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Abstract

Thermal greases, often used as thermal interface materials, are complex paste-like mixtures composed of a base polymer in which dense
metallic (or ceramic) filler particles are dispersed to improve the heat transfer properties of the material. They have complex rheological prop-
erties that impact the performance of the thermal interface material over its lifetime. We perform rheological experiments on thermal greases
and observe both stress relaxation and stress buildup regimes. This time-dependent rheological behavior of such complex fluid-like materials
is not captured by steady shear-thinning models often used to describe these materials. We find that thixo-elasto-visco-plastic (TEVP) and
nonlinear-elasto-visco-plastic (NEVP) constitutive models characterize the observed stress relaxation and buildup regimes, respectively.
Specifically, we use the models within a data-driven approach based on physics-informed neural networks (PINNs). PINNs are used to solve
the inverse problem of determining the rheological model parameters from the dynamic response in experiments. These training data are gen-
erated by startup flow experiments at different (constant) shear rates using a shear rheometer. We validate the “learned” models by comparing
their predicted shear stress evolution to experiments under shear rates not used in the training datasets. We further validate the learned TEVP
model by solving a forward problem numerically to determine the shear stress evolution for an input step-strain profile. Meanwhile, the
NEVP model is further validated by comparison to a steady Herschel–Bulkley fit of the material’s flow curve. © 2023 The Society of
Rheology. https://doi.org/10.1122/8.0000679

I. INTRODUCTION

Miniaturization of electronic packages [1–3] makes the
dissipation of heat to the environment of paramount impor-
tance to the reliability of microsystems. Typically, a thermal
grease [4] of high thermal conductivity that can conform to
the surface and fill gaps is employed to reduce the otherwise
high contact thermal resistance between two solid substrates.
Thermal greases, being soft, viscoelastic materials exhibiting
both solid-like and liquid-like rheological behavior, can keep
their shape at rest, yet they flow under a sufficiently strong
applied force. Thus, their rheology is complex and perhaps
even time-dependent [5]. Furthermore, thermal greases
degrade over time through the processes of pump out and dry
out [6–9]. The former causes void formation, which degrades
the heat dissipation properties of the assembly and can, thus,
cause an overshoot of allowable junction-level temperatures.
It is hypothesized that the degradation of thermal greases can
be understood by first characterizing their rheology behavior
[10–13], which provides motivation for the present work.

Thermal greases are often modeled as shear-thinning
fluids, and their rheological characterization is limited to
simple shear flows at steady state. The most common such
models are the Herschel–Bulkley (HB) and the Bingham
models [14,15]. The latter incorporates a yield stress, while

the former, in addition, also accounts for shear thinning in a
steady flow. Within an electronic package, thermal greases
are present between two solid substrates to enhance heat
transfer. The thickness of the thermal grease layer (on the
order of a few micrometers) sandwiched between the two
substrates is known as the bond line thickness. Earlier work
[11,12,15] focused on developing a semi-empirical model for
the bond line thickness of a thermal grease comprised of
filler particles within a silicone oil. Typically thermal greases
are squeezed to a fixed pressure, and hence, the final bond
line thickness depends on the rheological properties of the
grease, such as its effective viscosity and yield stress. For
high filler particle concentrations, the semi-empirical rheo-
logical model is modified to incorporate the effect of a perco-
lation threshold (i.e., a chain of filler particles contacting one
another across the bond line thickness resulting in enhanced
heat transfer) [16]. The viscoelastic behavior of thermal
greases was studied by Lin and Chung [13], who used a
polyester matrix-based thermal paste with varying volume
fractions of solid particles (carbon black, fumed alumina, and
nanoclay). They observed Bingham plastic behavior at high
concentrations of particles. Meanwhile, a fluid-like behavior
was observed when no solid particles were present. Clearly,
thermal greases are complex soft materials, and their rheolog-
ical behavior and thermal performance are strongly influ-
enced by the particles and other “modifier” materials used to
enhance wetting between the polymer and particles. To this
end, Feger et al. [17] evaluated the influence of different
mixing processes on thermal paste rheology. They concluded
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that strongly sheared mixing yields more homogeneous
thermal pastes, leading to a smaller bond line thickness and,
hence, reduced junction-level temperatures. Beyond these
studies, no clear picture has emerged of the rheological
behavior of thermal greases under prescribed shear (whether
fixed, stepped, or varying). In this work, we provide a per-
spective on these behaviors using experiments and funda-
mental rheological models within a data-driven framework.

Physics-informed neural networks (PINNs) are a class of
machine learning techniques that simultaneously solve a
direct and an inverse problem [18]. Specifically, PINNs can
be used to train a neural network to solve a system of ordi-
nary or partial differential equations and simultaneously iden-
tify unknown physical parameters in these governing
equations [19]. The success of PINNs has been established in
many contexts within the mechanics of fluids and solids
[20–24]. A recent application of PINNs to rheology led to
the development of so-called rheology-informed neural net-
works (RhINNs) [25–28]. RhINNs have been shown to suc-
cessfully calibrate time-dependent rheological models of
complex fluids using only a small number of experimental
measurements. In particular, Mahmoudabadbozchelou and
Jamali [26] constructed RhINNs based on three constitutive
models: a thixo-visco-plastic, a thixo-elasto-visco-plastic
(TEVP), and an iso-kinematic hardening model. The direct
problem was solved to predict the shear stress profile of a
complex fluid subjected to different flow protocols: startup,
flow-hysteresis, small amplitude oscillatory shear, and large
amplitude oscillatory shear. Simultaneously, the RhINNs
solved the inverse problem of calibrating these models by
inferring the unknown models’ parameters, hence character-
izing the rheology of the complex fluids considered.
Furthermore, RhINNs have been used to select the best-fit
steady-state constitutive model for a given complex fluid,
using the flow curve (i.e., the variation in viscosity with
shear rate) as an input to the RhINN [27]. In this work, fol-
lowing the more standard terminology, we will refer to all
PINN-based methods as “PINNs,” whether the physics incor-
porated are rheological models or not.

