690 research outputs found
Diversity of Sinorhizobium meliloti from the Central Asian Alfalfa Gene Center
Sinorhizobium meliloti was isolated from nodules and soil from western Tajikistan, a center of diversity of the host plants (Medicago, Melilotus, and Trigonella species). There was evidence of recombination, but significant disequilibrium, between and within the chromosome and megaplasmids. The most frequent alleles matched those in the published genome sequence
The Charm Content of W+1 Jet Events as a Probe of the Strange Quark Distribution Function
We investigate the prospects for measuring the strange quark distribution
function of the proton in associated plus charm quark production at the
Tevatron. The quark signal produced by strange quark -- gluon fusion,
and , is approximately 5\%
of the inclusive jet cross section for jets with a transverse momentum
~GeV. We study the sensitivity of the plus charm quark cross
section to the parametrization of the strange quark distribution function, and
evaluate the various background processes. Strategies to identify charm quarks
in CDF and D\O \ are discussed. For a charm tagging efficiency of about 10\%
and an integrated luminosity of 30~pb or more, it should be possible to
constrain the strange quark distribution function from production at the
Tevatron.Comment: submitted to Phys. Lett. B, Latex, 12 pages + 4 postscript figures
encoded with uufile, FSU-HEP-930812, MAD/TH/93-6, MAD/PH/788. A postscript
file with text and embedded figures is available via anonymous ftp at
hepsg1.physics.fsu.edu, file is /pub/keller/fsu-hep-930812.p
Charge fluctuations and electron-phonon interaction in the finite- Hubbard model
In this paper we employ a gaussian expansion within the finite-
slave-bosons formalism to investigate the momentum structure of the
electron-phonon vertex function in the Hubbard model as function of and
. The suppression of large momentum scattering and the onset a small- peak structure, parametrized by a cut-off , are shown to be
essentially ruled by the band narrowing factor due to the
electronic correlation. A phase diagram of and in the whole
- space is presented. Our results are in more than qualitative agreement
with a recent numerical analysis and permit to understand some anomalous
features of the Quantum Monte Carlo data.Comment: 4 pages, eps figures include
Design of Three-Dimensional Hypersonic Inlets with Rectangular to Elliptical Shape Transition
A methodology has been devised for the design of three-dimensional hypersonic inlets which include a rectangular to elliptical shape transition. This methodology makes extensive use of inviscid streamtracing techniques to generate a smooth shape transition from a rectangular-like capture to an elliptical throat. Highly swept leading edges and a significantly notched cowl enable use of these inlets in fixed geometry configurations. The design procedure includes a three dimensional displacement thickness calculation and uses established correlations to check for boundary layer separation due to shock wave interactions. Complete details of the design procedure are presented and the characteristics of a modular inlet with rectangular to elliptical shape transition and a design point of Mach 7.1 are examined. Comparison with a classical two-dimensional inlet optimized for maximum total pressure recovery indicates that this three-dimensional inlet demonstrates good performance even well below its design point
Improving the k-Nearest Neighbour Rule by an Evolutionary Voting Approach
This work presents an evolutionary approach to modify the
voting system of the k-Nearest Neighbours (kNN). The main novelty of
this article lies on the optimization process of voting regardless of the
distance of every neighbour. The calculated real-valued vector through
the evolutionary process can be seen as the relative contribution of every
neighbour to select the label of an unclassified example. We have tested
our approach on 30 datasets of the UCI repository and results have
been compared with those obtained from other 6 variants of the kNN
predictor, resulting in a realistic improvement statistically supported
Adiabatic spin pumping through a quantum dot with a single orbital level
We investigate an adiabatic spin pumping through a quantum dot with a single
orbital energy level under the Zeeman effect. Electron pumping is produced by
two periodic time dependent parameters, a magnetic field and a difference of
the dot-lead coupling between the left and right barriers of the dot. The
maximum charge transfer per cycle is found to be , the unit charge in the
absence of a localized moment in the dot. Pumped charge and spin are different,
and spin pumping is possible without charge pumping in a certain situation.
They are tunable by changing the minimum and maximum value of the magnetic
field.Comment: RevTeX4, 5 pages, 3 figure
Poor screening and nonadiabatic superconductivity in correlated systems
In this paper we investigate the role of the electronic correlation on the
hole doping dependence of electron-phonon and superconducting properties of
cuprates. We introduce a simple analytical expression for the one-particle
Green's function in the presence of electronic correlation and we evaluate the
reduction of the screening properties as the electronic correlation increases
by approaching half-filling. The poor screening properties play an important
role within the context of the nonadiabatic theory of superconductivity. We
show that a consistent inclusion of the reduced screening properties in the
nonadiabatic theory can account in a natural way for the - phase
diagram of cuprates. Experimental evidences are also discussed.Comment: 12 Pages, 6 Figures, Accepted on Physical Review
MAGDALENA PERDOMO ACEDO [Material gráfico]
ESPOSA DE JUAN PADILLA PAZCopia digital. Madrid : Ministerio de Educación, Cultura y Deporte. Subdirección General de Coordinación Bibliotecaria, 201
Dissipation and noise in adiabatic quantum pumps
We investigate the distribution function, the heat flow and the noise
properties of an adiabatic quantum pump for an arbitrary relation of pump
frequency and temperature. To achieve this we start with the
scattering matrix approach for ac-transport. This approach leads to expressions
for the quantities of interest in terms of the side bands of particles exiting
the pump. The side bands correspond to particles which have gained or lost a
modulation quantum . We find that our results for the pump
current, the heat flow and the noise can all be expressed in terms of a
parametric emissivity matrix. In particular we find that the current
cross-correlations of a multiterminal pump are directly related a to a
non-diagonal element of the parametric emissivity matrix. The approach allows a
description of the quantum statistical correlation properties (noise) of an
adiabatic quantum pump
The fully differential single-top-quark cross section in next-to-leading order QCD
We present a new next-to-leading order calculation for fully differential
single-top-quark final states. The calculation is performed using phase space
slicing and dipole subtraction methods. The results of the methods are found to
be in agreement. The dipole subtraction method calculation retains the full
spin dependence of the final state particles. We show a few numerical results
to illustrate the utility and consistency of the resulting computer
implementations.Comment: 37 pages, latex, 2 ps figure
- …