombinant Areg provides cardioprotection and reconstitutes mice with Hif2a deletion. These studies indicate that HIF2-alpha induces myocardial AREG expression in cardiac myocytes, which increases myocardial ischemia tolerance

    Myeloid-derived miR-223 regulates intestinal inflammation via repression of the NLRP3 inflammasome

    Get PDF
    MicroRNA (miRNA)-mediated RNA interference regulates many immune processes, but how miRNA circuits orchestrate aberrant intestinal inflammation during inflammatory bowel disease (IBD) is poorly defined. Here, we report that miR-223 limits intestinal inflammation by constraining the nlrp3 inflammasome. miR-223 was increased in intestinal biopsies from patients with active IBD and in preclinical models of intestinal inflammation. miR-223-/y mice presented with exacerbated myeloid-driven experimental colitis with heightened clinical, histopathological, and cytokine readouts. Mechanistically, enhanced NLRP3 inflammasome expression with elevated IL-1β was a predominant feature during the initiation of colitis with miR-223 deficiency. Depletion of CCR2+ inflammatory monocytes and pharmacologic blockade of IL-1β or NLRP3 abrogated this phenotype. Generation of a novel mouse line, with deletion of the miR-223 binding site in the NLRP3 3′ untranslated region, phenocopied the characteristics of miR-223-/y mice. Finally, nanoparticle-mediated overexpression of miR-223 attenuated experimental colitis, NLRP3 levels, and IL-1β release. Collectively, our data reveal a previously unappreciated role for miR-223 in regulating the innate immune response during intestinal inflammation

    Sarcopenia: etiology, clinical consequences, intervention, and assessment

    Get PDF
    The aging process is associated with loss of muscle mass and strength and decline in physical functioning. The term sarcopenia is primarily defined as low level of muscle mass resulting from age-related muscle loss, but its definition is often broadened to include the underlying cellular processes involved in skeletal muscle loss as well as their clinical manifestations. The underlying cellular changes involve weakening of factors promoting muscle anabolism and increased expression of inflammatory factors and other agents which contribute to skeletal muscle catabolism. At the cellular level, these molecular processes are manifested in a loss of muscle fiber cross-sectional area, loss of innervation, and adaptive changes in the proportions of slow and fast motor units in muscle tissue. Ultimately, these alterations translate to bulk changes in muscle mass, strength, and function which lead to reduced physical performance, disability, increased risk of fall-related injury, and, often, frailty. In this review, we summarize current understanding of the mechanisms underlying sarcopenia and age-related changes in muscle tissue morphology and function. We also discuss the resulting long-term outcomes in terms of loss of function, which causes increased risk of musculoskeletal injuries and other morbidities, leading to frailty and loss of independence

    Partial Netrin-1 Deficiency Aggravates Acute Kidney Injury

    Get PDF
    The netrin family of secreted proteins provides migrational cues in the developing central nervous system. Recently, netrins have also been shown to regulate diverse processes beyond their functions in the brain, incluing the ochrestration of inflammatory events. Particularly netrin-1 has been implicated in dampening hypoxia-induced inflammation. Here, we hypothesized an anti-inflammatory role of endogenous netrin-1 in acute kidney injury (AKI). As homozygous deletion of netrin-1 is lethal, we studied mice with partial netrin-1 deletion (Ntn-1+/− mice) as a genetic model. In fact, Ntn-1+/− mice showed attenuated Ntn-1 levels at baseline and following ischemic AKI. Functional studies of AKI induced by 30 min of renal ischemia and reperfusion revealed enhanced kidney dysfunction in Ntn-1+/− mice as assessed by measurements of glomerular filtration, urine flow rate, urine electrolytes, serum creatinine and creatinine clearance. Consistent with these findings, histological studies indicated a more severe degree kidney injury. Similarly, elevations of renal and systemic inflammatory markers were enhanced in mice with partial netrin-1 deficiency. Finally, treatment of Ntn-1+/− mice with exogenous netrin-1 restored a normal phenotype during AKI. Taking together, these studies implicate endogenous netrin-1 in attenuating renal inflammation during AKI

    NK cells regulate CXCR2+ neutrophil recruitment during acute lung injury

    Get PDF
    A critical step in the pathogenesis of acute lung injury (ALI) is excessive recruitment of polymorphonuclear neutrophils (PMNs) into the lungs, causing significant collateral tissue damage. Defining the molecular and cellular steps that control neutrophil infiltration and activation during ALI is therefore of important therapeutic relevance. Based on previous findings implicating the transcription factor Tbet in mucosal Th1‐inflammation, we hypothesized a detrimental role for Tbet during ALI. In line with our hypothesis, initial studies of endotoxin‐induced lung injury revealed a marked protection of Tbet−/− mice, including attenuated neutrophilia compared to WT counterparts. Surprisingly, subsequent studies identified natural killer (NK) cells as the major source of pulmonary Tbet during ALI. In addition, a chemokine screen suggested that mature Tbet+ NK‐cells are critical for the production of pulmonary CXCL1 and ‐2, thereby contributing to pulmonary PMN recruitment. Indeed, both NK‐cell Ab depletion and adoptive transfer studies provide evidence for NK cells in the orchestration of neutrophil recruitment during endotoxin‐induced ALI. Taken together, these findings identify a novel role for Tbet+ NK‐cells in initiating the early events of noninfectious pulmonary inflammation
    corecore