340 research outputs found
Metabolic Interactions Between Over-the-counter and Illicit Drugs at Cytochrome P450
Drug- drug interactions between over- the- counter (OTC) and scheduled drugs may occur at cytochrome P450, which can lead to toxicity and possibly death. This study examined the effects of two OTC drugs, cimetidine (CMT) and dextromethorphan (DEX), and two scheduled drugs, methamphetamine (MA) and 3, 4-methylenedioxymethamphetamine (MDMA) at CYP2D6. Purified human CYP2D6 was used to determine the inhibitory potential (IC50) of the drugs in vitro. This assay examined the conversion of AMMC to its fluorescent metabolite product, AHMC. Enzyme kinetics was conducted to determine Vmax and Km values in vivo using rat microsome CYP2D2 isozyme. Solid phase extraction was used to extract MA from liver supernatant using Varian Bond Elut columns. GC/ MS was performed on the extracted MA samples to examine changes in MA metabolism following exposure to CMT or DEX. Findings and Conclusions: In vitro, the IC50 values for the test compounds and CYP2D6 activity were not different compared to quinidine IC50 value. Maximum inhibition of CYP2D6 activity in the presence of test compounds [CMT, CMT/ MA, DEX/ MA, DEX/ MDMA, CMT/ DEX/ MA and CMT/ DEX/ MDMA] compared to maximum quinidine inhibition decreased significantly from quinidine and CMT/ MDMA inhibition, a 75-85% decrease compared to quinidine. Maximum MA inhibition was significantly decreased compared to maximum quinidine inhibition. This data suggests that all the test compounds inhibited CYP2D6 activity; one or all of the drugs may not be metabolized as quickly resulting in toxicity of those drugs. In vivo CYP2D2 studies showed that the Vmax value in the CMT treated group (98.28 + 22.09 pmol/ mg protein/ min) increased significantly compared to naive (19.92 + 5.084 pmol/ mg protein/ min). The Km value in the saline (6.806 + 0.73 ?M) and CMT (6.728 + 1.341 ?M) treated groups increased significantly compared to naive (3.081 + 0.46 ?M). All MA challenged groups showed increases in Vmax (280- 490%) and Km (165- 220%) values compared to the naive group. Therefore, MA challenge resulted in an increase in both kinetic parameters (Vmax and Km) suggesting that the low affinity/ high capacity CYP2D2 isoform was upregulated. This data suggests that MA is an inducer via CYP2D2, which will lead to altered drug metabolism and an alteration of the drug's effects.Department of Biochemistry and Molecular Biolog
Recommended from our members
Comparison Study of the Bio-Plex and Meso Scale Multiplexed SARS-CoV-2 Serology Assays Reveals Evidence of Diminished Host Antibody Responses to SARS-CoV-2 after Monoclonal Antibody Treatment
BackgroundAssessing the breadth and duration of antigen-specific binding antibodies provides valuable information for evaluating interventions to treat or prevent SARS-CoV-2 infection. Multiplex immunoassays are a convenient method for rapid measurement of antibody responses but can sometimes provide discordant results, and antibody positive percent agreement for COVID-19 diagnosis can vary depending on assay type, disease severity, and population sampled. Therefore, we compared two assays marked for research applications, MSD and Bio-Plex Pro, to evaluate qualitative interpretation of serostatus and quantitative detection of antibodies of varying isotypes (IgG, IgM, and IgA) against receptor binding domain (RBD) and nucleocapsid (N) antigens.MethodsSpecimens from ACTIV-2/A5401, a placebo-controlled clinical trial of the SARSCoV-2 monoclonal antibody (mAb) bamlanivimab to prevent COVID-19 disease progression, were used to evaluate the concordance of the Bio-Rad Bio-Plex Pro Human SARS-CoV-2 Serology Assay and the Meso Scale Discovery (MSD) V-PLEX COVID-19 Panel 1 serology assay in detecting and quantifying IgG, IgA, and IgM binding anti-SARS-CoV-2 antibody responses against the RBD and N antigens. Data were disaggregated by study arm, bamlanivimab dose, days post-enrollment, and presence of emerging resistance.ResultsWe observed 90.5% (412 of 455 tests) concordance for anti-RBD IgG and 87% (396 of 455) concordance for anti-N IgG in classifying samples as negative or positive based on assay-defined cutoffs. Antibody levels converted to the WHO standard BAU/mL were significantly correlated for all isotypes (IgG, IgM, and IgA) and SARS-CoV-2 antigen targets (RBD and N) tested that were common between the two assays (Spearman r 0.65 to 0.92, P < 0.0001). Both assays uncovered evidence of diminished host-derived IgG immune responses in participants treated with bamlanivimab compared to placebo. Assessment of immune responses in the four individuals treated with the 700 mg of bamlanivimab with emerging mAb resistance demonstrated a stronger anti-N IgG response (MSD) at day 28 (median 2.18 log BAU/mL) compared to participants treated with bamlanivimab who did not develop resistance (median 1.55 log BAU/mL).ConclusionsThese data demonstrate the utility in using multiplex immunoassays for characterizing the immune responses with and without treatment in a study population and provide evidence that monoclonal antibody treatment in acute COVID-19 may have a modest negative impact on development of host IgG responses
Comparison Study of the Bio-Plex and Meso Scale Multiplexed SARS-CoV-2 Serology Assays Reveals Evidence of Diminished Host Antibody Responses to SARS-CoV-2 after Monoclonal Antibody Treatment
Background: Assessing the breadth and duration of antigen-specific binding antibodies provides valuable information for evaluating interventions to treat or prevent SARS-CoV-2 infection. Multiplex immunoassays are a convenient method for rapid measurement of antibody responses but can sometimes provide discordant results, and antibody positive percent agreement for COVID-19 diagnosis can vary depending on assay type, disease severity, and population sampled. Therefore, we compared two assays marked for research applications, MSD and Bio-Plex Pro, to evaluate qualitative interpretation of serostatus and quantitative detection of antibodies of varying isotypes (IgG, IgM, and IgA) against receptor binding domain (RBD) and nucleocapsid (N) antigens.
