2,163 research outputs found
Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: single particle analysis during the Cloud and Aerosol Characterization Experiment (CLACE 6)
Two different single particle mass spectrometers were operated in parallel at the Swiss High Alpine Research Station Jungfraujoch (JFJ, 3580 m a.s.l.) during the Cloud and Aerosol Characterization Experiment (CLACE 6) in February and March 2007. During mixed phase cloud events ice crystals from 5–20 micro m were separated from larger ice aggregates, non-activated, interstitial aerosol particles and supercooled droplets using an Ice-Counterflow Virtual Impactor (Ice-CVI). During one cloud period supercooled droplets were additionally sampled and analyzed by changing the Ice-CVI setup. The small ice particles and droplets were evaporated by injection into dry air inside the Ice-CVI. The resulting ice and droplet residues (IR and DR) were analyzed for size and composition by the two single particle mass spectrometers: a custom-built Single Particle Laser-Ablation Time-of-Flight Mass Spectrometer (SPLAT) and a commercial Aerosol Time-of-Flight Mass Spectrometer (ATOFMS, TSI Model 3800). During CLACE 6 the SPLAT instrument characterized 355 individual IR that produced a mass spectrum for at least one polarity and the ATOFMS measured 152 IR. The mass spectra were binned in classes, based on the combination of dominating substances, such as mineral dust, sulfate, potassium and elemental carbon or organic material. The derived chemical information from the ice residues is compared to the JFJ ambient aerosol that was sampled while the measurement station was out of clouds (several thousand particles analyzed by SPLAT and ATOFMS) and to the composition of the residues of supercooled cloud droplets (SPLAT: 162 cloud droplet residues analyzed, ATOFMS: 1094). The measurements showed that mineral dust was strongly enhanced in the ice particle residues. Close to all of the SPLAT spectra from ice residues did contain signatures from mineral compounds, albeit connected with varying amounts of soluble compounds. Similarly, close to all of the ATOFMS IR spectra show a mineral or metallic component. Pure sulfate and nitrate containing particles were depleted in the ice residues. Sulfate and nitrate was found to dominate the droplet residues (~90% of the particles). The results from the two different single particle mass spectrometers were generally in agreement. Differences in the results originate from several causes, such as the different wavelength of the desorption and ionisation lasers and different size-dependent particle detection efficiencies
Video object detection for privacy-preserving patient monitoring in intensive care
Patient monitoring in intensive care units, although assisted by biosensors,
needs continuous supervision of staff. To reduce the burden on staff members,
IT infrastructures are built to record monitoring data and develop clinical
decision support systems. These systems, however, are vulnerable to artifacts
(e.g. muscle movement due to ongoing treatment), which are often
indistinguishable from real and potentially dangerous signals. Video recordings
could facilitate the reliable classification of biosignals using object
detection (OD) methods to find sources of unwanted artifacts. Due to privacy
restrictions, only blurred videos can be stored, which severely impairs the
possibility to detect clinically relevant events such as interventions or
changes in patient status with standard OD methods. Hence, new kinds of
approaches are necessary that exploit every kind of available information due
to the reduced information content of blurred footage and that are at the same
time easily implementable within the IT infrastructure of a normal hospital. In
this paper, we propose a new method for exploiting information in the temporal
succession of video frames. To be efficiently implementable using off-the-shelf
object detectors that comply with given hardware constraints, we repurpose the
image color channels to account for temporal consistency, leading to an
improved detection rate of the object classes. Our method outperforms a
standard YOLOv5 baseline model by +1.7% [email protected] while also training over ten
times faster on our proprietary dataset. We conclude that this approach has
shown effectiveness in the preliminary experiments and holds potential for more
general video OD in the future.Comment: 4 pages, 3 figures, 2023 10th Swiss Conference on Data Science (SDS),
code available at https://github.com/raember/yolov5r_autodidact and
https://github.com/raember/VideoPro
Treating asthma: is there a place for leukotriene receptor antagonists?
