204 research outputs found

    Measurement-Based Quantum Computation on Symmetry Breaking Thermal States

    Full text link
    We consider measurement-based quantum computation (MBQC) on thermal states of the interacting cluster Hamiltonian containing interactions between the cluster stabilizers that undergoes thermal phase transitions. We show that the long-range order of the symmetry breaking thermal states below a critical temperature drastically enhance the robustness of MBQC against thermal excitations. Specifically, we show the enhancement in two-dimensional cases and prove that MBQC is topologically protected below the critical temperature in three-dimensional cases. The interacting cluster Hamiltonian allows us to perform MBQC even at a temperature an order of magnitude higher than that of the free cluster Hamiltonian.Comment: 8 pages, 7 figure

    Extended Quantum Dimer Model and novel valence-bond phases

    Get PDF
    We extend the quantum dimer model (QDM) introduced by Rokhsar and Kivelson so as to construct a concrete example of the model which exhibits the first-order phase transition between different valence-bond solids suggested recently by Batista and Trugman and look for the possibility of other exotic dimer states. We show that our model contains three exotic valence-bond phases (herringbone, checkerboard and dimer smectic) in the ground-state phase diagram and that it realizes the phase transition from the staggered valence-bond solid to the herringbone one. The checkerboard phase has four-fold rotational symmetry, while the dimer smectic, in the absence of quantum fluctuations, has massive degeneracy originating from partial ordering only in one of the two spatial directions. A resonance process involving three dimers resolves this massive degeneracy and dimer smectic gets ordered (order from disorder).Comment: 20 pages, 13 figures, accepted for publication in J. Stat. Mec

    Dynamics and stabilization mechanism of mitochondrial cristae morphofunction associated with turgor-driven cardiolipin biosynthesis under salt stress conditions

    Get PDF
    Maintaining energy production efficiency is of vital importance to plants growing under changing environments. Cardiolipin localized in the inner mitochondrial membrane plays various important roles in mitochondrial function and its activity, although the regulation of mitochondrial morphology to various stress conditions remains obscure, particularly in the context of changes in cellular water relations and metabolisms. By combining single-cell metabolomics with transmission electron microscopy, we have investigated the adaptation mechanism in tomato trichome stalk cells at moderate salt stress to determine the kinetics of cellular parameters and metabolisms. We have found that turgor loss occurred just after the stress conditions, followed by the contrasting volumetric changes in mitochondria and cells, the accumulation of TCA cycle-related metabolites at osmotic adjustment, and a temporal increase in cardiolipin concentration, resulting in a reversible topological modification in the tubulo-vesicular cristae. Because all of these cellular events were dynamically observed in the same single-cells without causing any disturbance for redox states and cytoplasmic streaming, we conclude that turgor pressure might play a regulatory role in the mitochondrial morphological switch throughout the temporal activation of cardiolipin biosynthesis, which sustains mitochondrial respiration and energy conversion even under the salt stress conditions.Fil: Nakata, Keisuke. Ehime University; JapónFil: Hatakeyama, Yuto. Ehime University; JapónFil: Erra Balsells, Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; ArgentinaFil: Nonami, Hiroshi. Ehime University; JapónFil: Wada, Hiroshi. Ehime University; Japó

    Increasing trends in the prevalence of prior cancer in newly diagnosed lung, stomach, colorectal, breast, cervical, and corpus uterine cancer patients: a population-based study

    Get PDF
    [Background] Cancer survivors are frequently excluded from clinical research, resulting in their omission from the development of many cancer treatment strategies. Quantifying the prevalence of prior cancer in newly diagnosed cancer patients can inform research and clinical practice. This study aimed to describe the prevalence, characteristics, and trends of prior cancer in newly diagnosed cancer patients in Japan. [Methods] Using Osaka Cancer Registry data, we examined the prevalence, characteristics, and temporal trends of prior cancer in patients who received new diagnoses of lung, stomach, colorectal, female breast, cervical, and corpus uterine cancer between 2004 and 2015. Site-specific prior cancers were examined for a maximum of 15 years before the new cancer was diagnosed. Temporal trends were evaluated using the Cochran-Armitage trend test. [Results] Among 275, 720 newly diagnosed cancer patients, 21, 784 (7.9%) had prior cancer. The prevalence of prior cancer ranged from 3.3% (breast cancer) to 11.1% (lung cancer). In both sexes, the age-adjusted prevalence of prior cancer had increased in recent years (P values for trend < 0.001), especially in newly diagnosed lung cancer patients. The proportion of smoking-related prior cancers exceeded 50% in patients with newly diagnosed lung, stomach, colorectal, breast, and cervical cancer. [Conclusions] The prevalence of prior cancer in newly diagnosed cancer patients is relatively high, and has increased in recent years. Our findings suggest that a deeper understanding of the prevalence and characteristics of prior cancer in cancer patients is needed to promote more inclusive clinical research and support the expansion of treatment options

    Propulsive Performance and Heating Environment of Rotating Detonation Engine with Various Nozzles