One major shortcoming of the previous rheological char-
acterization efforts of thermal greases is that the models and
experiments neither address stress relaxation of a thermal
grease due to step-shear nor the shear-rate-dependent or even
time-dependent rheological behavior (thixotropy). The goal
of the present work is to combine physics-informed machine
learning with state-of-the-art fundamental ideas from rheol-
ogy to accurately calibrate general models of thermal grease
flow behavior, which we hypothesize will eventually enable
us to better predict thermal grease degradation and failure
modes. As Mahmoudabadbozchelou et al. [29] argued, this
kind type of data-driven approach can be considered a
“digital rheometer twin,” able to characterize the “hidden
physics” of complex fluids from standard rheological mea-
surement. To this end, we leverage the open-source platform
DeepXDE [30] to develop PINNs to characterize the rheol-
ogy of two Dow thermal greases with substantially different
flow behaviors. The specific greases considered are
DOWSIL TC-5622 and DOWSIL TC-5550, which exhibit
distinct flow behaviors. The former exhibits stress relaxation,

while the latter exhibits stress buildup. Hence, for the physics
incorporated within the PINNs, we use a transient TEVP
model [26,31,32] as well as the insightful model for visco-
plasticity proposed by Kamani et al. [33] to unify the behav-
ior of rheologically nonlinear fluids above and below their
yield stress.

This paper is organized as follows. In Sec. II A, we intro-
duce the constitutive models used to characterize the rheol-
ogy of thermal greases under consideration. The PINN
construction is detailed in Sec. II B. Next, Sec. III describes
the protocol for rheological experiments. The corresponding
rheological characterizations and the demonstrations of the
different flow regimes (stress buildup and relaxation) are
carried out in Sec. IV. Finally, Sec. V summarizes our
results.

II. MODELING METHODOLOGY

In this section, we describe the constitutive models used
to characterize the rheology of the DOWSIL TC-5622 and
DOWSIL TC-5550 thermally conductive compounds under
consideration. The only prior information about these
thermal greases is found in their data sheets [34,35]. In par-
ticular, the exact composition (filler particle type, volume
fraction, particle diameter, etc.) is a trade secret and
unknown to the authors. Hence, to select appropriate consti-
tutive models to characterize DOWSIL TC-5622 and
DOWSIL TC-5550, we first conducted rheological experi-
ments on two thermal greases and observed that they both
exhibit time-dependent rheological behavior but not the same
one. Our initial observations on the greases suggested that
they possess a yield stress. In addition to the yield stress and
their complex microstructure, the greases seemed to exhibit
elastic resistance and recovery. Next, we examined recent
reviews on such viscoplastic fluids [5,36,37] to seek a suit-
able rheological model for the observed behaviors.
Eventually, we arrived at the works Mahmoudabadbozchelou
and Jamali [26] and Kamani et al. [33] and found that the
models discussed therein aim to capture the rheological
behaviors of interest to us.

On the basis of these observations and prior literature on the
shear-thinning behavior of thermal greases, two suitable consti-
tutive models are introduced in Sec. II A. Then, we will demon-
strate the models’ utility by introducing them into a data-driven,
PINN-based framework. The training of the models using the
experimental rheological is discussed in Sec. II B.

A. Constitutive models

From a rheological perspective, thermal greases exhibit a
time-dependent behavior beyond their yield stress and
viscous resistance. In particular, stress relaxation is often
observed in thermal grease degradation during pump-out
[6–9]. Arguably, the simplest transient rheology model with
these features is the elasto-visco-plastic (EVP) model.
However, this model neither accounts for shear thinning nor
captures stress relaxation physics during step-strain experi-
ments. These shortcomings of the EVP model are overcome
by accounting for thixotropy [38–40], resulting in the TEVP
model. Indeed, when subjected to shear, the thermal grease
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microstructure evolves, which results in a time-dependent
shear-thinning response. Based on this fact and our initial
experimental observations, we hypothesize that DOWSIL
TC-5622 exhibits thixotropy. We believe this behavior arises
from the presence of particles within the polymer matrix,
which adjust their position when subjected to shear. Below,
we show that the TEVP model can be used to characterize
this thixotropic flow behavior of thermal greases exhibiting
stress relaxation.

There are a variety of thixotropic rheological models pro-
posed in the literature [31,32,40,41]. We use the version of
the TEVP model defined by Mahmoudabadbozchelou and
Jamali [26], which takes the following form:

dσ

dt
¼ G

ηs þ ηp
�σ(t)þ σyλ(t)þ [ηs þ ηpλ(t)] _γ(t)

� �
, (1a)

dλ

dt
¼ kþ[1� λ(t)]� k� _γ(t)λ(t), (1b)

where σ is the shear stress, G is an elastic shear modulus,
and ηs and ηp are the solvent and plastic viscosities, respec-
tively; σy is the yield stress, _γ is the applied shear rate, and t
is time. Furthermore, λ is the so-called structure parameter
describing the degree of solid-like behavior. In this simple
model, λ ¼ 1 represents a structured (or solid-like) state of
the material, while λ ¼ 0 represents an unstructured (or fluid-
like) state of the material’s microstructure. Here, kþ and k�
are termed the buildup and breakage coefficients, respec-
tively. As seen from Eq. (1), the TEVP model consists of
two ordinary differential equations (ODEs). The first ODE
captures the stress evolution (elasto-visco-plastic behavior)
given the imposed shear. The second ODE describes the evo-
lution of the microstructure. The two coupled ODEs charac-
terize the complex material’s time-dependent rheological
response (thixotropy).

