64 research outputs found

    LPS-induced IL-8 activation in human intestinal epithelial cells is accompanied by specific histone H3 acetylation and methylation changes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The release of LPS by bacteria stimulates both immune and specific epithelial cell types to release inflammatory mediators. It is known that LPS induces the release of IL-8 by intestinal mucosal cells. Because it is now emerging that bacteria may induce alteration of epigenetic patterns in host cells, we have investigated whether LPS-induced IL-8 activation in human intestinal epithelial cells involves changes of histone modifications and/or DNA methylation at IL-8 gene regulatory region.</p> <p>Results</p> <p>RT-PCR analysis showed that IL-8 mRNA levels rapidly increase after exposure of HT-29 cells to LPS. DNA demethylating agents had no effects on IL-8 expression, suggesting that DNA methylation was not involved in IL-8 gene regulation. Consistently we found that 5 CpG sites located around IL-8 transcription start site (-83, -7, +73, +119, +191) were unmethylated on both lower and upper strand either in LPS treated or in untreated HT-29 cells, as well as in normal intestinal mucosa.</p> <p>Conversely, pretreatment of HT-29 cells with deacetylase inhibitors strengthened the LPS-mediated IL-8 activation. Inhibitors of histone deacetylases could induce IL-8 mRNA expression also in the absence of LPS, suggesting that chromatin modifications could be involved in IL-8 gene regulation. Chromatin immunoprecipitation analyses showed that, concurrently with IL-8 activation, transient specific changes in H3 acetylation and H3K4, H3K9 and H3K27 methylation occurred at IL-8 gene promoter during LPS stimulation. Changes of H3-acetyl, H3K4me2 and H3K9me2 levels occurred early, transiently and corresponded to transcriptional activity, while changes of H3K27me3 levels at IL-8 gene occurred later and were long lasting.</p> <p>Conclusion</p> <p>The results showed that specific chromatin modifications occurring at IL-8 gene, including histone H3 acetylation and methylation, mark LPS-mediated IL-8 activation in intestinal epithelial cells while it is unlikely that DNA methylation of IL-8 promoter is directly involved in IL-8 gene regulation in these cells.</p

    Epigenetic Switch at Atp2a2 and Myh7 Gene Promoters in Pressure Overload-Induced Heart Failure

    Get PDF
    Re-induction of fetal genes and/or re-expression of postnatal genes represent hallmarks of pathological cardiac remodeling, and are considered important in the progression of the normal heart towards heart failure (HF). Whether epigenetic modifications are involved in these processes is currently under investigation. Here we hypothesized that histone chromatin modifications may underlie changes in the gene expression program during pressure overload-induced HF. We evaluated chromatin marks at the promoter regions of the sarcoplasmic reticulum Ca2+ATPase (SERCA-2A) and β-myosin-heavy chain (β-MHC) genes (Atp2a2 and Myh7, respectively) in murine hearts after one or eight weeks of pressure overload induced by transverse aortic constriction (TAC). As expected, all TAC hearts displayed a significant reduction in SERCA-2A and a significant induction of β-MHC mRNA levels. Interestingly, opposite histone H3 modifications were identified in the promoter regions of these genes after TAC, including H3 dimethylation (me2) at lysine (K) 4 (H3K4me2) and K9 (H3K9me2), H3 trimethylation (me3) at K27 (H3K27me3) and dimethylation (me2) at K36 (H3K36me2). Consistently, a significant reduction of lysine-specific demethylase KDM2A could be found after eight weeks of TAC at the Atp2a2 promoter. Moreover, opposite changes in the recruitment of DNA methylation machinery components (DNA methyltransferases DNMT1 and DNMT3b, and methyl CpG binding protein 2 MeCp2) were found at the Atp2a2 or Myh7 promoters after TAC. Taken together, these results suggest that epigenetic modifications may underlie gene expression reprogramming in the adult murine heart under conditions of pressure overload, and might be involved in the progression of the normal heart towards HF

    Chromatin and DNA methylation dynamics during retinoic acid-induced RET gene transcriptional activation in neuroblastoma cells.

