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Abstract. We extend the quantum dimer model (QDM) introduced by Rokhsar
and Kivelson so as to construct a concrete example of the model which exhibits the
first-order phase transition between different valence-bond solids suggested recently
by Batista and Trugman and look for the possibility of other exotic dimer states.
We show that our model contains three exotic valence-bond phases (herringbone,
checkerboard and dimer smectic) in the ground-state phase diagram and that it realizes
the phase transition from the staggered valence-bond solid to the herringbone one. The
checkerboard phase has four-fold rotational symmetry, while the dimer smectic, in
the absence of quantum fluctuations, has massive degeneracy originating from partial
ordering only in one of the two spatial directions. A resonance process involving three
dimers resolves this massive degeneracy and dimer smectic gets ordered (order from
disorder).
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1. Introduction

Since P.W. Anderson’s paper[1, 2, 3] in 1973, the quest for the resonating valence bond

(RVB) state[4, 5, 6, 7] and exotic valence bond solids (VBS)[8, 9, 10, 11, 12] have been

one of the recurrent themes in research on frustrated antiferro(AF) magnets[13, 14, 15].

One of the most studied problem of frustrated magnets would be the ground-state

property of the J1-J2 Heisenberg model on a square lattice[16, 17, 18, 19] especially

around the fully frustrated point J2/J1 = 1/2. Chandra and Doucot[16], on the basis

of a 1/S expansion for the sublattice magnetization, have predicted that the Néel order

vanishes for J2/J1 ' 0.38 and suggested that for a range of J2/J1 beyond 0.38 the

ground state might be a spin liquid. Nishimori and Saika[20] used the modified spin

wave approximation to conclude that a first-order phase transition from the Néel phase

to the collinear AF phase[21] occurs. Gelfand, Singh and Huse[10] have argued that

system gets spontaneously dimerized in the columnar pattern as has been predicted by

Read and Sachdev[22]. In spite of these intensive studies, nature of the ground state of

the square-lattice J1-J2 Heisenberg model around the fully frustrated point J2/J1 = 1/2

is still controversial.

One natural way to optimize the (short-range) antiferromagnetic correlation in

quantum (i.e. low-spin) magnets is pairing spins at short distance into spin-singlet

dimers. Therefore, it is tempting to consider the quantum dynamics within the spin-

singlet subspace made up of all possible (short-range) dimer coverings. Quantum dimer

model (QDM), which has been originally introduced by Rokhsar and Kivelson[23] to

describe the low-energy physics of the square-lattice Heisenberg antiferromagnet, is now

considered to capture a certain aspect of the low-energy dynamics of (frustrated) non-

magnetic Mott insulators. The standard QDMs á la Rokhsar and Kivelson are defined

in the Hilbert space of the nearest-neighbor dimer coverings of the lattice and consists

only of processes which involve a single dimer pair. The square-lattice QDM thus defined

is known to exhibit crystalline orders of the valence bonds and confined spinons except

at the Rokhsar-Kivelson (RK) point[23], where a short ranged RVB state is realized (see

Refs. [24, 25] for readable reviews of QDM).

Of course, the Rokhsar-Kivelson QDM is a minimal model that describes the

dynamics of singlet dimers; for instance, when one derives QDM from a given

microscopic model by the overlap expansion, various higher-order terms (including dimer

moves on larger loops) are generated. Along this line, Ralko et al.[26, 27] has considered

an extension of the QDM and investigated the impact of higher-order processes included.

Among other attempts at extending QDM, Papanikolaou et al.[28] have introduced,

on the basis of an analogy to the Pokrovsky-Talapov model[29] of fluctuating domain

walls in two-dimensional classical statistical mechanics[30, 31, 32, 33], a two-dimensional

microscopic model of interacting quantum dimers, which, in principle, involves infinitely

many arbitrary parameters and dimer patterns.