The shear stress during a startup flow can be measured
in a rheometer. The structure parameter, however, is not
directly measurable as it depends on the microstructure of
the thermal grease, which cannot be directly characterized
in a rheometer. Hence, using the TEVP model within a
physics-informed machine learning framework allows us to
infer (and understand) the evolution of the microstructure
when the thermal grease is subjected to constant shear
rates. As described in Sec. IV below, we calibrate the
unknown model parameters (G, ηp, ηs, σy, kþ, and k�) from
experimental measurements of the stress response by con-
structing and training a PINN.

Meanwhile, our initial experimental observations regard-
ing the DOWSIL TC-5550 thermal grease suggested a signif-
icant stress buildup regime at low shear rates. This behavior
cannot be captured by the TEVP model. Thus, we propose to
characterize the rheology of the DOWSIL TC-5550 using the
nonlinear-elasto-visco-plastic (NEVP) model proposed by
Kamani et al. [33], which aims to unify the time-dependent
rheological behavior of complex materials before and after
yielding using a single equation. The model, assuming a
constant shear rate (i.e., d _γ=dt ¼ 0), takes the following

form:

dσ

dt
¼ G _γ(t)

σy þ k _γ(t)n þ ηs _γ(t)
σy þ k _γ(t)n � σ(t)

� �
, (2)

where k is the consistency index and n is the power-law
exponent from an HB fit [σ ¼ σ( _γ) ¼ σy þ k _γn] of the
steady flow curve (dσ=dt ¼ d _γ=dt ¼ 0); the remaining
parameters are as in Eq. (1). In this model, the unknown
parameters to be calibrated are G, ηs, σy, k, and n. Under
steady shear rate conditions and at low shear rates (here,
_γ � 0:1 s�1), the NEVP model will be used below to charac-
terize the “elastic regime” of stress buildup, which is relevant
within an electronic package subjected to thermo-mechanical
stresses (analogous to nonzero shear rates).

B. PINN construction

The PINNs employed in this work to characterize thermal
grease rheology use the architecture shown in Fig. 1.
Specifically, a deep neural network of densely connected
neurons, each associated with weights and biases, is
employed. The network has two inputs, t and _γ, and two
outputs, σ and λ, as the schematic in Fig. 1 represents the
TEVP model (1). When the NEVP model is employed, there
is only one output σ and one physics equation, namely,
Eq. (2). The outputs are then used to compute the residual of
the physics ODEs (i.e., the constitutive models) by leverag-
ing automatic differentiation [42]. The workflow is imple-
mented in DeepXDE [30].

The overall loss function (for the TEVP model) is the
sum of the mean-squared error (MSE) of matching the train-
ing data (MSEdata) and the MSEs of satisfying the constitu-
tive equations (MSEσ and MSEλ). Using arbitrary weights w
for each MSE, the total loss L is written as

L ¼ wdataMSEdata þ wσMSEσ þ wλMSEλ, (3a)

MSEdata ¼ 1
M

XM
i¼1

jσexperiment(ti)� σ(ti)j2, (3b)

MSEσ ¼ 1
N

XN
i¼1

����
dσ

dt

���
t¼ti

� G

ηs þ ηp
�σ(ti)þ σyλ(ti)þ [ηs þ ηpλ(ti)] _γ(ti)

� �����
2

,

(3c)

MSEλ ¼ 1
N

XN
i¼1

dλ

dt

����
t¼ti

�kþ[1� λ(ti)]þ k� _γ(ti)λ(ti)

�����

�����
2

, (3d)

where M is the number of training data points; N is the
number of domain points sampled in the input space;
{σexperiment(ti)} are the experimental data points obtained by
performing startup flow experiments in a rheometer (see
Sec. III); and {σ(ti)} are the corresponding shear stress
values predicted by the PINN.
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For the NEVP model, the loss function consists of only
one term for the constitutive model’s residual loss (along
with training data loss).

In training a PINN, the objective is to minimize the overall
loss (i.e., the sum of the training data loss from experiments
and the constitutive equation residual loss) by simultaneously
optimizing the neural network weights and the physical
model’s unknown parameters. To this end, we chose the
machine learning hyper-parameters based on the choices justi-
fied in related recent studies [20,24,43,44] and experimentation.
Specifically, the Adam optimizer [45], a tanh activation func-
tion, and Glorot normal initialization were used. The neural
network architecture consisted of 10 neurons per layer and a
depth of four layers. We conducted a parametric study with dif-
ferent neural network depths (3, 4, and 5) and different
numbers of neurons per layer (10, 30, and 50) to conclude that
the final training loss is of the same order, 10�4, in all cases;
hence, it is relatively independent of the architecture. In addi-
tion, since λ from the TEVP model is physically restricted to
the interval [0, 1], we apply a sigmoid function to the λ output
of the NN. Furthermore, wσ ¼ 1, wλ ¼ 1, and wdata ¼ 10 were
used to train the TEVP PINN, while wσ ¼ 1 and wdata ¼ 100
were used to train the NEVP PINN. The weights were cali-
brated to avoid over-fitting and, at the same time, provide
similar orders of magnitude for losses due to the constitutive
model residual and the data residual [recall Eq. (3a)].

