
Improving the k-Nearest Neighbour Rule

by an Evolutionary Voting Approach

Jorge Garćıa-Gutiérrez, Daniel Mateos-Garćıa, and José C. Riquelme-Santos

Department of Computer Science,
Avda. Reina Mercedes S/N, 41012 Seville, Spain

{jorgarcia,mateosg,riquelme}@us.es

http://www.lsi.us.es

Abstract. This work presents an evolutionary approach to modify the
voting system of the k-Nearest Neighbours (kNN). The main novelty of
this article lies on the optimization process of voting regardless of the
distance of every neighbour. The calculated real-valued vector through
the evolutionary process can be seen as the relative contribution of every
neighbour to select the label of an unclassified example. We have tested
our approach on 30 datasets of the UCI repository and results have
been compared with those obtained from other 6 variants of the kNN
predictor, resulting in a realistic improvement statistically supported.

Keywords: kNN voting, evolutionary computation, fuzzy kNN.

1 Introduction

Weighting models are common techniques in hybrid approaches [1,2] and more 
specifically they are usually applied to classification problems. A proper fit of 
weights in the training step can thus improve the accuracy of a model. Artificial 
Neural Networks (ANNs) and Support Vector Machines (SVMs) might be the 
most evident examples of using weights in learning models, although it is also 
usual in the k-Nearest Neighbours rule (kNN). In any case, the main goal of 
weighting systems is to optimize a set of weights in the training step to obtain 
the highest accuracy and avoid overfitting in the resulting model.

If we focus on kNN weighting methods, most proposals are based on features or 
instances weighting by mean of a global or local procedure. An example of global 
methods can be found in [3] where authors select and remove features through a 
kNN-based genetic algorithm. That system optimizes a weighting vector to scale 
the feature space and also, it uses a bit vector to select features simultaneously. 
In a later work, the same authors show a hybrid evolutionary algorithm based 
on the Bayesian discriminant function [4]. The goal of this proposal is to isolate 
characteristics belonging to large datasets of biomedical origin by selecting and 
extracting features. Other heuristics can be found in the literature. Thus, in [5] 
the authors present an approach that is able of both selecting and weighting 
features simultaneously by using tabu search.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51405355?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.lsi.us.es


Regarding weighted decision regions, Fernández et al. propose a local weight-
ing system besides a prototype-based classifier [6]. After a data normalization
based on the position of the instances regarding the prototype (or region) which
they belong to, the weights are iteratively calculated. Alsukker et al. use differen-
tial evolution to find weights for different features of data [7]. They describe four
approaches: feature weighting, neighbour weighting, class weighting and mixed
weighting (features and classes), with the latter being the one providing the best
results. Mohemmed et al. present a nearest-centroid-based classifier [8]. The ba-
sis of this method lies in the calculation of prototypical instances by considering
the arithmetic average of the training data. When an unlabeled instance has to
be classified, the distance to every prototype is calculated and the nearest one is
selected. The optimization of the best centroids that minimize the classification
error is carried out through particle swarm.

Moreover, Paredes et al. use different similarity functions to improve the be-
haviour of nearest neighbour [9]. In a first approximation they consider a weight
by feature and instance on training data, resulting in a non-viable number of
parameters in the learning process. Thus, the authors present three types of
reduction: a weight by class and feature (label dependency), a weight by pro-
totype (prototype dependency) and a combination of the previous ones. The
optimization process is carried out by descendant gradient.

Another work based on label dependency is described in [10]. This approach
shows an evolutionary algorithm to find a weighted matrix (a weight by feature
and class) besides an optimum number (k) of neighbours. Furthermore, the re-
sults are statistically tested beyond the classical cross-validation method. There
are also references about the use of weights on unbalanced data. Liu et al. define
a new measure called Class Confidence Weight (CCW) to gauge the probability
that a feature value belong to a class [11]. The CCW estimation is performed
by mixture models for numeric features and Bayesian nets for categorical data.