    Get PDF
    Although it is well known that RET gene is strongly activated by retinoic acid (RA) in neuroblastoma cells, the mechanisms underlying such activation are still poorly understood. Here we show that a complex series of molecular events, that include modifications of both chromatin and DNA methylation state, accompany RA-mediated RET activation. Our results indicate that the primary epigenetic determinants of RA-induced RET activation differ between enhancer and promoter regions. At promoter region, the main mark of RET activation was the increase of H3K4me3 levels while no significant changes of the methylation state of H3K27 and H3K9 were observed. At RET enhancer region a bipartite chromatin domain was detected in unstimulated cells and a prompt demethylation of H3K27me3 marked RET gene activation upon RA exposure. Moreover, ChIP experiments demonstrated that EZH2 and MeCP2 repressor complexes were associated to the heavily methylated enhancer region in the absence of RA while both complexes were displaced during RA stimulation. Finally, our data show that a demethylation of a specific CpG site at the enhancer region could favor the displacement of MeCP2 from the heavily methylated RET enhancer region providing a novel potential mechanism for transcriptional regulation of methylated RA-regulated loci

    Implicit Essentialism: Genetic Concepts Are Implicitly Associated with Fate Concepts

    Get PDF
    Genetic essentialism is the tendency for people to think in more essentialist ways upon encountering genetic concepts. The current studies assessed whether genetic essentialist biases would also be evident at the automatic level. In two studies, using different versions of the Implicit Association Test [1], we found that participants were faster to categorize when genes and fate were linked, compared to when these two concepts were kept separate and opposing. In addition to the wealth of past findings of genetic essentialism with explicit and deliberative measures, these biases appear to be also evident with implicit measure

    Early sympathy and social acceptance predict the development of sharing in children.

    Get PDF
    Sharing is a fascinating activity of the human species and an important basis for the development of fairness, care, and cooperation in human social interaction. Economic research has proposed that sharing, or the willingness to sacrifice own resources for others, has its roots in social emotions such as sympathy. However, only few cross-sectional experiments have investigated children's other-regarding preferences, and the question how social-emotional skills influence the willingness to share valuable resources has not been tested. In the present longitudinal-experimental study, a sample of 175 6-year-old children, their primary caregivers, and their teachers is examined over a 3-year period of time. Data are analyzed by means of growth curve modeling. The findings show that sharing valuable resources strongly increases in children from 6 to 9 years of age. Increases in sharing behavior are associated with the early-developing ability to sympathize with anonymous others. Sharing at 7 years of age is predicted by feelings of social acceptance at 6 years of age. These findings hold after controlling for children's IQ and SES. Girls share more equally than boys at 6 and 7 years of age, however, this gender difference disappears at the age of 9 years. These results indicate that human sharing strongly increases in middle childhood and, that this increase is associated with sympathy towards anonymous others and with feelings of social acceptance. Additionally, sharing develops earlier in girls than in boys. This developmental perspective contributes to new evidence on change in sharing and its social-emotional roots. A better understanding of the factors underlying differences in the development of sharing and pro-social orientations should also provide insights into the development of atypical, anti-social orientations which exhibit social-emotional differences such as aggression and bullying behavior

    Helicobacter pylori regulates iNOS promoter by histone modifications in human gastric epithelial cells. [R. Pero* corresponding author]

    Get PDF
    Inducible nitric oxide synthase (iNOS) expression is altered in gastrointestinal diseases. Helicobacter pylori (Hp) infection may have a critical role in iNOS disregulation. We undertook this study to investigate possible chromatin changes occurring early during iNOS gene activation as a direct consequence of Hp???gastric cells interaction. We show that Hp infection is followed by different expression and chromatin modifications in gastric cells including (1) activation of iNOS gene expression, (2) chromatin changes at iNOS promoter including decreased H3K9 methylation and increased H3 acetylation and H3K4 methylation levels, (3) selective release of methyl-CpG-binding protein 2 from the iNOS promoter. Moreover, we show that Hp-induced activation of iNOS is delayed, but not eliminated, by the treatment with LSD1 inhibitors. Our data suggest a role for specific chromatin-based mechanisms in the control of human iNOS gene expression upon Hp exposure

    Barrel pattern formation requires serotonin uptake by thalamocortical afferents, and not vesicular monoamine release

    Get PDF
    Thalamocortical neurons innervating the barrel cortex in neonatal rodents transiently store serotonin (5-HT) in synaptic vesicles by expressing the plasma membrane serotonin transporter (5-HTT) and the vesicular monoamine transporter (VMAT2). 5-HTT knock-out (ko) mice reveal a nearly complete absence of 5-HT in the cerebral cortex by immunohistochemistry, and of barrels, both at P7 and adulthood. Quantitative electron microscopy reveals that 5-HTT ko affects neither the density of synapses nor the length of synaptic contacts in layer IV. VMAT2 ko mice, completely lacking activity-dependent vesicular release of monoamines including 5-HT, also show a complete lack of 5-HT in the cortex but display largely normal barrel fields, despite sometimes markedly reduced postnatal growth. Transient 5-HTT expression is thus required for barrel pattern formation, whereas activity-dependent vesicular 5-HT release is not

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types
    • …
    corecore