Recently, Batista and Trugman[34] have undertaken a different microscopic

approach and considered an S = 1/2 J1-J2 Heisenberg model with an additional term
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(four-spin exchange interactions) that makes the model quasi-exactly solvable at the

fully frustrated point J2/J1 = 1/2 (see Ref. [8] for a similar approach in spirit). They

have argued that any states having at least one singlet dimer per plaquette are ground

states. Although one can easily see that the staggered- and the herringbone VBS[28]

(dubbed ‘zigzag dimer’ in Ref.[34]) are possible candidates of the ground states of their

Hamiltonian, it is not clear when one of these VBSs becomes the unique ground state

or what interaction controls the phase transition between them and it is known that

the simplest QDM does not exhibit such a first-order transition[35, 36, 37]. Motivated

by this question, we shall extend QDM so as to realize the first-order phase transition

suggested in Ref.[34] and seek for other exotic dimer states and then map out (a part

of) the phase diagram. This is the main purpose of this paper.

This paper is structured as follows. In section 2, we study a certain region of

EQDM in the absence of quantum fluctuations and, as the result, find a new disordered

phase dubbed dimer smectic. The main motivation comes from a first-order transition

between the staggered VBS and the herringbone VBS which has been predicted recently

by Batista and Trugman[34] to be controlled by a certain unspecified parameter ‘g’. We

show that by changing one of the coupling constants in our EQDM we can indeed

drive the first-order transition. Within the usual QDM, both VBSs (staggered and

herringbone) are exactly degenerate zero-energy states of the (classical) Hamiltonian and

the single-plaquette resonance does not lift the degeneracy. In section 3, we consider the

effects of quantum fluctuations. Specifically, we calculate the quantum correction to the

ground-state energy for the three valence-bond states (herringbone, checkerboard VBSs

and dimer smectic) which are degenerate in the absence of fluctuations (resonances) and

see whether the degeneracy is resolved or not. We show that dimer smectic eventually

gets ordered by a new resonance term which is equivalent to two successive actions of

the familiar parallel dimer resonance. In Appendix A, we discuss an interesting mapping

between the EQDM and a spin-1 model which is helpful in writing down the EQDM

Hamiltonian in terms of a relatively small number of coupling constants. In Appendix

B, we present the second-order calculation of the energy shift (eq.8) caused by the t′

resonance effect for the dimer smectic.

2. Extended Quantum Dimer Model

Recently, Batista and Trugman[34] have introduced the following generalized S = 1/2

J1-J2 Heisenberg model on a square lattice including an additional term (a four-spin

exchange interaction) that makes a quasi-exact solution feasible at the fully frustrated

point J2/J1 = 1/2:

HBT = HJ1−J2 + Hexchange

= J1

∑
〈i,j〉

~Si · ~Sj +
J1

2

∑
〈〈i,j〉〉

~Si · ~Sj +
J1

8

∑
α

(
Pα

ijP
α
kl + P α

jkP
α
il + Pα

ikP
α
jl

)



Extended Quantum Dimer Model 4

=
3J1

2

∑
α

Pα , (1)

where 〈i, j〉 and 〈〈i, j〉〉 denote the nearest neighbors and the second nearest neighbors,

respectively, and Pij = Si · Sj. The index α labels the plaquettes and ijkl are the

four sites of each plaquette in the clockwise order. The four-spin exchange interaction

Hexchange is similar to the usual four-spin cyclic exchange[38] except that the sign of the

last term is different. Since the operator Pα projects the spin state of the plaquette α

onto the subspace with total spin Sα
T = 2, it is clear[34] that any states having at least

one singlet dimer on each plaquette can be the ground states. Of course, there are many

other configurations[34] where we have dimers on diagonal bonds or unpaired S = 1/2s.

Nevertheless, we will not consider these configurations hereafter.

Though both the staggered- and the herringbone VBS (which is called ‘zigzag dimer’

in Ref.[34]) satisfy the condition for the ground states described above, it is not clear

when and how one of these VBSs is chosen as the unique ground state. Also the control

parameter that drives the first-order transition from the staggered dimer to herringbone

predicted in Ref. [34] has not been identified yet either.