SummaryAsthma is a chronic disorder, characterized by airway hyperresponsiveness (AHR), airway inflammation and airway remodelling. Evidence has been provided for a relationship between pathophysiology, airway inflammation and remodelling. Moreover, these asthma features have been shown to respond to anti-inflammatory therapy. According to current guidelines, monitoring of asthma is predominantly based on symptoms and lung function data. However, these parameters appeared as poor indices for asthma control. Alternatively, asthma control relates well to exacerbations and (anamnestic) surrogate biomarkers of airway inflammation. Hence, appropriate treatment of asthma should primarily target the airway inflammation.According to current guidelines for asthma management, anti-inflammatory therapy with inhaled corticosteroids (ICS) is the cornerstone in the treatment of persistent asthma. To further optimize asthma control, add-on therapy with long-acting β2-agonists (LABA) or leukotriene receptor antagonists (LTRA) should be combined with low to high doses of ICS. While the first combination focuses on optimal control of symptoms and lung function, the second provides a more complete suppression of the airway inflammation.In this paper we discuss treatment of asthma according to current guidelines versus new insights, addressing practical issues
Errors and Improvements in the Use of Archived Meteorological Data for Chemical Transport Modeling: An Analysis Using GEOS-Chem V11-01 Driven by GEOS-5 Meteorology
Global simulations of atmospheric chemistry are commonly conducted with off-line chemical transport models (CTMs) driven by archived meteorological data from general circulation models (GCMs). The off-line approach has the advantages of simplicity and expediency, but it incurs errors due to temporal averaging in the meteorological archive and the inability to reproduce the GCM transport algorithms exactly. The CTM simulation is also often conducted at coarser grid resolution than the parent GCM. Here we investigate this cascade of CTM errors by using (exp 222)Rn(exp 210)Pb(exp 7)Be chemical tracer simulations off-line in the GEOS-Chem CTM at rectilinear 0.250.3125 (25km) and 22.5 (200km) resolutions and online in the parent GEOS-5 GCM at cubed-sphere c360 (25km) and c48 (200km) horizontal resolutions. The c360 GEOS-5 GCM meteorological archive, updated every 3h and remapped to 0.250.3125, is the standard operational product generated by the NASA Global Modeling and Assimilation Office (GMAO) and used as input by GEOS-Chem. We find that the GEOS-Chem (exp 222)Rn simulation at native 0.250.3125 resolution is affected by vertical transport errors of up to 20% relative to the GEOS-5 c360 online simulation, in part due to loss of transient organized vertical motions in the GCM (resolved convection) that are temporally averaged out in the 3h meteorological archive. There is also significant error caused by operational remapping of the meteorological archive from a cubed-sphere to a rectilinear grid. Decreasing the GEOS-Chem resolution from 0.250.3125 to 22.5 induces further weakening of vertical transport as transient vertical motions are averaged out spatially and temporally. The resulting (exp 222)Rn concentrations simulated by the coarse-resolution GEOS-Chem are overestimated by up to 40% in surface air relative to the online c360 simulations and underestimated by up to 40% in the upper troposphere, while the tropospheric lifetimes of (exp 210)Pb and (exp 7)Be against aerosol deposition are affected by 510%. The lost vertical transport in the coarse-resolution GEOS-Chem simulation can be partly restored by recomputing the convective mass fluxes at the appropriate resolution to replace the archived convective mass fluxes and by correcting for bias in the spatial averaging of boundary layer mixing depths
Preimplantation factor modulates oligodendrocytes by H19-induced demethylation of NCOR2.
Failed or altered gliogenesis is a major characteristic of diffuse white matter injury in survivors of premature birth. The developmentally regulated long noncoding RNA (lncRNA) H19 inhibits S-adenosylhomocysteine hydrolase (SAHH) and contributes to methylation of diverse cellular components, such as DNA, RNA, proteins, lipids, and neurotransmitters. We showed that the pregnancy-derived synthetic PreImplantation Factor (sPIF) induces expression of the nuclear receptor corepressor 2 (NCOR2) via H19/SAHH-mediated DNA demethylation. In turn, NCOR2 affects oligodendrocyte differentiation markers. Accordingly, after hypoxic-ischemic brain injury in rodents, myelin protection and oligodendrocytes' fate are in part modulated by sPIF and H19. Our results revealed an unexpected mechanism of the H19/SAHH axis underlying myelin preservation during brain recovery and its use in treating neurodegenerative diseases can be envisioned
Model-Based and Model-Free Decisions in Alcohol Dependence
This publication is with permission of the rights owner freely accessible due to an alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Background: Human and animal work suggests a shift from goal-directed to habitual decision-making in addiction. However, the evidence for this in human alcohol dependence is as yet inconclusive. Methods: Twenty-six healthy controls and 26 recently detoxified alcohol-dependent patients underwent behavioral testing with a 2-step task designed to disentangle goal-directed and habitual response patterns. Results: Alcohol-dependent patients showed less evidence of goal-directed choices than healthy controls, particularly after losses. There was no difference in the strength of the habitual component. The group differences did not survive controlling for performance on the Digit Symbol Substitution Task. Conclusion: Chronic alcohol use appears to selectively impair goal-directed function, rather than promoting habitual responding. It appears to do so particularly after nonrewards, and this may be mediated by the effects of alcohol on more general cognitive functions subserved by the prefrontal cortex.Peer Reviewe
Boundary Entropy Can Increase Under Bulk RG Flow
The boundary entropy log(g) of a critical one-dimensional quantum system (or
two-dimensional conformal field theory) is known to decrease under
renormalization group (RG) flow of the boundary theory. We study instead the
behavior of the boundary entropy as the bulk theory flows between two nearby
critical points. We use conformal perturbation theory to calculate the change
in g due to a slightly relevant bulk perturbation and find that it has no
preferred sign. The boundary entropy log(g) can therefore increase during
appropriate bulk flows. This is demonstrated explicitly in flows between
minimal models. We discuss the applications of this result to D-branes in
string theory and to impurity problems in condensed matter.Comment: 20 page
- …