1,249 research outputs found

    Renormalization of the electron-phonon coupling in the one-band Hubbard model

    Get PDF
    We investigate the effect of electronic correlations on the coupling of electrons to Holstein phonons in the one-band Hubbard model. We calculate the static electron-phonon vertex within linear response of Kotliar-Ruckenstein slave-bosons in the paramagnetic saddle-point approximation. Within this approach the on-site Coulomb interaction U strongly suppresses the coupling to Holstein phonons at low temperatures. Moreover the vertex function does not show particularly strong forward scattering. Going to larger temperatures kT\sim t we find that after an initial decrease with U, the electron-phonon coupling starts to increase with U, confirming a recent result of Cerruti, Cappelluti, and Pietronero. We show that this behavior is related to an unusual reentrant behavior from a phase separated to a paramagnetic state upon decreasing the temperature.Comment: 4 pages, 6 figure

    Incorporating landscape heterogeneities in the spread of an epidemics in wildlife

    Get PDF
    One of the main difficulties in the modeling and numerical simulation of the spread of an infectious disease in wildlife resides in properly taking into account the heterogeneities of the landscape. Forests, plains and mountains present different levels of hospitality, while large interstates, lakes and major waterways can provide strong natural barriers to the epidemic spread. A canonical approach has been to discretize both population and geography into geopolitical units and consider the movement of individuals from unit to unit [4]. This approach, however, does not well represent the biological realities of animal movement, since animals do not move at the scale of geopolitical units. We combine a standard SEI epidemiological model with a diffusion process to account for movement as a continuous process across a continuous region [1]. This results in a system of parabolic reaction-diffusion equations with nonlinear reaction term. Landscape heterogeneities are accounted for by including in the computational domain the significant geographical features of the area. We discretize the resulting model in time by an IMEX scheme and in space by finite elements. To show the effectiveness of the method, we present numerical simulation for rabies epidemics among raccoons in New York State

    Numerical simulation of a susceptible-exposed-infectious space-continuous model for the spread of rabies in raccoons across a realistic landscape

    Get PDF
    We introduce a numerical model for the spread of a lethal infectious disease in wildlife. The reference model is a Susceptible-Exposed-Infectious system where the spatial component of the dynamics is modelled by a diffusion process. The goal is to develop a model to be used for real geographical scenarios, so we do not rely upon simplifying assumptions on the shape of the region of interest. For this reason, space discretization is carried out with the finite element method on an unstructured triangulation. A diffusion term is designed to take into account landscape heterogeneities such as mountains and waterways. Numerical simulations are carried out for rabies epidemics among raccoons in New York state. A qualitative comparison of numerical results to available data from real-world epidemics is discussed

    Decoherence in circuits of small Josephson junctions

    Full text link
    We discuss dephasing by the dissipative electromagnetic environment and by measurement in circuits consisting of small Josephson junctions. We present quantitative estimates and determine in which case the circuit might qualify as a quantum bit. Specifically, we analyse a three junction Cooper pair pump and propose a measurement to determine the decoherence time τϕ\tau_\phi.Comment: 4 pages, 4 figure

    Measurement of coherent charge transfer in an adiabatic Cooper pair pump

    Get PDF
    We study adiabatic charge transfer in a superconducting Cooper pair pump, focusing on the influence of current measurement on coherence. We investigate the limit where the Josephson coupling energy EJE_J between the various parts of the system is small compared to the Coulomb charging energy ECE_C. In this case the charge transferred in a pumping cycle QP∌2eQ_P \sim 2e, the charge of one Cooper pair: the main contribution is due to incoherent Cooper pair tunneling. We are particularly interested in the quantum correction to QPQ_P, which is due to coherent tunneling of pairs across the pump and which depends on the superconducting phase difference ϕ0\phi_0 between the electrodes: 1−QP/(2e)∌(EJ/EC)cosâĄÏ•01-Q_P/(2e) \sim (E_J/E_C) \cos \phi_0. A measurement of QPQ_P tends to destroy the phase coherence. We first study an arbitrary measuring circuit and then specific examples and show that coherent Cooper pair transfer can in principle be detected using an inductively shunted ammeter