Motivated by these, we generalize the usual QDM and consider the following

extended quantum dimer model (EQDM)‡:

HEQDM =
∑

˜

{
− t | 〉〈 | − t′

∣∣∣ 〉〈 ∣∣∣ − t′′
∣∣∣ 〉〈 ∣∣∣

+ (−4J + 2J ′ + λ) | 〉〈 | − J
∣∣∣ 〉〈 ∣∣∣

− J ′
∣∣∣ 〉〈 ∣∣∣ + (−2J + J ′ + κ)

∣∣∣ 〉〈 ∣∣∣
+ J ′

∣∣∣ 〉〈 ∣∣∣ + (h.c.) + (rotations) + (reflections)

}
.(2)

Except for the last term (with the coefficient J ′), the above EQDM contains all possible

dimer patterns having at least one singlet dimer on each plaquette (with the coefficients

given by −J , −J ′, and (−2J + J ′ + κ)); the last one appears in the process of deriving

the EQDM from the pseudo-spin (S = 1) Hamiltonian described in the Appendix.

However, if we choose the coupling constants as in (A.12)-(A.15), this configuration

becomes higher in energy and we may expect that the EQDM hopefully becomes an

effective Hamiltonian for the generalized S = 1/2 J1-J2 Heisenberg model of Batista

and Trugman[34].

We will study the region J ′ = 2J(> 0), 0 ≤ λ < 2J and κ < 0 where the two

valence-bond states – the staggered dimer and the herringbone– compete with each

other in the ground state and see that the three-spin interaction ‘κ′ in the pseudo-spin

Hamiltonian (see Appendix for the definition) plays a role of the unspecified control

parameter ‘g′ in Ref. [34]. On the λ = 0 line, a more exotic phase dubbed dimer smectic

will be found.

‡ The steps of defining our EQDM are outlined in Appendix.
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2.1. Phase diagram in J ′ = 2J(> 0), 0 ≤ λ < 2J and κ < 0

In this region (J ′ = 2J (>0)), the EQDM is rewritten as

HEQDM =
∑

˜

{
−t | 〉〈 | − t′

∣∣∣ 〉〈 ∣∣∣ − t′′
∣∣∣ 〉〈 ∣∣∣

+ λ | 〉〈 | − J
∣∣∣ 〉〈 ∣∣∣ − 2J

∣∣∣ 〉〈 ∣∣∣
+ κ

∣∣∣ 〉〈 ∣∣∣ + 2J
∣∣∣ 〉〈 ∣∣∣

+ (h.c.) + (rotations) + (turnover)

}
. (3)

We restrict our investigation to the region λ ≥ 0 because otherwise the staggered dimer

and the herringbone are not competing, and such situation is not relevant to our current

purpose.

In the first step, we consider the case where quantum fluctuations (i.e. the

resonances t, t′ and t′′) are absent. The phase diagram for t = t′ = t′′ = 0 is given

in Fig.1. (A) 0 < λ < 2J ; it is clear that the phase transition from the staggered-VBS

to the herringbone-VBS occurs by changing the parameter κ, which is the coefficient of

three-spin interaction in the pseudo-spin Hamiltonian given in Appendix. The critical

value is κc = −J . Namely, the three-spin interaction ‘κ’ in the pseudo-spin Hamiltonian

plays a role of the unspecified control parameter ‘g’ in Ref.[34]. In this sense, EQDM may

be an effective Hamiltonian for a J1-J2 Heisenberg model with a four-spin interaction

introduced by Batista and Trugman in this region. It is worth mentioning that the

usual QDM cannot describe the transition from staggered to herringbone VBS, since

both are exactly degenerate zero-energy eigenstates of the QDM Hamiltonian regardless

of the parameters. (B) λ = 0; Two novel kinds of VBS, the checkerboard VBS (Fig.2)

and the dimer smectic (Fig.2), emerge and are degenerate with the herringbone-VBS

(κ ≥ −J). In the next section, we will discuss how to resolve this degeneracy by the

effects of resonance (t, t′,t′′) in detail.

On the κ = −J and λ = 0 point the ground state is highly degenerate and Z4-vortex

(Fig.5) emerges.

2.2. The Features of VBS Phases

Now let us discuss the main features of these VBSs.

