5 research outputs found

    Directed Engineering of a High-expression Chimeric Transgene as a Strategy for Gene Therapy of Hemophilia A

    No full text
    Human coagulation factor VIII (fVIII) is inefficiently biosynthesized in vitro and has proven difficult to express at therapeutic levels using available clinical gene-transfer technologies. Recently, we showed that a porcine and certain hybrid human/porcine fVIII transgenes demonstrate up to 100-fold greater expression than human fVIII. In this study, we extend these results to describe the use of a humanized, high-expression, hybrid human/porcine fVIII transgene that is 89% identical to human fVIII and was delivered by lentiviral vectors (LVs) to hematopoietic stem cells for gene therapy of hemophilia A. Recombinant human immunodeficiency virus–based vectors encoding the fVIII chimera efficiently transduced human embryonic kidney (HEK)-293T cells. Cells transduced with hybrid human/porcine fVIII encoding vectors expressed fVIII at levels 6- to 100-fold greater than cells transduced with vectors encoding human fVIII. Transplantation of transduced hematopoietic stem and progenitor cells into hemophilia A mice resulted in long-term fVIII expression at therapeutic levels despite <5% genetically modified blood mononuclear cells. Furthermore, the simian immunodeficiency virus (SIV) -derived vector effectively transduced the human hematopoietic cell lines K562, EU1, U.937, and Jurkat as well as the nonhematopoietic cell lines, HEK-293T and HeLa. All cell lines expressed hybrid human/porcine fVIII, albeit at varying levels with the K562 cells expressing the highest level of the hematopoietic cell lines. From these studies, we conclude that humanized high-expression hybrid fVIII transgenes can be utilized in gene therapy applications for hemophilia A to significantly increase fVIII expression levels compared to what has been previously achieved

    IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy

    No full text
    IL-2 and IL-21 are closely related cytokines that might have arisen by gene duplication. Both cytokines promote the function of effector CD8+ T cells, but their distinct effects on antigen-driven differentiation of naive CD8+ T cells into effector CD8+ T cells are not clearly understood. We found that antigen-induced expression of Eomesodermin (Eomes) and maturation of naive CD8+ T cells into granzyme B- and CD44-expressing effector CD8+ T cells was enhanced by IL-2, but, unexpectedly, suppressed by IL-21. Furthermore, IL-21 repressed expression of IL-2Ra and inhibited IL-2–mediated acquisition of a cytolytic CD8+ T-cell phenotype. Despite its inhibitory effects, IL-21 did not induce anergy, but instead potently enhanced the capacity of cells to mediate tumor regression upon adoptive transfer. In contrast, IL-2 impaired the subsequent antitumor function of transferred cells. Gene expression studies revealed a distinct IL-21 program that was characterized phenotypically by increased expression of L-selectin and functionally by enhanced antitumor immunity that was not reversed by secondary in vitro stimulation with antigen and IL-2. Thus, the efficacy of CD8+ T cells for adoptive immunotherapy can be influenced by opposing differentiation programs conferred by IL-2 and IL-21, a finding with important implications for the development of cellular cancer therapies

    Cytokine-independent growth and clonal expansion of a primary human CD8+ T-cell clone following retroviral transduction with the IL-15 gene

    No full text
    Malignancies arising from retrovirally transduced hematopoietic stem cells have been reported in animal models and human gene therapy trials. Whether mature lymphocytes are susceptible to insertional mutagenesis is unknown. We have characterized a primary human CD8+ T-cell clone, which exhibited logarithmic ex vivo growth in the absence of exogenous cytokine support for more than 1 year after transduction with a murine leukemia virus–based vector encoding the T-cell growth factor IL-15. Phenotypically, the clone was CD28−, CD45RA−, CD45RO+, and CD62L−, a profile consistent with effector memory T lymphocytes. After gene transfer with tumor-antigen–specific T-cell receptors, the clone secreted IFN-γ upon encountering tumor targets, providing further evidence that they derived from mature lymphocytes. Gene-expression analyses revealed no evidence of insertional activation of genes flanking the retroviral insertion sites. The clone exhibited constitutive telomerase activity, and the presence of autocrine loop was suggested by impaired cell proliferation following knockdown of IL-15Rα expression. The generation of this cell line suggests that nonphysiologic expression of IL-15 can result in the long-term in vitro growth of mature human T lymphocytes. The cytokine-independent growth of this line was a rare event that has not been observed in other IL-15 vector transduction experiments or with any other integrating vector system. It does not appear that the retroviral vector integration sites played a role in the continuous growth of this cell clone, but this remains under investigation

    Tumor-specific Th17-polarized cells eradicate large established melanoma

    No full text
    CD4+ T cells can differentiate into multiple effector subsets, but the potential roles of these subsets in anti-tumor immunity have not been fully explored. Seeking to study the impact of CD4+ T cell polarization on tumor rejection in a model mimicking human disease, we generated a new MHC class II-restricted, T-cell receptor (TCR) transgenic mouse model in which CD4+ T cells recognize a novel epitope in tyrosinase-related protein 1 (TRP-1), an antigen expressed by normal melanocytes and B16 murine melanoma. Cells could be robustly polarized into Th0, Th1, and Th17 subtypes in vitro, as evidenced by cytokine, chemokine, and adhesion molecule profiles and by surface markers, suggesting the potential for differential effector function in vivo. Contrary to the current view that Th1 cells are most important in tumor rejection, we found that Th17-polarized cells better mediated destruction of advanced B16 melanoma. Their therapeutic effect was critically dependent on interferon-γ (IFN-γ) production, whereas depletion of interleukin (IL)–17A and IL-23 had little impact. Taken together, these data indicate that the appropriate in vitro polarization of effector CD4+ T cells is decisive for successful tumor eradication. This principle should be considered in designing clinical trials involving adoptive transfer–based immunotherapy of human malignancies
    corecore