Finally, to avoid under- or over-fitting, we normalize each
input and output variable, call its discrete values ξi, over all

data points i ¼ 1, 2, . . ., via

ξi 7!
ξi �minj ξj

maxj ξj �minj ξj
: (4)

For example, ξ is any of σ, t, or _γ. The constitutive
equations (1) and (2) are also made dimensionless, using the
normalization introduced, to be consistent with the training
data. Finally, the neural network in the TEVP PINN under-
goes training for approximately 1:5� 106 epochs (or itera-
tions) at a learning rate of 1� 10�3 to achieve an overall loss
of L � 6� 10�4. Meanwhile, the neural network in the
NEVP PINN undergoes training for 106 epochs, at a learning
rate of 5� 10�4, to achieve an overall loss of L � 10�3. (We
used a looser threshold for L for the NEVP model to prevent
over-fitting to the noise present in the shear stress profiles at
low _γ.) Finally, the PINN training takes approximately 5 h
on an 8-core machine with 16 GB of RAM.

III. EXPERIMENTAL METHODOLOGY

This section illustrates the experimental protocol we
adopted to generate training data for the DOWSIL TC-5622
and DOWSIL TC-5550 thermal greases (Dow Chemical
Company). The experiments were performed using an Anton
Paar TwinDrive MCR702 rheometer with a single gap con-
centric cylinder setup having a bob diameter of 10:0mm,
bob length of 14:9mm and measuring gap of 0:422mm by

FIG. 1. Flow chart of the PINN architecture and training process used in this work. A deep neural network is used to evaluate quantities in the TEVP constitu-
tive model, whose residual is minimized via the physics-informed loss function. Here, Θ represents the neurons of the neural network. The unknown model
parameters of the TEVP constitutive model are highlighted. In the training process, the total loss, comprising of the mean squared error (MSE) of the constitu-
tive model residual and the training data MSE is minimized. “Tol” is a user-defined tolerance for each model, as described in the main text. Note that this flow
chart would be modified for the NEVP model, for which there is only a single constitutive equation and a single output, recall Eq. (2).
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applying a constant shear rate to a material initially at rest
(i.e., a startup flow protocol). Three repeatable experimental
datasets were obtained for each thermal grease. One dataset
was used to generate the results in this work, and the other
two datasets are available online (see “Data Availability”
statement).

A. DOWSIL TC-5622

We hypothesize that the DOWSIL TC-5622 thermal
grease is thixotropic in nature. To substantiate this hypothe-
sis, we performed standard experiments [31,32,38] to charac-
terize this thermal grease’s stress relaxation. Specifically, we
subjected the thermal grease to a startup flow protocol. To
erase memory effects, the material was subjected to a pre-
shear of 2 s�1 for 180 s, followed by a shear-free rest period
of 180 s. Next, we subjected the material to a startup flow
protocol by suddenly imposing a fixed, nonzero shear rate
for approximately 180 s to observe the stress relaxation
profile. The shear rates used were 2–10 s�1, and data were
obtained using log sampling to obtain more data points at
early times, as shown in Fig. 2. The original data were trun-
cated at t ¼ 10 s for every _γ as, by this time, shear stresses
reached an approximate steady state. The rheology and stress
relaxation of DOWSIL TC-5622 are characterized by
employing the TEVP constitutive model (1) (i.e., learn/deter-
mine G, ηs, kþ, k�, ηp, and σy) and the startup flow experi-
ment data from Fig. 2.

We note that, for low shear rates _γ , 2 s�1, some of our
rheological data exhibited non-monotone behavior at early
times, which is not shown. We do not believe that the mea-
sured noisy, non-monotone early-time data for low shear
rates can be trusted, and indeed, there is evidence that steady,
homogeneous flows of complex yield stress materials may
not exist below a critical shear rate due to shear banding
[46]. Therefore, for this study, we restrict our shear rates to
2 s�1 � _γ � 10 s�1 for the rheological characterization of
DOWSIL TC-5622 within the relaxation regime.

A similar experimental flow protocol was used to generate
data for a step-strain shear rate profile to be used to validate
the learned model parameters in Sec. IV A. In this case, we
first subject the DOWSIL TC-5622 to pre-shear of 2 s�1 for

180 s, followed by a shear-free rest period of 180 s. Next, we
subject DOWSIL TC-5622 to the step-strain shear rate profile
given by Eq. (5).

B. DOWSIL TC-5550

To characterize the stress buildup (the so-called “elastic
regime”) and rheology of the DOWSIL TC-5550 thermal
grease, startup flow experiments were conducted at low shear
rates (i.e., from _γ ¼ 0:06 s�1 to _γ ¼ 0:1 s�1), as shown in
Fig. 3. The shear stress increases in time but then saturates,
indicating that the material response is reaching a steady
state. Log sampling was used to obtain more data points in
the high-shear-stress-gradient region (i.e., for t , 1 s).

For larger shear rates, _γ . 0:1 s�1, the rheological data
exhibited nonmonotone behavior at early times, which is not
shown. We do not believe that this noisy, nonmonotone data
can be trusted; hence, we restrict our shear rates to
0:06 s�1 � _γ � 0:1 s�1 for the rheological characterization of
DOWSIL TC-5550 within the buildup regime. The experi-
mental protocol was similar to that for DOWSIL TC-5622:
we subjected the thermal grease to a preshear of _γ ¼ 4 s�1

followed by a rest period of 240 s, after which the startup
flow experiments at a suddenly imposed, nonzero shear rate
were performed. Since DOWSIL TC-5550 is more viscous
than DOWSIL TC-5622, a larger preshear rate was employed
to fluidize the material (and, hence, erase memory effects)
before subjecting it to a startup flow. We used data up to
t ¼ 10 s, at which time we again observed that an approxi-
mate steady state was established, as seen in Fig. 3. The rhe-
ology and stress buildup in the DOWSIL TC-5550 thermal
grease were characterized by employing the NEVP constitu-
tive model (2) (i.e., learning G, ηs, σy, k, and n) and the
startup flow experiment data from Fig. 3.

