31 research outputs found
Effect of Tobacco Smoking on the Clinical, Histopathological, and Serological Manifestations of Sjögren’s Syndrome
Objectives
To assess the association of smoking habits with the clinical, serological, and histopathological manifestations of Sjögren’s syndrome (SS) and non-Sjögren’s sicca (non-SS sicca). Methods
Cross-sectional case-control study of 1288 patients with sicca symptoms (587 SS and 701 non-SS sicca) evaluated in a multi-disciplinary research clinic. Smoking patterns were obtained from questionnaire data and disease-related clinical and laboratory data were compared between current, past, ever, and never smokers. Results
Current smoking rates were 4.6% for SS patients compared to 14.1% in non-SS sicca (p = 5.17x10E-09), 18% in a local lupus cohort (p = 1.13x10E-14) and 16.8% in the community (p = 4.12x10E-15). Current smoking was protective against SS classification (OR 0.35, 95%CI 0.22–0.56, FDR q = 1.9E10-05), focal lymphocytic sialadenitis (OR 0.26, 95%CI 0.15–0.44, FDR q = 1.52x10E-06), focus score ≥1 (OR 0.22, 95%CI 0.13–0.39, FDR q = 1.43x10E-07), and anti-Ro/SSA(+) (OR 0.36, 95%CI 0.2–0.64, FDR q = 0.0009); ever smoking was protective against the same features and against anti-La/SSB(+) (OR 0.52, 95%CI 0.39–0.70, FDR q = 5.82x10E-05). Duration of smoking was inversely correlated with SS even after controlling for socioeconomic status, BMI, alcohol and caffeine consumption. Conclusions
Current tobacco smoking is negatively and independently associated with SS, protecting against disease-associated humoral and cellular autoimmunity. The overall smoking rate amongst SS patients is significantly lower than in matched populations and the effects of smoking are proportional to exposure duration.
In spite of the protective effects of tobacco on SS manifestations, it is associated with other serious comorbidities such as lung disease, cardiovascular risk and malignancy, and should thus be strongly discouraged in patients with sicca
The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study
AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease
Effect of Tobacco Smoking on The Clinical, Histopathological, and Serological Manifestations of Sjögren’s Syndrome
The authors wish to thank Dr. A. Darise Farris for her critical review of the cellular immune response discussion.Objectives To assess the association of smoking habits with the clinical, serological, and histopathological manifestations of Sjögren’s syndrome (SS) and non-Sjögren’s sicca (non-SS sicca). Methods Cross-sectional case-control study of 1288 patients with sicca symptoms (587 SS and 701 non-SS sicca) evaluated in a multi-disciplinary research clinic. Smoking patterns were obtained from questionnaire data and disease-related clinical and laboratory data were compared between current, past, ever, and never smokers. Results Current smoking rates were 4.6% for SS patients compared to 14.1% in non-SS sicca (p = 5.17x10E-09), 18% in a local lupus cohort (p = 1.13x10E-14) and 16.8% in the community (p = 4.12x10E-15). Current smoking was protective against SS classification (OR 0.35, 95%CI 0.22–0.56, FDR q = 1.9E10-05), focal lymphocytic sialadenitis (OR 0.26, 95%CI 0.15–0.44, FDR q = 1.52x10E-06), focus score ≥1 (OR 0.22, 95%CI 0.13–0.39, FDR q = 1.43x10E-07), and anti-Ro/SSA(+) (OR 0.36, 95%CI 0.2–0.64, FDR q = 0.0009); ever smoking was protective against the same features and against anti-La/SSB(+) (OR 0.52, 95%CI 0.39–0.70, FDR q = 5.82x10E-05). Duration of smoking was inversely correlated with SS even after controlling for socioeconomic status, BMI, alcohol and caffeine consumption. Conclusions Current tobacco smoking is negatively and independently associated with SS, protecting against disease-associated humoral and cellular autoimmunity. The overall smoking rate amongst SS patients is significantly lower than in matched populations and the effects of smoking are proportional to exposure duration. In spite of the protective effects of tobacco on SS manifestations, it is associated with other serious comorbidities such as lung disease, cardiovascular risk and malignancy, and should thus be strongly discouraged in patients with sicca.Yeshttp://www.plosone.org/static/editorial#pee
Identification of Saccharomyces Cerevisiae YPR1 as a Methylglyoxal Reducing Enzyme: Over-Expression Enhances Oxidative Stress Tolerance in E. Coli