We can find another point of view in the use of weights by applying fuzzy
sets theory to the kNN rule. The basis of this idea lies in the modulation of the
class membership by the neighbours and the adaptation of the predictive voting
system. This approach is called Fuzzy k Nearest Neighbour (Fuzzy kNN) and it
presents good results in many classification problems [12]. The main handicap
of this paradigm is the fuzzy membership definition, because although it can be
established by the expert or even deducted from data analysis, the assignment
of fuzzy values remains an open problem nowadays [13,14].

With all the previous in mind, we consider the use of a weighted system to
improve the kNN rule to relativize the class membership in the training phase.
Concretely, we work with the idea that the k neighbours contribute with dif-
ferent weights in the voting process of the kNN rule. Thus, we have designed
an evolutionary system, called Evolutionary Voting of Neighbours (EVoN), to
calculate the optimum vote weight of every neighbour from the training data
and the application of the subsequent k-NN. Unlike most of the approaches in
the literature our vector of weights is calculated independently of the neighbours



distance. Furthermore, its performance has been statistically validated on UCI
datasets [15].

The remaining of this study is organized as follows. Section 2 presents the
elements of the evolutionary algorithm designed to calculate the contribution
of the k nearest neighbours. The results and a number of statistical tests are
specified in Section 3. And finally, Section 4 presents the conclusions and future
work.

2 Method

In this section our voting optimization system called Evolutionary Voting of
Neighbours (EVoN) is described. For this, in subsection 2.1 we present the pur-
pose of this work and how the weighting vector from the learning process is used.
The subsection 2.2 exposes the optimization algorithm in detail.

2.1 Purpose and Functionality

As previously described, the aim of our work is to find a set of weights to modify
the influence of every neighbour when they vote. Thus, we try to improve the
class prediction of an unlabelled instance and therefore improve the kNN rule.
Whilst there are many references of approaches that use weighting votes, as
far as we know, most of the studies focus on the distance between instances.
In this way, the nearest neighbours are “heavier” than the furthest ones and
therefore, their influence is greater. In our case, weights are calculated by an
evolutionary algorithm regardless the distance. Obtaining a real-valued vector
could transform the influence of every neighbour regarding the class to predict
in the classification step. This means that the vote of a labeled neighbour is a
real value instead of the typical absolute value of 1. Thus, the label that classifies
a new instance is the maximum of the sums of the calculated weights for the
existing labels into the k nearest neighbours.

To show the learning process, we assume that the set of classes (or labels)
is represented by the natural numbers from 1 to b, with b being the number of
labels. Thus, let D = {(e, l) | e ∈ R

f and l ∈ {1, 2, ..., b}} be the dataset under
study with f being the number of features and b the number of labels. Let label
be an application that assigns to every element e the class to which it belongs to.
Let’s suppose that D is divided in the sets TR and TS with each of them being
the training set and the testing set respectively, such that D = TR ∪ TS and
TR ∩ TS = ∅. In this manner, the instances of TS (testing set) will be used to
evaluate the fitness of EVoN and therefore, they are not been considered for the
weights calculation. As will be detailed in subsection 2.2, obtaining a vectorW =
(ω1, ω2, ..., ωk) is carried out from the instances of TR exclusively. To classify



the instance y from TS, the k nearest instances to y are calculated from TR. If
xi is each neighbour, the assigned label to the instance y is given by:

label(y) = arg max
l∈{1..b}

k∑

i=1

ωiδ(l, label(xi)) (1)

where δ(l, label(xi)) is 1 if label(xi) = l and 0 in other case.

2.2 Voting Optimization

This subsection details the search algorithm to calculate the optimum contribu-
tion of k nearest neighbours. As mentioned above, this task is done by an evolu-
tionary algorithm and therefore, it is necessary to define its main characteristics
i.e., individual encoding, genetic operators, fitness function and generational re-
placement policy.