As a cross-check for the learned model parameters, we
performed a flow-curve experiment by ramping shear rates
from 15 to 0:05 s�1 (after subjecting the DOWSIL TC-5550
thermal grease to preshear and a rest period, as described
above). The flow curves allow us to determine a steady HB
model. Each data point (corresponding to a different shear
rate) was sampled at a 10 s interval, which was deemed suf-
ficient to reach a steady state (see Fig. 3). Finally, the

FIG. 2. Training data obtained from rheological experiments by subjecting
DOWSIL TC-5622 to a startup flow at steady shear rates ranging from
_γ ¼ 2 s�1 to _γ ¼ 10 s�1 for approximately 180 s. The arrow indicates the
direction of increasing _γ. Only the data up to 10 s is used for training as it
captures all the stress relaxation physics.

FIG. 3. Training data obtained from rheological experiments by subjecting
DOWSIL TC-5550 to a startup flow at steady shear rates of 0:06–0:1 s�1 for
approximately 180 s. The arrow indicates the direction of increasing shear
rates. It should be noted that data up to 10 s is used for training as it captures
all the stress buildup physics.
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values for k and n from the HB fit and the value for σy

from extrapolating the steady flow curve were compared to
the values learned by the PINN to ascertain the validity and
consistency of the data-driven machine learning approach
proposed.

IV. RESULTS AND DISCUSSION

In this section, we discuss the PINN predictions for the
startup flow profile and the learned model parameters for the
two thermal greases under consideration. In Secs. IV A and
IV B, we validate the prediction for each thermal grease.
Each case represents a different flow regime and a corre-
sponding rheological model. We posit that each regime is of
relevance to a different process in an industrial device (such
as an electronics package). For example, the range _γ [
[2, 10] s�1 for DOWSIL TC-5622 leads to stress relaxation
behavior, which is relevant to the pumpout (or outward flow)
behavior within an electronic package. Meanwhile, the lower
range, _γ [ [0:06, 0:1] s�1 for DOWSIL TC-5550, is relevant
to the stress buildup observed before degradation begins.

A. Characterizing the stress relaxation regime

For DOWSIL TC-5622, we used the startup flow data from
Fig. 2 to train a PINN based on the TEVP constitutive model.
As training data, we used startup flow data from all shear
rates, except _γ ¼ 7 s�1. Then, we used the _γ ¼ 7 s�1 data to
test the PINN’s prediction. The underlying PINN architecture
minimizes the total loss (3). Although, in this formulation, we
do not give any additional constraints in the form of initial or
boundary conditions, as these are not known a priori, provid-
ing such data significantly improves the PINNs’ ability to
extrapolate, as discussed in Appendix A.

As seen from Fig. 4(a), the training data at all shear rates
are well predicted by the PINN, which is expected because
this set of data is given as input for training, and the deep
neural network is a good function approximator.
Furthermore, Fig. 4(b) shows that after the PINN is trained,
its performance on unseen test data (startup flow with
_γ ¼ 7 s�1) is satisfactory; specifically, it tracks the experi-
mental stress relaxation profile accurately. Table I lists the
learned model parameters for DOWSIL TC-5622. An
average value of each unknown model parameter is
reported, obtained by retraining the PINN, excluding shear
stress data for different _γ each time, and relearning the
model parameters. Using these values, we solve Eq. (1) as a
forward problem (using Python SciPy’s odeint subroutine;
Virtanen et al. [47]). As can be seen in Fig. 4(b), there is
good agreement between the forward problem solution, the
PINN’s prediction, and the experiment data. In addition, we
independently obtain σy ¼ 29:5 Pa from a flow curve exper-
iment (see Appendix B), which is in agreement with the
value reported in Table I.

For further validation of the learned model parameters, we
also numerically solve the forward problem for the TEVP
model (1) (in Python using SciPy’s odeint subroutine;
Virtanen et al. [47]) for a stepped-shear profile. Specifically,
the learned values of the unknown model parameters (sum-
marized in Table I) were used to predict the stress profile for

an input step-strain shear rate profile,

_γ(t) ¼
1 s�1, 0 s , t � 158:25 s,
0:1 s�1, 158:25 s , t � 180:042 s,
1 s�1, 180:042 s , t � 338:292 s:

8<
: (5)

The shear stress obtained by solving the direct problem by
forward integration is compared to the experimental data in
Fig. 5. Initial conditions (for σ and λ) are required to solve
the direct problem by forward integration. We chose the
values σ(t ¼ 0) ¼ 133:79 Pa (obtained from the step-strain
experiment used for validation) and λ(t ¼ 0) ¼ 0:5

TABLE I. Learned values of the TEVP rheological model’s parameters, as
introduced in the constitutive equation (1), for DOWSIL TC-5622.