Methylglyoxal, generated from the triosephosphates of glycolysis, is a toxic electrophile that can modify proteins and nucleic acids and cause oxidative stress in cells, consequently causes dysfunction of cells and tissues. Its levels increase in many pathological conditions in humans and, in plants, when under environmental stress. Aiming to look for new enzymes to detoxify methylglyoxal and utilize these enzymes to protect plants against environmental stress, we identified Saccharomyces cerevisiae YPR1 as a methylglyoxal reducing enzyme. By four steps of partial purification, we located a few protein candidates on a SDS-PAGE gel. The genes encoding these proteins were identified by mass spectrometry MALDI-TOF. By excluding those genes with known functions, the most possible gene YPR1 was selected to express in E. coli. Protein crude extract of YPR1 expressing E. coli had about 120-fold increase in methylglyoxal reducing activity compared to the control strain. Tolerance of the YPR1 expressing E. coli against oxidative stress was improved. The results demonstrate that yeast YPR1 has the potential to enhance environmental stress tolerance of plants and other organisms
Wnt5A activates the calpain-mediated cleavage of filamin A
We have previously shown that Wnt5A and ROR2, an orphan tyrosine kinase receptor, interact to mediate melanoma cell motility. In other cell types, this can occur through the interaction of ROR2 with the cytoskeletal protein filamin A. Here, we found that filamin A protein levels correlated with Wnt5A levels in melanoma cells. Small interfering RNA (siRNA) knockdown of WNT5A decreased filamin A expression. Knockdown of filamin A also corresponded to a decrease in melanoma cell motility. In metastatic cells, filamin A expression was predominant in the cytoplasm, which western analysis indicated was due to the cleavage of filamin A in these cells. Treatment of nonmetastatic melanoma cells with recombinant Wnt5A increased filamin A cleavage, and this could be prevented by the knockdown of ROR2 expression. Further, BAPTA-AM chelation of intracellular calcium also inhibited filamin A cleavage, leading to the hypothesis that Wnt5A/ROR2 signaling could cleave filamin A through activation of calcium-activated proteases, such as calpains. Indeed, WNT5A knockdown decreased calpain 1 expression, and by inhibiting calpain 1 either pharmacologically or using siRNA, it decreased cell motility. Our results indicate that Wnt5A activates calpain-1, leading to the cleavage of filamin A, which results in a remodeling of the cytoskeleton and an increase in melanoma cell motility
The eGFR-C study: accuracy of glomerular filtration rate (GFR) estimation using creatinine and cystatin C and albuminuria for monitoring disease progression in patients with stage 3 chronic kidney disease - prospective longitudinal study in a multiethnic population
Background: Uncertainty exists regarding the optimal method to estimate glomerular filtration rate (GFR) for disease detection and monitoring. Widely used GFR estimates have not been validated in British ethnic minority populations. Methods: Iohexol measured GFR will be the reference against which each estimating equation will be compared. The estimating equations will be based upon serum creatinine and/or cystatin C. The eGFR-C study has 5 components:1)A prospective longitudinal cohort study of 1300 adults with stage 3 chronic kidney disease followed for 3 years with reference (measured) GFR and test (estimated GFR [eGFR] and urinary albumin-to-creatinine ratio) measurements at baseline and 3 years. Test measurements will also be undertaken every 6 months. The study population will include a representative sample of south-Asians and African-Caribbeans. People with diabetes and proteinuria (ACR >=30 mg/mmol) will comprise 20-30% of the study cohort. 2)A sub-study of patterns of disease progression of 375 people (125 each of Caucasian, Asian and African-Caribbean origin; in each case containing subjects at high and low risk of renal progression). Additional reference GFR measurements will be undertaken after 1 and 2 years to enable a model of disease progression and error to be built. 3)A biological variability study to establish reference change values for reference and test measures. 4)A modelling study of the performance of monitoring strategies on detecting progression, utilising estimates of accuracy, patterns of disease progression and estimates of measurement error from studies 1), 2) and 3). 5)A comprehensive cost database for each diagnostic approach will be developed to enable cost-effectiveness modelling of the optimal strategy. The performance of the estimating equations will be evaluated by assessing bias, precision and accuracy. Data will be modelled as a linear function of time utilising all available (maximum 7) time points compared with the difference between baseline and final reference values. The percentage of participants demonstrating large error with the respective estimating equations will be compared. Predictive value of GFR estimates and albumin-to-creatinine ratio will be compared amongst subjects that do or do not show progressive kidney function decline. Discussion: The eGFR-C study will provide evidence to inform the optimal GFR estimate to be used in clinical practice