460 research outputs found

    Ion-lithium collision dynamics studied with an in-ring MOTReMi

    Get PDF
    We present a novel experimental tool allowing for kinematically complete studies of break-up processes of laser-cooled atoms. This apparatus, the 'MOTReMi', is a combination of a magneto-optical trap (MOT) and a Reaction Microscope (ReMi). Operated in an ion-storage ring, the new setup enables to study the dynamics in swift ion-atom collisions on an unprecedented level of precision and detail. In first experiments on collisions with 1.5 MeV/amu O8+^{8+}-Li the pure ionization of the valence electron as well as ionization-excitation of the lithium target has been investigated

    Breit Equation with Form Factors in the Hydrogen Atom

    Full text link
    The Breit equation with two electromagnetic form-factors is studied to obtain a potential with finite size corrections. This potential with proton structure effects includes apart from the standard Coulomb term, the Darwin term, retarded potentials, spin-spin and spin-orbit interactions corresponding to the fine and hyperfine structures in hydrogen atom. Analytical expressions for the hyperfine potential with form factors and the subsequent energy levels including the proton structure corrections are given using the dipole form of the form factors. Numerical results are presented for the finite size corrections in the 1S and 2S hyperfine splittings in the hydrogen atom, the Sternheim observable D21D_{21} and the 2S and 2P hyperfine splittings in muonic hydrogen. Finally, a comparison with some other existing methods in literature is presented.Comment: 24 pages, Latex, extended version, title change

    Z^* Resonances: Phenomenology and Models

    Get PDF
    We explore the phenomenology of, and models for, the Z^* resonances, the lowest of which is now well established, and called the Theta. We provide an overview of three models which have been proposed to explain its existence and/or its small width, and point out other relevant predictions, and potential problems, for each. The relation to what is known about KN scattering, including possible resonance signals in other channels, is also discussed.Comment: 29 pages, uses RevTeX4; expanded version (published form

    History of exotic Meson (4-quark) and Baryon (5-quark) States

    Full text link
    I briefly review the history of exotic meson (4-quark) and baryon (5-quark) states, which is rooted in the formalism of Regge pole and duality. There are robust model-independent predictions for the exchange of 4-quark (Baryonium) Regge trajectories in several processes, which are strongly supported by experiment. On the other hand the predictions for the spectroscopy of 4-quark resonances are based on specific QCD inspired models, with some experimental support. The corresponding predictions for the recently discovered exotic baryon (Pentaquark) state are briefly discussed.Comment: 14 pages Latex including 4 eps figures, final version to appear as a topical review in J. Phys.

    Quasi-Elastic Scattering in the Inclusive (3^3He, t) Reaction

    Get PDF
    The triton energy spectra of the charge-exchange 12^{12}C(3^3He,t) reaction at 2 GeV beam energy are analyzed in the quasi-elastic nucleon knock-out region. Considering that this region is mainly populated by the charge-exchange of a proton in 3^3He with a neutron in the target nucleus and the final proton going in the continuum, the cross-sections are written in the distorted-wave impulse approximation. The t-matrix for the elementary exchange process is constructed in the DWBA, using one pion- plus rho-exchange potential for the spin-isospin nucleon- nucleon potential. This t-matrix reproduces the experimental data on the elementary pn →\rightarrow np process. The calculated cross-sections for the 12^{12}C(3^3He,t) reaction at 2o2^o to 7o7^o triton emission angle are compared with the corresponding experimental data, and are found in reasonable overall accord.Comment: 19 pages, latex, 11 postscript figures available at [email protected], submitted to Phy.Rev.

    Quantum time scales in alpha tunneling

    Full text link
    The theoretical treatment of alpha decay by Gamow is revisited by investigating the quantum time scales in tunneling. The time spent by an alpha particle in front of the barrier and traversing it before escape is evaluated using microscopic alpha nucleus potentials. The half-life of a nucleus is shown to correspond to the time spent by the alpha knocking in front of the barrier. Calculations for medium and super heavy nuclei show that from a multitude of available tunneling time definitions, the transmission dwell time gives the bulk of the lifetime of the decaying state, in most cases.Comment: LaTex, 1 figure, new comments and references adde

    Coherent pion production in neutrino nucleus collision in the 1 GeV region

    Get PDF
    We calculate cross sections for coherent pion production in nuclei induced by neutrinos and antineutrinos of the electron and muon type. The analogies and differences between this process and the related ones of coherent pion production induced by photons, or the (p,n) and (3He,t)(^3 He, t) reactions are discussed. The process is one of the several ones occurring for intermediate energy neutrinos, to be considered when detecting atmospheric neutrinos. For this purpose the results shown here can be easily extrapolated to other energies and other nuclei.Comment: 13 pages, LaTex, 8 post-script figures available at [email protected]

    A Naturally Narrow Positive Parity Theta^+

    Full text link
    We present a consistent color-flavor-spin-orbital wave function for a positive parity Theta^+ that naturally explains the observed narrowness of the state. The wave function is totally symmetric in its flavor-spin part and totally antisymmetric in its color-orbital part. If flavor-spin interactions dominate, this wave function renders the positive parity Theta^+ lighter than its negative parity counterpart. We consider decays of the Theta^+ and compute the overlap of this state with the kinematically allowed final states. Our results are numerically small. We note that dynamical correlations between quarks are not necessary to obtain narrow pentaquark widths.Comment: 10 pages, 1 figure, Revtex4, two-column format, version to be published in Phys. Rev. D, includes numerical estimates of decay width

    Characterisation of Inactivation Domains and Evolutionary Strata in Human X Chromosome through Markov Segmentation

    Get PDF
    Markov segmentation is a method of identifying compositionally different subsequences in a given symbolic sequence. We have applied this technique to the DNA sequence of the human X chromosome to analyze its compositional structure. The human X chromosome is known to have acquired DNA through distinct evolutionary events and is believed to be composed of five evolutionary strata. In addition, in female mammals all copies of X chromosome in excess of one are transcriptionally inactivated. The location of a gene is correlated with its ability to undergo inactivation, but correlations between evolutionary strata and inactivation domains are less clear. Our analysis provides an accurate estimate of the location of stratum boundaries and gives a high–resolution map of compositionally different regions on the X chromosome. This leads to the identification of a novel stratum, as well as segments wherein a group of genes either undergo inactivation or escape inactivation in toto. We identify oligomers that appear to be unique to inactivation domains alone
    • …
    corecore