Parameter Value

G 196.1 Pa

ηs 39.4 Pa s
k+ 0.06 s−1

k− 0.06
σy 31.1 Pa
ηp 29.1 Pa s

FIG. 4. Comparison between PINN predictions and the experimental data,
for (a) training data and (b) unseen data (for startup flow with _γ ¼ 7 s�1),
for the DOWSIL TC-5622 thermal grease. The unknown model parameters
learned by the PINN are summarized in Table I.
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(i.e., assuming partial breakdown of the microstructure). A
sensitivity analysis was performed on the initial condition
of the microstructure parameter λ(t ¼ 0), and we found
that any value λ(t ¼ 0) [ [0:5, 1] yields similar results.
The direct problem captures the stress relaxation profile
accurately followed by a dip in stress observed due to step-
down from _γ ¼ 1 s�1 to _γ ¼ 0:1 s�1 and finally the step-up
from _γ ¼ 0:1 s�1 to _γ ¼ 1 s�1. We believe that the few
extreme data points at which the experimental data and the
forward problem profile do not agree are likely because of
the very sudden change in _γ during step-strain, which
might not be well described by a one-dimensional rheolog-
ical model. Nevertheless, these are only a few isolated
points. Therefore, we are confident in the learned
unknown model parameters. In turn, we have demonstrated
a robust method of characterizing the rheology (within the
relaxation flow regime) of DOWSIL TC-5622 thermal
grease using a PINN to perform data-driven calibration of
the rheological model.

To test the sensitivity of the PINN formulation with
respect to the initial guessed for the model parameters, we
trained PINNs for three different sets of initial guesses. We
found that learned model parameters are rather insensitive to
the initial guesses, as shown in Appendix C. Furthermore, to
demonstrate the PINN’s ability to infer the microstructure
evolution, λ(t), without being given any data for it, in
Appendix D, we generated synthetic data and retrained the
PINN on it, showing reasonable agreement between the
expected and PINN-generated λ(t) profiles.

B. Characterizing the stress buildup regime

The DOWSIL TC-5550 thermal grease exhibits stress
buildup (the so-called “elastic” regime) before yielding. This
rheological response was characterized using the NEVP
model (2). As described above, the PINN was used to esti-
mate the unknown model parameters in a data-driven
fashion. The data from Fig. 3 (excluding _γ ¼ 0:08 s�1) were
used for training.

As seen from Fig. 6(a), the PINN accurately predicts the
input training data. This agreement is expected as the deep
neural network is a good function approximator. More impor-
tantly, the PINN predicts the pre-yielding behavior of the
DOWSIL TC-5550 thermal grease at the unseen shear rate
_γ ¼ 0:08 s�1, as shown in Fig. 6(b). The learned model
parameters are listed in Table II. We use these values to solve
the forward problem for the NEVP model (2) (using Python
SciPy’s odeint subroutine; Virtanen et al. [47]). We observe
good agreement between the forward problem, the PINN pre-
diction, and the experiment data. No additional constraints in

FIG. 5. Validation of the calibrated TEVP rheology of DOWSIL TC-5622
in the stress relaxation regime under the input step-strain shear rate profile
from Eq. (5). The constitutive Eq. (1) were solved numerically as a direct
problem using the model parameters values in Table I. The experimentally
measured stress response is shown as symbols.

FIG. 6. Comparison between the PINN predictions and the experimental
data, for (a) training data and (b) unseen startup flow data (for _γ ¼ 0:08 s�1),
for the DOWSIL TC-5550 thermal grease. The unknown model parameters
learned by the PINN are summarized in Table II.

TABLE II. Learned values of the NEVP rheological model’s parameters,
as introduced in the constitutive Eq. (2), for DOWSIL TC-5550.

Parameter Value

G 8972.0 Pa
ηs 363.0 Pa s
k 214.2 Pa sn

n 0.85
σy 6.9 Pa
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the form of initial or boundary conditions were imposed for
the training. As before, an average value of each unknown
model parameter is reported, obtained by retraining the PINN,
excluding shear stress data for different _γ each time and
relearning the model parameters. Note that the typical ηp
values estimated for DOWSIL TC-5550 (Table II) is a factor
of ten larger than for DOWSIL TC-5622 (Table I). This obser-
vation further highlights how different the rheophysics are for
these two materials. The DOWSIL TC-5550 grease resists the
imposed shear much more strongly, leading to a well-defined
stress buildup regime, which is well captured by the NEVP
model.

We performed an additional steady flow curve experiment
by ramping down _γ from 15 to 0:01 s�1 as shown in Fig. 7.
To characterize the steady flow curve, each data point was
taken after 10 s elapsed to ensure that a steady state was
reached at that particular _γ. Next, we extrapolated the curve to
_γ ¼ 0 s�1 to obtain σy [48]. With this value of σy in hand, a
steady HB model, namely, σ ¼ σy þ k _γn, was fit to the flow
curve data. Note that extrapolating σy is preferred, as fitting
this value simultaneously with the remaining HB parameters
is quite sensitive to the number of data points used.

The HB fit of the steady flow curve serves as an alterna-
tive way of obtaining the parameters σy, k, and n pertaining
to DOWSIL TC-5550. Comparing the latter to the values
inferred by the PINN serves as a “sanity check” on the
learned unknown model parameters and their orders of mag-
nitude. Recalling Table II, the yield stress the PINN learns is
σy � 6:9 Pa, compared to σy � 9:5 Pa from extrapolating the
flow curve; respectively, the PINN learns n � 0:85, while the
95% confidence interval obtained from the HB fit is
n [ [0:85, 0:92]. These values, found by different methods,
are in agreement. On the other hand, the consistency index
learned by the PINN is k � 214:2 Pa sn, while the 95% con-
fidence interval obtained from the HB fit is
k [ [95:87, 112:2] Pa sn. The k values are not as close
numerically (as the σy and n values), but it is generally
expected that the consistency index k of an HB fit can have a
broad range, depending on the method of estimation [48].
Overall, this comparison gives us further confidence that our

rheological characterization of the DOWSIL TC-5550
thermal grease in the stress buildup regime is consistent with
its corresponding steady flow curve.