    Get PDF
    Geometric throats are commonly applied to rocket combustors to increase pressure and specific impulse. This paper presents the results from thrust measurements of an ethylene/gas-oxygen rotating detonation engine with various throat geometries in a vacuum chamber to simulate varied backpressure conditions in a range of 1.1–104 kPa. For the throatless case, the detonation channel area was regarded to be equivalent the throat area, and three throat-contraction ratios were tested: 1, 2.5, and 8. Results revealed that combustor pressure was approximately proportional to equivalent throat mass flux for all test cases. Specific impulse was measured for a wide range of pressure ratios, defined as the ratio of the combustor pressure to the backpressure in the vacuum chamber. The rotating detonation engine could achieve almost the same level of optimum specific impulse for each backpressure, whether or not flow was squeezed by a geometric throat. In addition, heat-flux measurements using heat-resistant material are summarized. Temporally and spatially averaged heat flux in the engine were roughly proportional to channel mass flux. Heat-resistant material wall compatibility with two injector shapes of doublet and triplet injection is also discussed

    On-site single pollen metabolomics reveals varietal differences in phosphatidylinositol synthesis under heat stress conditions in rice

    Get PDF
    Although a loss of healthy pollen grains induced by metabolic heat responses has been indicated to be a major cause of heat-induced spikelet sterility under global climate change, to date detailed information at pollen level has been lacking due to the technical limitations. In this study, we used picolitre pressure-probe-electrospray-ionization mass spectrometry (picoPPESI-MS) to directly determine the metabolites in heat-treated single mature pollen grains in two cultivars, heat-tolerant cultivar, N22 and heat-sensitive cultivar, Koshihikari. Heat-induced spikelet fertility in N22 and Koshihikari was 90.0% and 46.8%, respectively. While no treatment difference in in vitro pollen viability was observed in each cultivar, contrasting varietal differences in phosphatidylinositol (PI)(34:3) have been detected in mature pollen, together with other 106 metabolites. Greater PI content was detected in N22 pollen regardless of the treatment, but not for Koshihikari pollen. In contrast, there was little detection for phosphoinositide in the single mature pollen grains in both cultivars. Our findings indicate that picoPPESI-MS analysis can efficiently identify the metabolites in intact single pollen. Since PI is a precursor of phosphoinositide that induces multiple signaling for pollen germination and tube growth, the active synthesis of PI(34:3) prior to germination may be closely associated with sustaining spikelet fertility even at high temperatures.Fil: Wada, Hiroshi. Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization; JapónFil: Hatakeyama, Yuto. Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization; JapónFil: Nakashima, Taiken. Hokkaido University; JapónFil: Nonami, Hiroshi. Ehime University; JapónFil: Erra Balsells, Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; ArgentinaFil: Hakata, Makoto. Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization; JapónFil: Nakata, Keisuke. Ehime University; JapónFil: Hiraoka, Kenzo. University Of Yamanashi; JapónFil: Onda, Yayoi. Ehime University; JapónFil: Nakano, Hiroshi. Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization; Japó

    Comparison of Effects on Gene Expression Activity of Low-Molecular-Weight Lychee Fruit Polyphenol (Oligonol®), Adenosine, and Minoxidil in Human Dermal Papilla Cells

    Get PDF
    Background: Oligonol® (OLG) is a functional food product and ingredient for cosmetics derived from a lychee fruit polyphenol. It has been reported to act on the skin as an anti-inflammatory and prevent UVB-induced skin damage.Aim: In this study, with the aim of exploring new functionalities of OLG on the scalp, we investigated the effect of OLG on human dermal papilla cells by comparing with adenosine and minoxidil at the genetic level.Method: OLG, adenosine, and minoxidil were applied to human dermal papilla cell lines for 24 h, after which VEGF, FGF-7, WNT5a, and WNT10a mRNA expressions were measured by real-time PCR analysis. Additionally, using DNA microarrays, we investigated the effect on 205 inflammation-related genes.Result: Consequently, in human dermal papilla cell lines, FGF-7 and WNT10a mRNA expression were observed in 100 µg/mL OLG-supplemented cells. The results of the DNA microarray analysis showed that 10 genes were suppressed by OLG.Conclusions: OLG may be expected to affect function of human dermal papilla cell by regulating the expression of genes related to cell proliferation and inflammation

    Cell-type-specific Augmentation of the Tumoricidal Activity of Polymeric Adriamycin Combined with Galactosamine

    Get PDF
    The optimization of drug delivery system with approaches to a target in structure has been implicated to play a role in cancer chemotherapy, because it can reduce the adverse effects. However, this system partly reduces the direct cytotoxicity of anticancer drugs against tumor cells, in comparison to its free form. In the present study, poly(ホア- malic acid) adriamycin (poly ADR) coated with saccharides including galactosamine which recognizes galactose-lectin specific to hepatocytes was prepared, and its cytotoxicities against Hep G2 cells (human hepatoblastoma), AZ521 cells (human gastric cancer) and KNS cells (human lung cancer) was evaluated using an in vitro cytotoxicity assay. In both AZ521 cells and KNS cells, poly ADR as well as poly ADR coated with glucosamine, glactosamine or mannosamine provided relatively lower cytotoxicities than the free form of ADR. In contrast, Hep G2 cells were to more efficiently sensitized, compared with the free form of ADR or poly ADR combined with or without glucosamine or mannosamine (P<0.01, respectively). These results indicate that poly ADR coated with galactosamine used as a cell recognition element is thus applicable for targeting cancer chemotherapy in the treatment of hepatocellular carcinoma
    corecore