Individual Encoding. In our approach, an individual is a real-valued vector
symbolizing the relative contribution of every neighbour in the voting system of
the kNN rule. In the chosen design, the value at first position is associated with
the nearest neighbour, and the one at position i affects to the i-th neighbour.
In addition, a constraint is established to ensure that the closest neighbours are
more important i.e., ω1 ≥ ω2 ≥ ...ωk.

Regarding the initial population, it integrates individuals with k sorted values
between 0 and 1. To include the classic kNN, we include several vectors with
the first k values set to 1 and the remaining set to 0 in the initial population
e.g., (1.0, 0.0, ..., 0.0) for k = 1, (1.0, 1.0, ..., 0.0) for k = 2, and so on. Finally,
the maximum value of 1 for a weight may be surpassed during the evolutionary
process to highlight the importance of a concrete neighbour regarding the rest.

Crossover and Mutation. As we have mentioned in subsection 2.2 there is
a constraint in the order of the genes. On the other hand, the main goal of the
crossover operator is building a new individual (offspring) from the genotypic
characteristics of two parents (parent1 and parent2). To achieve both aims, the
crossover operator in the i-th gene is defined as follows:

offspring(i) =

{
BLX − α if i = 1

(max−min) ∗ γ +min in other case
Where:

BLX − α is the crossover operator defined in Eshelman and Schaffer [16]
γ is a random value between 0 and 1
max = offspring(i− 1)
min = minimum(parent1(i), parent2(i), offspring(i− 1))



Regarding the mutation operator, if we consider the individual indiv, the i-th
gene can change according to the following equation:

indiv′(i) =

⎧
⎨

⎩

indiv(i) + indiv(i) ∗ δ if i = 1
indiv(i)− indiv(i) ∗ δ if i = k

(indiv(i− 1)− indiv(i+ 1)) ∗ γ + indiv(i+ 1) otherwise

Where δ is a random value between 0 and 1 at the beginning. Later, the
upper limit is reduced in g/G with G being the number of generations of the
evolutionary algorithm and g the current generation. This reduction is used to
improve the fit across generations. Thus, for G = 100 and g = 10, the δ upper
limit is 1 in the first ten generations. In the following ten, it is 0.9. After another
ten generations, it is 0.8 and so on.

Fitness Function. The evolutionary algorithm uses TR ⊂ D exclusively to
obtain the contributions of the neighbours in the training step. Because of we
know the labels of the instances from TR, the fitness function is based on the
cross-validation error rate by using kNN and the weighted voting system.

The Figure 1 shows the fitness calculation with m×s cross validations, where
m is the number of iterations of the validation process (line 3) and s being the
number of partitions of training data TR (line 4). Thus, the set TR is divided in
the bags B1, B2...Bs for each validation. Then, every bag Bj is evaluated through
a classification process by using TR − Bj as a training set. This evaluation is
driven by the function Evaluate which we will describe later. The classification
error on every Bj is accumulated on average by partialError (lines 7 and 9),
and by error in every validation (line 10). Finally, the fitness value is the result
of calculating the average of all validations (line 12).

The input parameters of the function Evaluate are the weighted vector W ,
the k value, and the subsets TR − Bj and Bj (line 7). Therefore, the result of
this function is the error rate on Bj taking TR − Bj as reference to calculate
the neighbours.

For every single instance from the set used to measure the fitness (line 16), the
returned label by the function NearestN is the majority one according to the
k nearest instances belonging to the set used as training data (line 17). If
the returned label does not correspond to the real label of the testing instance,
the error is increased by 1 (line 19). Then, the resulting error is normalized with
the size of the set used as testing data (line 22). Therefore, the value returned
by Evaluate is a real number between 0 (all instances are well-classified) and 1
(all instances are misclassified).