Methods: Specimens from ACTIV-2/A5401, a placebo-controlled clinical trial of the SARSCoV-2 monoclonal antibody (mAb) bamlanivimab to prevent COVID-19 disease progression, were used to evaluate the concordance of the Bio-Rad Bio-Plex Pro Human SARS-CoV-2 Serology Assay and the Meso Scale Discovery (MSD) V-PLEX COVID-19 Panel 1 serology assay in detecting and quantifying IgG, IgA, and IgM binding anti-SARS-CoV-2 antibody responses against the RBD and N antigens. Data were disaggregated by study arm, bamlanivimab dose, days post-enrollment, and presence of emerging resistance.
Results: We observed 90.5% (412 of 455 tests) concordance for anti-RBD IgG and 87% (396 of 455) concordance for anti-N IgG in classifying samples as negative or positive based on assay-defined cutoffs. Antibody levels converted to the WHO standard BAU/mL were significantly correlated for all isotypes (IgG, IgM, and IgA) and SARS-CoV-2 antigen targets (RBD and N) tested that were common between the two assays (Spearman r 0.65 to 0.92, P < 0.0001). Both assays uncovered evidence of diminished host-derived IgG immune responses in participants treated with bamlanivimab compared to placebo. Assessment of immune responses in the four individuals treated with the 700 mg of bamlanivimab with emerging mAb resistance demonstrated a stronger anti-N IgG response (MSD) at day 28 (median 2.18 log BAU/mL) compared to participants treated with bamlanivimab who did not develop resistance (median 1.55 log BAU/mL).
Conclusions: These data demonstrate the utility in using multiplex immunoassays for characterizing the immune responses with and without treatment in a study population and provide evidence that monoclonal antibody treatment in acute COVID-19 may have a modest negative impact on development of host IgG responses
Impact of SARS-CoV-2 Resistance to Antiviral Monoclonal Antibody Therapy on Neutralizing Antibody Response
BackgroundAnti-SARS-CoV-2 monoclonal antibodies (mAbs) have played a key role as an anti-viral against SARS-CoV-2, but there is a potential for resistance to develop. The interplay between host antibody responses and the development of monoclonal antibody (mAb) resistance is a critical area of investigation. In this study, we assessed host neutralizing antibody (nAb) responses against both ancestral virus and those with treatment-emergent E484K bamlanivimab resistance mutations.MethodsStudy participants were enrolled in the ACTIV-2/Advancing Clinical Therapeutics Globally (ACTG) A5401 phase 2 randomized, placebo-controlled trial of bamlanivimab 700 mg mAb therapy (NCT04518410). Anterior nasal and nasopharyngeal swabs were collected for SARS-CoV-2 RNA testing and S gene next-generation sequencing to identify the E484K bamlanivimab resistance mutation. Serum nAb titers were assessed by pseudovirus neutralization assays.ResultsHigher baseline (pre-treatment) nAb titers against either ancestral or E484K virus was associated with lower baseline viral load. Participants with emerging resistance had low levels of nAb titers against either ancestral or E484K nAb at the time of study entry. Participants with emergent E484K resistance developed significantly higher levels of E484K-specific nAb titers compared to mAb-treated individuals who did not develop resistance. All participants who developed the E484K mAb resistance mutation were eventually able to clear the virus.ConclusionEmerging drug resistance after SARS-CoV-2-specific mAb therapy led to a heightened host neutralizing antibody response to the mAb-resistant variant that was associated with eventual viral clearance. This demonstrates the interplay between the antiviral treatment-directed viral evolution and subsequent host immune response in viral clearance
The Quiescent Intracluster Medium in the Core of the Perseus Cluster
Clusters of galaxies are the most massive gravitationally-bound objects in
the Universe and are still forming. They are thus important probes of
cosmological parameters and a host of astrophysical processes. Knowledge of the
dynamics of the pervasive hot gas, which dominates in mass over stars in a
cluster, is a crucial missing ingredient. It can enable new insights into
mechanical energy injection by the central supermassive black hole and the use
of hydrostatic equilibrium for the determination of cluster masses. X-rays from
the core of the Perseus cluster are emitted by the 50 million K diffuse hot
plasma filling its gravitational potential well. The Active Galactic Nucleus of
the central galaxy NGC1275 is pumping jetted energy into the surrounding
intracluster medium, creating buoyant bubbles filled with relativistic plasma.