(i) Herringbone; The hallmark of this state is that it contains no parallel dimer. In fact,

the herringbone shares this important property with the well-known staggered VBS[23];

there is no flippable (with respect to t, t′ and t′′) dimers in both VBSs. In this sense, both

the herringbone and the staggered VBS are total free from the resonance and robust.

(ii) Checkerboard VBS [39]; this VBS is made up of a checkerboard pattern of two kinds

of parallel dimers and has the four-fold rotational symmetry .

(iii) Dimer smectic; this VBS corresponds in a sense to the intermediate between the

checkerboard and the herringbone, which means that this is realized by arranging (b)
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staggered VBS herringbone VBS

κ

λ

0

-J

chekerboard
dimer smectic

herringbone

3-fold degeneracy
×

highly degenerate

(+ Z vortex)4

+(resonance effects)

(A)

(B)

(Fig.6)

staggered VBS

2J

Figure 1. (Color online) Phase diagram of EQDM for t = t′ = t′′ = 0, 0 ≤ λ < 2J .
Basically κ controls the phase transition from staggered-VBS to herringbone-VBS. On
λ = 0, κ > −J line checkerboard-VBS and dimer smectic emerge and are degenerate
with herringbone-VBS.

Dimer smectic

checkerboard VBS

Figure 2. (Color online) [Left] Checkerboard. This VBS is characterized by a
checkerboard pattern of parallel dimers and has the four-fold rotational symmetry.
[Right] Dimer smectic. This is realized by arranging (b) plaquettes in Fig.A2 in such
a way that the number of (b) plaquettes is maximal within each column and then
connecting these ‘ordered’ columns horizontally by the herringbone-like (d) plaquettes
in Fig.A2.

plaquettes in Fig.A2 in such a way that the number of (b) plaquettes is maximal

within each column and then connecting these ‘ordered’ columns horizontally by the

herringbone-like (d) plaquettes in Fig.A2. The horizontal order is formed so as to break

the translation symmetry. In other words, there are two ways (type-(η) and (τ) in Fig.3)

of forming the herringbone-like order horizontally. If the integers Nx and Ny are the

linear dimensions of the lattice (the lattice spacing is set to unity) and we set Nη and
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Nτ the numbers of the stripes of type-(η) and (τ), they must satisfy

2Nη + 2Nτ = Nx. (4)

From this, one sees that the horizontal herringbone-like order type-(η ) and (τ) not

only break the translation symmetry but also lead to extensive GS degeneracy since

any combinations of (Nη,Nτ ) are permitted if they only satisfy eq.(4). This huge

degeneracy comes from the fact that pure (local) energetics cannot determine the ground

state uniquely and is reminiscent of similar degeneracy in such geometrically frustrated

magnets as the Kagomé antiferromagnet[40] and the pyrochlore antiferromagnet[41].

Type(η) Type(τ)

N

Nx

y

Figure 3. (Color online) Two possible configurations of three neighboring columns in
dimer smectic. These two patterns are the building blocks in forming highly degenerate
order in the horizontal direction.

+ =

(i) (ii) (iii)

+ =

(i) (ii) (iii)

Figure 4. (Color online) Plaquette tiling of stripe. Hatched columns in panel-(i)
may be viewed as one-dimensional solids consisting of type-(b) plaquettes and these
columns are connected to each other by ‘binding energy’ provided by the interaction
energy of herringbone-like (hatched) plaquettes in panel-(ii).

(iv) Z4-vortex ; this VBS becomes one of the ground states only at the special point
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0

Z  = 1

Z  = i

Z  = -1

Z  = -i4

4

4

4
x

y

Figure 5. (Color online) Illustration of the Z4 vortex. Four dimer domains are
characterized by four different values (1,−1, i,−i) of order parameter OZ4 .