The function NearestN calculates the nearest instances to the example y
belonging to the set under evaluation (line 24 and seq.). Every example of the
neighbours bag is then inserted in a sorted set according to the distance to y.
Thus, the example at the first position will be the nearest to y and the one
at the last position will be the furthest (line 27). When we select the k nearest
neighbours from the sorted set (line 29), the majority label is returned according



1: Fitness(W,k, TR) : error
2: error = 0
3: for i = 1 to m do
4: Divide TR in s bags: B1...Bs

5: partialError = 0
6: for j = 1 to s do
7: partialError = partialError+ Evaluate(W,k, TR−Bj , Bj)
8: end for
9: partialError = partialError/s
10: error = error + partialError
11: end for
12: error = error/m
13: return error

14: Evaluate(W,k, T rain, T est) : error
15: error = 0
16: for each instT est in Test do
17: lab = NearestN(W,k, T rain, instT est)
18: if lab �= label(insTest) then
19: error = error + 1
20: end if
21: end for
22: error = error/size(Test)
23: return error

24: NearestN(W,k, T rain, y) : labY
25: sortedInst and kNeighbours are empty sorted sets
26: for each x in Train do
27: insert x in sortedInst sorted by d(x, y)
28: end for
29: kNeighbours = sortedInst.get(k)
30: labY = majorityLabel(kneighbours,W )
31: return labY

Fig. 1. Fitness function

to the relative contribution of each neighbour expressed by the vector W and by
applying the equation 1 (lines 30 and 31).

Generational Policy. Regarding the transition between generations, we chose
an elitist designwhere the best individual is transferred from one generation to the
next but without being affected by the mutation operator. The remaining popula-
tion is built as follows: being N the number of individuals, C − 1 individuals are
created by cloning the best individual from the previous generation, and the next
N − C individuals result from the crossover operation. The selection of the indi-
viduals to cross is carried out by the tournament method. All individuals except
the first one is affected by the mutation operation with a probability of p.



3 Results

To measure the quality of our approach, we have compared EVoN with IBk
(implementation of kNN in the framework WEKA[17]) with k=1, 3 and 5. In
addition, we have used an implementation of Fuzzy kNN that can be downloaded
from [18].

Table 1. Accuracy of every studied algorithm

EVoN IB1 IB3 IB5 FNN1 FNN3 FNN5

australian 85.6 ± 1.3 80.2 ± 2.2 83.5 ± 1.9 84.3 ± 1.2 80.2 ± 2.2 83.8 ± 1.9 84.3 ± 1.1

balance s. 89.6 ± 0.6 86.8 ± 0.9 86.9 ± 1.1 88.2 ± 0.9 78.2 ± 3.5 82.3 ± 2.4 84.6 ± 1.3

breast t. 66.5 ± 5.3 68.2 ± 5.0 63.9 ± 5.9 65.3 ± 7.6 68.5 ± 5.0 65.9 ± 5.3 68.2 ± 5.5

breast w. 96.9 ± 1.1 95.6 ± 1.0 96.6 ± 0.9 97.1 ± 1.0 95.9 ± 1.0 96.6 ± 0.9 97.3 ± 1.0

car 93.4 ± 0.5 93.1 ± 0.5 93.1 ± 0.5 93.1 ± 0.5 76.9 ± 1.5 82.2 ± 1.5 85.9 ± 1.4

cmc 46.6 ± 1.5 44.3 ± 1.3 47.0 ± 1.6 45.9 ± 1.5 43.8 ± 1.3 45.4 ± 1.8 45.8 ± 1.4

diabetes 75.1 ± 1.6 70.9 ± 2.1 74.3 ± 2.2 74.7 ± 1.5 71.0 ± 1.8 74.2 ± 2.3 74.6 ± 1.5

ecoli 87.1 ± 2.1 80.2 ± 2.8 84.8 ± 2.1 86.4 ± 1.9 80.2 ± 2.8 84.8 ± 2.0 87.0 ± 1.9