These likely induce motions in the intracluster medium and heat the inner gas
preventing runaway radiative cooling; a process known as Active Galactic
Nucleus Feedback. Here we report on Hitomi X-ray observations of the Perseus
cluster core, which reveal a remarkably quiescent atmosphere where the gas has
a line-of-sight velocity dispersion of 164+/-10 km/s in a region 30-60 kpc from
the central nucleus. A gradient in the line-of-sight velocity of 150+/-70 km/s
is found across the 60 kpc image of the cluster core. Turbulent pressure
support in the gas is 4% or less of the thermodynamic pressure, with large
scale shear at most doubling that estimate. We infer that total cluster masses
determined from hydrostatic equilibrium in the central regions need little
correction for turbulent pressure.Comment: 31 pages, 11 Figs, published in Nature July
Multi-messenger Astrophysics with Pulsar Timing Arrays: Astro2020 Science White Paper
Pulsar timing arrays (PTAs) are on the verge of detecting low-frequency gravitational waves (GWs)from supermassive black hole binaries (SMBHBs). With continued observations of a large sampleof millisecond pulsars, PTAs will reach this major milestone within the next decade. Already,SMBHB candidates are being identied by electromagnetic surveys in ever-increasing numbers;upcoming surveys will enhance our ability to detect and verify candidates, and will be instrumentalin identifying the host galaxies of GW sources. Multi-messenger (GW and electromagnetic) obser-vations of SMBHBs will revolutionize our understanding of the co-evolution of SMBHs with theirhost galaxies, the dynamical interactions between binaries and their galactic environments, and thefundamental physics of accretion. Multi-messenger observations can also make SMBHBs `standardsirens' for cosmological distance measurements out to z ~ 0.5 LIGO has already ushered in break-through insights in our knowledge of black holes. The multi-messenger detection of SMBHBs withPTAs will be a breakthrough in the years 2020-2030 and beyond, and prepare us for LISA to helpcomplete our views of black hole demographics and evolution at higher redshifts
Development of Mural Cells: From In Vivo Understanding to In Vitro Recapitulation
Mural cells are indispensable for the development and maintenance of healthy mature vasculature, valuable for vascular therapies and as developmental models. However, their functional plasticity, developmental diversity, and multitude of differentiation pathways complicate in vitro generation. Fortunately, there is a vast pool of untapped knowledge from in vivo studies that can guide in vitro engineering. This review highlights the in vivo genesis of mural cells from progenitor populations to recruitment pathways to maturation and identity with an emphasis on how this knowledge is applicable to in vitro models of stem cell differentiation
Multi-Messenger Astrophysics with Pulsar Timing Arrays
Pulsar timing arrays (PTAs) are on the verge of detecting low-frequency gravitational waves (GWs) from supermassive black hole binaries (SMBHBs). With continued observations of a large sample of millisecond pulsars, PTAs will reach this major milestone within the next decade. Already, SMBHB candidates are being identified by electromagnetic surveys in ever-increasing numbers; upcoming surveys will enhance our ability to detect and verify candidates, and will be instrumental in identifying the host galaxies of GW sources. Multi-messenger (GW and electromagnetic) observations of SMBHBs will revolutionize our understanding of the co-evolution of SMBHs with their host galaxies, the dynamical interactions between binaries and their galactic environments, and the fundamental physics of accretion. Multi-messenger observations can also make SMBHBs 'standard sirens' for cosmological distance measurements out to . LIGO has already ushered in breakthrough insights in our knowledge of black holes. The multi-messenger detection of SMBHBs with PTAs will be a breakthrough in the years and beyond, and prepare us for LISA to help complete our views of black hole demographics and evolution at higher redshifts
- …