λ = 0, κ = −J (shown in Fig.1 as ‘highly degenerate’). This phase consists of four

domains each of which assumes one of the four possible staggered VBS patterns (see

Fig.5). We call this phase Z4-vortex§ because the following order parameter OZ4 in fact

changes its value like a Z4-variable (1 → i → −1 → −i) as we move around the origin

(see Fig.5):

OZ4 ≡
1

Nsite

∑
~r

(−1)~rx+~ry

{
(~S~r · ~S~r+~ex − ~S~r+~ey · ~S~r+~ex+~ey)

+ i(~S~r · ~S~r+~ey − ~S~r+~ex · ~S~r+~ex+~ey)
}

. (5)

3. Effects of Quantum Fluctuations

3.1. Energy corrections from resonance terms

In this section, we investigate how the degeneracy among the three valence-bond phases

(herringbone, checkerboard and dimer smectic) found in the previous section is resolved

for J ′ = 2J(> 0), λ = 0 and κ = −(J + h) (circled region in Fig.1) paying particular

attention to the fate of the huge ground-state degeneracy in the dimer smectic. First

let us recover the resonance terms t, t′ and t′′ as perturbation to the diagonal part:

Vperturb =
∑

˜

{
−t | 〉〈 | − t′

∣∣∣ 〉〈 ∣∣∣ − t′′
∣∣∣ 〉〈 ∣∣∣}

+ (rotations) + (h.c.). (6)

The resonance terms t, t′ and t′′ are assumed to be very small (i.e. 0 < t, t′, t′′ ¿ J), and

will be used as the small parameters in perturbation theory. These perturbing terms

§ This is different from what is discussed in the context of the deconfined criticality[42] in that there
is no unpaired spin-1/2 which is responsible for the stabilization of the Néel phase out of the columnar
VBS.



Extended Quantum Dimer Model 9

come into play for the first time at the second order and we have to consider the effects

of resonance terms up to this order.

Echeck
resonance = −JNxNy −

t′2

4J

NxNy

2
− t2

12J

NxNy

4
− t′′2

6J

NxNy

4
. (7)

Esmectic
resonance = −JNxNy −

t′2

4J − 2h
Nη

Ny

3
− t′2

10J
Nη

Ny

3
− t′2

7J − h
Nτ

2Ny

3

− t2

4J

Nx

2

Ny

3
− t′′2

16J − 2h

NxNy

6
. (8)

Eherring
resonance = −JNxNy. (9)

The pair of integers (Nη, Nτ ) has been defined in section 3 and satisfies

2Nη + 2Nτ = Nx . (10)

We now rescale the couplings as t̃ ≡ t/J and h̃ ≡ h/J and define N̄η ≡ Nη/Nx so that

N̄η must satisfy 0 ≤ N̄η ≤ 1/2. The parameter |h| is assumed to be very small (|h| ¿ J)

and we approximate h̃2 ∼ 0. Then, the scaled energy Ẽsmectic
resonance ≡ Esmectic

resonance/J is given

by

Ẽsmectic
resonance

NxNy

' −1− t̃2

24
− t̃′2

21

(
1 +

h̃

7

)
− t̃′2

140
N̄η

(
3 +

55

14
h̃

)
− t̃′′2

96

(
1 +

h̃

8

)
.(11)

It is apparent that only the resonance t̃′ depends on the number of stripe type ((η)

and (τ)) in dimer smectic (fourth term in the right hand side). Since |h| is so small,

we may safely assume that the coefficient of N̄η is negative. Then, one can easily see

that quantum fluctuations (t′) form a minimum of the energy of the dimer smectic

at N̄η = 1/2 thereby select one particular configuration, which is shown in the lower

panel of Fig.7, as the ground state. This is because when |h| is small enough, type(η)

configuration can gain more resonance (t′) energy than the type(τ) one and the total

energy is minimized when all the columns are of the type(η).

Thus resonance t̃′ which is equivalent to two successive actions of the usual parallel

dimer resonance (t̃) and ignored in the standard QDM plays a special role; it resolves

the high degeneracy through the order-by-disorder mechanism[43, 44].

Then the energy of ordered dimer smectic is evaluated as

Ẽsmectic
resonance

NxNy

' −1 − t̃2

24
− t̃′2

120
α − t̃′′2

96

(
1 +

h̃

8

)
. (12)

α ≡ 7 +
5

2
h̃ . (13)

By comparing the energies of the three phases, we can draw the phase diagram of EQDM

in this region (Fig.6).