glass 69.1 ± 2.8 70.0 ± 3.3 68.6 ± 3.4 66.1 ± 4.6 70.0 ± 3.4 68.9 ± 2.9 68.3 ± 3.5

haberman 70.9 ± 1.9 67.0 ± 2.5 71.5 ± 2.7 71.0 ± 1.7 66.2 ± 2.3 71.4 ± 2.3 70.5 ± 1.8

heart s. 80.6 ± 2.5 75.2 ± 3.1 78.5 ± 3.3 78.3 ± 3.1 75.4 ± 3.2 78.5 ± 3.3 78.4 ± 3.0

hill v. 49.0 ± 1.4 50.3 ± 1.5 51.1 ± 2.4 51.3 ± 2.5 50.2 ± 1.4 50.9 ± 2.2 51.4 ± 2.6

ionosphere 86.0 ± 2.4 86.8 ± 2.4 86.1 ± 1.7 85.6 ± 1.5 86.8 ± 2.4 86.1 ± 1.7 85.6 ± 1.5

liver d. 63.2 ± 5.2 59.3 ± 3.9 61.8 ± 3.8 58.3 ± 3.7 59.7 ± 4.0 62.1 ± 4.0 58.7 ± 3.9

lymphoma 83.3 ± 2.7 81.7 ± 3.0 78.7 ± 4.1 78.5 ± 4.3 82.1 ± 3.3 80.4 ± 4.0 79.4 ± 3.6

mammogr. 82.4 ± 1.6 76.8 ± 1.8 80.9 ± 1.8 82.2 ± 1.5 76.1 ± 2.0 80.6 ± 1.9 81.4 ± 1.4

mfeat m. 73.2 ± 1.3 65.8 ± 1.4 69.6 ± 1.3 71.0 ± 1.1 66.0 ± 1.6 69.7 ± 1.2 71.6 ± 1

ozone 94.1 ± 0.2 92.2 ± 0.9 93.9 ± 0.3 94.0 ± 0.3 92.2 ± 0.9 93.9 ± 0.3 94.0 ± 0.3

pendigits 99.3 ± 0.1 99.3 ± 0.1 99.3 ± 0.0 99.2 ± 0.0 99.3 ± 0.1 99.4 ± 0.0 99.2 ± 0.0

postoper. 72.6 ± 3.7 62.8 ± 3.0 69.2 ± 4.3 72.4 ± 3.8 56.5 ± 6.9 63.0 ± 5.6 64.9 ± 5.0

sonar 84.3 ± 3.6 84.8 ± 3.4 83.0 ± 4.9 82.5 ± 3.6 85.2 ± 3.2 82.3 ± 5.0 82.8 ± 3.7

sponge 88.7 ± 1.7 92.3 ± 3.0 88.7 ± 1.7 88.7 ± 1.7 91.7 ± 3.6 90.2 ± 2.2 88.7 ± 1.7

tae 63.3 ± 4.8 60.9 ± 6.1 50.3 ± 7.7 53.6 ± 5.8 62.4 ± 5.5 57.1 ± 5.2 54.4 ± 5.3

transfusion 78.3 ± 1.3 69.4 ± 2.0 73.8 ± 1.5 75.9 ± 1.6 68.9 ± 1.6 73.0 ± 1.3 75.6 ± 1.7

vehicle 71.3 ± 1.6 70.0 ± 1.4 70.5 ± 1.5 70.9 ± 1.5 69.8 ± 1.5 71.2 ± 1.7 72.3 ± 1.4

vote 93.1 ± 1.6 93.0 ± 1.5 93.9 ± 1.8 94.0 ± 2.3 93.1 ± 1.2 93.1 ± 1.7 94.0 ± 2.3

vowel 99.0 ± 0.3 99.0 ± 0.3 96.4 ± 1.4 92.7 ± 1.3 99.0 ± 0.3 96.4 ± 1.4 93.2 ± 1.3