V. CONCLUSION

Thermal greases are complex soft materials. The thermal per-
formance and long-term degradation (pump-out and dry-out) of
these greases, used as thermal interface materials within an elec-
tronic package, are strongly dependent on their rheological
behavior. Previous studies of the rheology of thermal greases
characterized only the steady-state flow curve (via the
Herschel–Bulkley and Bingham models) [14,15]. In this work,
we experimentally demonstrated the transient rheological behav-
ior of thermal greases. We explained this observation on the
basis that the shear-induced microstructural rearrangements of
the high-thermal-conductivity filler particles dispersed within
the grease’s polymer matrix cause the time-dependent rheology.
To understand this transient behavior from a fundamental point
of view, we turned to a standard thixo-elasto-visco-plastic
(TEVP) model [26] and a recently proposed nonlinear-elasto-
visco-plastic (NEVP) model [33] and incorporated them in a
data-driven machine learning framework.

Specifically, we characterized the behavior of two com-
mercial thermal greases: DOWSIL TC-5622 and DOWSIL
TC-5550. The two thermal greases exhibit distinctive tran-
sient rheological behaviors—stress relaxation for DOWSIL
TC-5622 and stress buildup for DOWSIL TC-5550—which
can be characterized by the TEVP and NEVP constitutive
models, respectively. Startup flow protocol experiments at a
constant shear rate were used to train a physics-informed
neural network (PINN) and, thus, determine (“learn”) the
unknown rheological model parameters in a data-driven
manner. We performed startup flow experiments for a range
of shear rates expected to be relevant to thermal applications
for DOWSIL TC-5622 in the stress relaxation regime and for
DOWSIL TC-5550 in the stress buildup regime, which
served as the training data for developing the PINNs. The
PINN’s predictive ability was evaluated on “unseen” startup
flow test data. The learned model parameters of DOWSIL
TC-5622 were further validated by showing that the model’s
prediction of the stress evolution for an experiment with an
input step-strain shear rate profile agrees with the experi-
ments. Meanwhile, for DOWSIL TC-5550, the predicted
steady-state model parameters showed good agreement with
those obtained from a Herschel–Bulkley fit of the experimen-
tal flow curve.

Furthermore, it is important to note that the characterized
rheology (i.e., the learned model parameters) is only valid in
the given flow regime of interest and may not hold outside of
it. Indeed, the flow behavior of these complex soft materials,
which further exhibit a yield stress, may not even be
described by the models used herein in a different flow
regime [49]. Of course, this limitation is a standard caveat of
any rheological characterization.

Nevertheless, having demonstrated and quantified the rhe-
ological regimes of both stress relaxation and stress buildup
in two commercial thermal greases, beyond their standard
steady-state characterization as shear-thinning fluids, we

FIG. 7. Flow curve data for DOWSIL TC-5550 thermal grease plotted on a
semilog plot. The yield stress σy ¼ 9:5 Pa is obtained by extrapolating the
curve to _γ ¼ 0 s�1, and k ¼ 104:0 Pa sn and n ¼ 0:88 are subsequently
obtained by fitting to an HB model: σ( _γ) ¼ σy þ k _γn.
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hope to have provided motivation for the need to develop
more comprehensive constitutive models that can capture
thermal grease behavior across multiple rheological regimes.
In this work, we only reported average values of learned
model parameters. An important avenue of future work
would be to solve a Bayesian parameter inference problem
using probabilistic machine learning computational tools,
such as PyMC3 [50], with the constitutive models from this
work, to obtain the distribution (rather than a single value) of
the unknown model parameters. In doing so, the uncertainty
in the learned model parameter would be characterized. We
expect that the present results and future fundamental rheo-
logical studies of thermal greases will eventually yield a
mechanistic understanding of why thermal interface materials
may (or may not) resist common degradation mechanisms
such as pump-out and dry-out.
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APPENDIX A: EXTRAPOLATION ABILITIES OF THE
PINNS

In this appendix, we illustrate the prediction of stress
relaxation profiles in Fig. 2 at shear rates outside the range of

training dataset shear rates, i.e., we test the extrapolation
powers of the presented PINN formulation for DOWSIL
TC-5622 thermal grease. Specifically, we train the PINN on
stress relaxation data with _γ ¼ 2–5 s�1 and test the trained
model on _γ ¼ 7 s�1 and _γ ¼ 9 s�1 that are outside the inter-
val of training _γ values. To facilitate testing/prediction for
shear rates outside the training range, we must also consider
the initial condition (IC) residual and add another term to the
loss function in Eq. (3). Specifically, now

L ¼ wdataMSEdata þ wσMSEσ þ wλMSEλ þ wicMSEic,

(A1a)

where

MSEic ¼ 1
P

XP
i¼1

jσ(t ¼ 0; _γ i)� σ ic,fit( _γ i)j2: (A1b)

Here, wic ¼ 1 is weight for the IC residual term, MSEic is the
mean squared error in the IC residual, P ¼ 50 is the number
of _γ data points sampled, and

σ ic,fit( _γ) ¼ (0:6491 Pa s) _γ þ 0:3045 Pa (A2)

is the experimental fit of the initial condition, σ(t ¼ 0), as a
function of the given startup shear rate _γ.