    Argon annealing of the oxygen-isotope exchanged manganite La_{0.8}Ca_{0.2}MnO_{3+y}

    Full text link
    We have resolved a controversial issue concerning the oxygen-isotope shift of the ferromagnetic transition temperature T_{C} in the manganite La_{0.8}Ca_{0.2}MnO_{3+y}. We show that the giant oxygen-isotope shift of T_C observed in the normal oxygen-isotope exchanged samples is indeed intrinsic, while a much smaller shift observed in the argon annealed samples is an artifact. The argon annealing causes the 18O sample to partially exchange back to the 16O isotope due to a small 16O contamination in the Ar gas. Such a contamination is commonly caused by the oxygen outgas that is trapped in the tubes, connectors and valves. The present results thus umambiguously demonstrate that the observed large oxygen isotope effect is an intrinsic property of manganites, and places an important constraint on the basic physics of these materials.Comment: 4 pages, 3 figures, submitted to PR

    Experimental Entanglement Concentration and Universal Bell-state Synthesizer

    Get PDF
    We report a novel Bell-state synthesizer in which an interferometric entanglement concentration scheme is used. An initially mixed polarization state from type-II spontaneous parametric down-conversion becomes entangled after the interferometric entanglement concentrator. This Bell-state synthesizer is universal in the sense that the output polarization state is not affected by spectral filtering, crystal thickness, and, most importantly, the choice of pump source. It is also robust against environmental disturbance and a more general state, partially mixed−-partially entangled state, can be readily generated as well.Comment: Minor update (Newer data

    Nonlinear porous medium flow with fractional potential pressure

    Full text link
    We study a porous medium equation, with nonlocal diffusion effects given by an inverse fractional Laplacian operator. We pose the problem in n-dimensional space for all t>0 with bounded and compactly supported initial data, and prove existence of a weak and bounded solution that propagates with finite speed, a property that is nor shared by other fractional diffusion models.Comment: 32 pages, Late

    Formalism of collective electron excitations in fullerenes

    Full text link
    We present a detailed formalism for the description of collective electron excitations in fullerenes in the process of the electron inelastic scattering. Considering the system as a spherical shell of a finite width, we show that the differential cross section is defined by three plasmon excitations, namely two coupled modes of the surface plasmon and the volume plasmon. The interplay of the three plasmons appears due to the electron diffraction of the fullerene shell. Plasmon modes of different angular momenta provide dominating contributions to the differential cross section depending on the transferred momentum.Comment: 11 pages, 2 figures; submitted to the special issue "Atomic Cluster Collisions: Structure and Dynamics from the Nuclear to the Biological Scale" of Eur. Phys. J.

    Antiferromagnetic Domains and Superconductivity in UPt3

    Full text link
    We explore the response of an unconventional superconductor to spatially inhomogeneous antiferromagnetism (SIAFM). Symmetry allows the superconducting order parameter in the E-representation models for UPt3 to couple directly to the AFM order parameter. The Ginzburg-Landau equations for coupled superconductivity and SIAFM are solved numerically for two possible SIAFM configurations: (I) abutting antiferromagnetic domains of uniform size, and (II) quenched random disorder of `nanodomains' in a uniform AFM background. We discuss the contributions to the free energy, specific heat, and order parameter for these models. Neither model provides a satisfactory account of experiment, but results from the two models differ significantly. Our results demonstrate that the response of an E_{2u} superconductor to SIAFM is strongly dependent on the spatial dependence of AFM order; no conclusion can be drawn regarding the compatibility of E_{2u} superconductivity with UPt3 that is independent of assumptions on the spatial dependence of AFMComment: 12 pages, 13 figures, to appear in Phys. Rev.
    • 

    corecore