wine 96.6 ± 1.6 94.5 ± 1.8 95.6 ± 2.2 95.4 ± 2.3 94.4 ± 1.8 95.7 ± 2.2 95.3 ± 2.3

yeast 60.4 ± 1.1 52.9 ± 1.4 55.2 ± 1.1 57.5 ± 1.3 53.0 ± 1.4 55.9 ± 1.3 57.6 ± 1.1

zoo 94.6 ± 2.2 95.3 ± 2.8 92.7 ± 2.7 94.6 ± 2.1 96.2 ± 2.1 92.7 ± 2.7 94.6 ± 2.1

79.8 ± 2.0 77.3 ± 2.2 78.0 ± 2.4 78.3 ± 2.3 76.3 ± 2.4 77.6 ± 2.4 78.0 ± 2.2



In the experiments we have chosen 30 datasets from the repository UCI[15]
with different types of features and classes. Furthermore, all data had the same
preprocessing profile i.e., binarization of nominal features, normalization and re-
placement of missing values by the average. Regarding the evolutionary search
configuration we have used a population of 100 individuals, 100 generations,
10% of elitism and a mutation probability of 0.1. In relation to the parameters
α (crossover) and g (mutation) their values were 0.5 and 20 respectively. With
previous parameters and using four Intel Xeon Processors E7-4820, the com-
putation time for one execution of the evolutionary algorithm with the biggest
data file (ozone dataset) with 2534 instances and 73 features was 40 minutes
aproximately.

Table 1 shows the results of the analyzed algorithms for each dataset and the
global averaged accuracy reached. Every dataset was evaluated with 10CV using
5 different seeds (50 executions in total). We can verify that the performance of
our algorithm was the best in 16 out of the 30 datasets, and the second best in 4
out of the remaining 14. Although our approach seems to outperform the rest of
competitors, the results have to be statistically validated to reinforce that con-
clusion. Thus, we have carried out a non-parametric Friedman test and a Holm
post-hoc procedure to find out if the performances of the different algorithms are
statistically different. The reason for using non-parametric tests lies in the high
vulnerability of the necessary conditions to apply parametric tests, specially for
the sphericity condition [19,20].

After applying the Friedman’ test we obtain the first position in the resulting
ranking of algorithms. This fact is consistent with the averaged results obtained
by each algorithm. After the calculation of the Friedman statistic, a p − value
of 2.679E − 4 was reached. Therefore, the null hypothesis (no statistical differ-
ence among the different algorithms) can be refused with α = 0.05. Notice that
Friedman’ test is not capable of stand out the best method. Thus, the Holm
post-hoc procedure allows to compare a control algorithm (in this case EVoN,
the best approach candidate) with the remaining. In this case all hypothesis of
equivalent performance were also rejected, so we can say that our algorithm is
significantly better than its competitors from a statistical point of view.

4 Conclusions

This work presents an method able of calculating the optimum contribution of
the k nearest neighbours. Unlike the classical approach that assigns an unitary
vote to each neighbour, our algorithm consider a real value (a weight). The main
novelty is that, to the best of our knowledge, there are not previous works that
consider a distance-independent kNN voting system. Thus, we use evolutionary
computation to search a weighted-vector representing the contribution of every
instance from the training data. This process is carried out through the genetic
operators and without the intervention of the distance function. Our voting
approach was tested on 30 datasets from the UCI repository against another 6
kNN-based algorithms, with the results showing a realistic improvement that was



statistically supported. In future work, we will focus in the improvement of the
fitness function of the evolutionary algorithm to avoid the full dependence with
the classification error rate. The main goal of this idea is to achieve a smoothing
effect of the learning curve, and therefore accomplish a more accurate searching
task of solutions.