We tested predictions at _γ ¼ 7 s�1 and _γ ¼ 9 s�1 after
training for 1:5� 106 epochs to achieve a loss of
L � 6� 10�4. As shown in Fig. 8, the PINN is successful in
predicting the stress profiles at _γ ¼ 7 s�1 and _γ ¼ 9 s�1

(when trained on _γ ¼ 2–5 s�1) if the initial condition
σ(t ¼ 0) is provided for each _γ. (The case without an initial
condition is not shown, as the agreement is poor.) Indeed,
one cannot expect the PINN to be able to guess this initial
condition, which is a function of the initial state of the
thermal grease in the rheometer, and it should indeed be sup-
plied to the PINN (or the forward problem solver) for suc-
cessful extrapolation.

In Fig. 8, we also show the result of solving Eq. (1)
numerically as a forward problem. In this case, we use the
constitutive model parameters learned by the PINN and
provide an appropriate IC based on Eq. (A2).

FIG. 8. Comparison between a PINN prediction that requires extrapolation and the experimental data, for (a) _γ ¼ 7 s�1 and (b) _γ ¼ 9 s�1, for the DOWSIL
TC-5622 thermal grease. The PINN was trained on the experimental data for _γ ¼ 2 to 5 s�1.
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APPENDIX B: CHARACTERIZING THE YIELD
STRESS OF DOWSIL TC-5622 VIA A FLOW CURVE
EXPERIMENT

We performed a flow curve experiment to determine σy

for DOWSIL TC-5622 to enable an additional check on the
value (σy � 31:1 Pa) given in Table I obtained via
physics-informed machine learning. Figure 9 shows the
experimental flow curve for DOWSIL TC-5622. We obtain
σy � 29:5 Pa from the data in Fig. 9 by extrapolating the
ramp-down cycle of the flow curve to _γ ¼ 0 s�1 [48].
(Again, note that we extrapolate the flow curve to _γ ¼ 0 s�1

to obtain σy, rather than obtaining it from an HB fit of the
flow curve, because the HB fit’s values are quite sensitive to
the number of flow-curve data points used for fitting.) This
comparison gives us further confidence that our rheological
characterization of the DOWSIL TC-5622 thermal grease in
the stress relaxation regime is consistent with its correspond-
ing steady flow curve.

APPENDIX C: INFLUENCE OF INITIAL GUESS ON
THE LEARNED UNKNOWN MODEL PARAMETERS

To ascertain the influence of initial guesses on the
unknown model parameters, we trained the PINN for the

stress relaxation regime (for DOWSIL TC-5622 thermal
grease) with three different initial guesses of the unknown
model parameters. We trained the PINN to a loss of
L � 6� 10�4 for each set of initial guesses. As seen from
Table III, the learned model parameters are close to each
other despite starting the training from different initial
guesses. Thus, we conclude that the results of our PINN
algorithm are not sensitive to the initial guesses for the
unknown model parameters.

APPENDIX D: TEVP INVERSE PROBLEM
SOLUTION VIA A PINN TRAINED ON SYNTHETIC
DATA

In this appendix, to demonstrate the robustness of the
inferred unknown model parameters and highlight
PINNs’ ability to “learn” the microstructure evolution for
which no data is provided, we generated synthetic data
by solving Eq. (1) numerically as a forward problem
with the model parameter values from Table IV and
given initial values for the stress, σ(t ¼ 0), and micro-
structure λ(t ¼ 0). Then, we trained a PINN based on
this synthetic stress data (for _γ ¼ 2–10 s�1, skipping
_γ ¼ 7 s�1) to solve the inverse problem and obtain “new”
predictions for σ(t), λ(t), and the six model parameters.
Note that, in training the PINN, we do not use the λ(t)
synthetic data since these data are also not available
from the experiment.

Table IV shows that the unknown model parameters
inferred from the synthetic data compare favorably with
the values used to generate these data, indicating that the
PINN’s inference of these values is robust and accurate.
Figure 10 shows a comparison of PINN predictions for
the test (unseen) data at _γ ¼ 7 s�1 to the synthetic data
itself. We observe that there is some systematic deviation
between the PINN prediction and the synthetic λ(t) data.
However, even though the data for the structure parameter
were not used in training the PINN, the PINN is able to
capture the monotonically decreasing trend indicative of
the microstructure breakdown. Finally, there is a small
deviation between the PINN prediction and the synthetic
data for the stress at early times (t , 1 s). This small dis-
crepancy is overexaggerated by the semilog plotting
scale.

TABLE III. Learned values of the parameters of the TEVP rheological
model (1) for DOWSIL TC-5622, starting from three different sets of initial
guesses.

Parameter

Initial
guess
1

Learned
value

Initial
guess
2

Learned
value

Initial
guess
3

Learned
value

G (Pa) 80.0 190.0 160.0 203.0 80.0 192.0

ηs (Pa s) 44.5 39.4 100.0 39.3 75.0 39.3
k+ (s−1) 1.0 0.061 0.5 0.052 0.0 0.057
k− (–) 1.0 0.064 0.5 0.061 0.0 0.059
σy (Pa) 2.0 30.5 20.0 17.3 10.0 20.5
ηp (Pa s) 50.0 30.8 25.0 37.4 75.0 32.1

TABLE IV. Model parameters used to generate synthetic TEVP models’
stress data and the corresponding values inferred by the PINN trained on
these synthetic data.

Parameter For synthetic data From PINN

G (Pa) 213.0 201.0

ηs (Pa s) 39.2 39.6
k+ (s−1) 0.049 0.037
k− 0.064 0.057
σy (Pa) 19.6 23.1
ηp (Pa s) 42.5 43.6

FIG. 9. Flow curve data for the DOWSIL TC-5622 thermal grease plotted
on a semilog plot. A yield stress of σy ¼ 29:5 Pa is obtained by extrapolating
the curve to _γ ¼ 0 s�1.
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