References

1. Corchado, E., Wozniak, M., Abraham, A., de Carvalho, A.C.P.L.F., Snásel, V.:
Recent trends in intelligent data analysis. Neurocomputing 126, 1–2 (2014)

2. Abraham, A.: Special issue: Hybrid approaches for approximate reasoning. Journal
of Intelligent and Fuzzy Systems 23(2-3), 41–42 (2012)

3. Raymer, M.L., Punch, W.F., Goodman, E.D., Kuhn, L.A., Jain, A.K.: Dimen-
sionality reduction using genetic algorithms. IEEE Transactions on Evolutionary
Computation 4(2), 164–171 (2000)

4. Raymer, M., Doom, T., Kuhn, L., Punch, W.: Knowledge discovery in medical and
biological datasets using a hybrid bayes classifier/evolutionary algorithm. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 33(5), 802–
813 (2003)

5. Tahir, M.A., Bouridane, A., Kurugollu, F.: Simultaneous feature selection and
feature weighting using hybrid tabu search/k-nearest neighbor classifier. Pattern
Recognition Letters 28(4), 438–446 (2007)

6. Fernandez, F., Isasi, P.: Local feature weighting in nearest prototype classification.
IEEE Transactions on Neural Networks 19(1), 40 (2008)

7. AlSukker, A., Khushaba, R., Al-Ani, A.: Optimizing the k-nn metric weights using
differential evolution. In: 2010 International Conference on Multimedia Computing
and Information Technology (MCIT), pp. 89–92 (2010)

8. Mohemmed, A.W., Zhang, M.: Evaluation of particle swarm optimization based
centroid classifier with different distance metrics. In: IEEE Congress on Evolution-
ary Computation 2008, pp. 2929–2932 (2008)

9. Paredes, R., Vidal, E.: Learning weighted metrics to minimize nearest-neighbor
classification error. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 28(7), 1100–1110 (2006)

10. Mateos-Garćıa, D., Garćıa-Gutiérrez, J., Riquelme-Santos, J.C.: On the evolution-
ary optimization of k-nn by label-dependent feature weighting. Pattern Recognition
Letters 33(16), 2232–2238 (2012)

11. Liu, W., Chawla, S.: Class confidence weighted kNN algorithms for imbalanced
data sets. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part II.
LNCS, vol. 6635, pp. 345–356. Springer, Heidelberg (2011)

12. Keller, J.M., Gray Jr., M.R.: A fuzzy k-nearest neighbor algorithm. IEEE Trans-
actions on Systems, Man, and Cybernetics 15, 580–585 (1985)

13. Mendel, J.M.: Advances in type-2 fuzzy sets and systems. Information Sci-
ences 177(1), 84 (2007)

14. Sanz, J., Fernández, A., Bustince, H., Herrera, F.: A genetic tuning to improve the
performance of fuzzy rule-based classification systems with interval-valued fuzzy
sets: Degree of ignorance and lateral position. International Journal of Approximate
Reasoning 52(6), 751–766 (2011)

15. Asuncion, A., Newman, D.: UCI machine learning repository (2007)



16. Eshelman, L.J., Schaffer, J.D.: Real-coded genetic algorithms and interval-
schemata. In: Whitley, D.L. (ed.) Foundation of Genetic Algorithms 2, San Mateo,
CA, pp. 187–202. Morgan Kaufmann (1993)

17. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: An update. SIGKDD Explorations 11(1) (2009)

18. Jensen, R., Shen, Q.: Computational intelligence and feature selection: Rough and
fuzzy approaches (2008), http://users.aber.ac.uk/rkj/book/programs.php

19. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

20. Garćıa, S., Herrera, F.: An Extension on “Statistical Comparisons of Classifiers over
Multiple Data Sets” for all Pairwise Comparisons. Journal of Machine Learning
Research 9, 2677–2694 (2008)

http://users.aber.ac.uk/rkj/book/programs.php

	Improving the k-Nearest Neighbour Rule by an Evolutionary Voting Approach

	1 Introduction
	2 Method
	2.1 Purpose and Functionality
	2.2 Voting Optimization

	3 Results
	4 Conclusions
	References