Ẽsmectic
resonance < Ẽcheck

resonance ⇐⇒ t̃2 > 6
(
1 − α

15

)
t̃′2 +

(
3

2
− h̃

16

)
t̃′′2. (14)

As shown in Fig.7 dimer smectic gets ordered by resonance t′ on (t̃′-t̃) plane and
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 0.02
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 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

Function

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

(ordered)

checkerboard

(i)

(ii)

dim
er sm

ectic

dimer smectic

Figure 6. (Color online) Schematic phase diagram of EQDM with t-t′-t′′axis for
J ′ = 2J(> 0), λ = 0, κ = −(J + h). Parameter h takes small negative values. Highly
degenerate dimer smectic exists only within a region on the t̃′ = 0 plane specified by
t̃′′ < t̃( 3

2 −
h̃
16 )−1/2. In the region shown as ‘(ordered) dimer smectic’, a unique ground

state is selected by the resonance t̃′. Boundary between ordered dimer smectic and
checkerboard VBS is given by eq.(33).

(ordered) dimer smectic

checkerboard

dimer smectic

0

(ordered)

dimer smectic
checkerboard

0

dimer smectic

(i)
(ii)

Figure 7. (Color online) Schematic phase diagram of EQDM with (t̃′-t̃) plane and
(t̃-t̃′′)plane for J ′ = 2J(> 0), λ = 0, κ = −(J + h). Parameter h is a small negative
value. Dimer smectic gets ordered only by resonance t̃′ (see arrow (i)). Because the
phases on either side of the boundary have totally different symmetries, we may expect
that the transition is of first order.
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resonance t̃′ drives the phase transition from dimer smectic to checkerboard VBS through

ordered dimer smectic. On the other hand, on (t̃-t̃′′) plane (without t′ resonance)

because there is no resonance t′ effects that dimer smectic does not get ordered and

the phase transition from dimer smectic to checkerboard VBS occurs without ordered

dimer smectic phase.

Because the phases on either side of the boundary have totally different symmetries,

we may expect that the transition is of first order.

3.2. Finite temperatures

It would be interesting to consider how the above one-dimensional solids in dimer smectic

phase melt into disordered states at finite temperatures. In fact, this kind of columnar

structures reminds us of the smectic metal state in strongly-correlated systems[45, 46]

and the sliding phases in liquid crystals[47] or in frustrated spin systems[48, 49]. Below,

we give a brief discussion about the possibility of the sliding behavior in the dimer

smectic phase.

The energy cost necessary to slide a column (a one-dimensional solid) vertically

and destroy the dimer-smectic (i.e. herringbone-like) order is estimated as (see Fig.8)

∆Esmectic
shift ∼ O(Ny) . (15)

On the other hand, the energy to destroy a one-dimensional solid itself is estimated as

∆Esmectic
column ∼ O(1), (16)

because we can adjust dimer configurations so as to minimize the effects of breakdown

in one-dimensional solid (see Fig.8). These values suggest that as the temperature is

increased, one-dimensional solids themselves are destroyed in the first place and exclude

the possibility of the phase of fluctuating one-dimensional solids.

4. Summary

In the usual QDM of Rokhsar and Kivelson , the staggered- and the herringbone VBS

should be degenerate, because both VBSs are zero-energy states and have no plaquettes

on which resonance term (t) and diagonal term (pair dimer) can act.

In the present paper, we have extended QDM so as to describe the phase transition

from the staggered VBS to the herringbone VBS. We can include all (nearest-neighbor)

dimer configurations which have at least one dimer in each plaquette. Therefore, EQDM

is considered in a sense to be a generalization of S = 1/2 the J1-J2 model with four-spin

exchange interactions[34] at its fully frustrated point (J1 = 2J2).

We then mapped out the phase diagram of EQDM in the region where both the

staggered VBS and the herringbone VBS exist as the ground states (J ′ = 2J(> 0), λ =

0, κ = −(J + h)) by the second-order perturbation theory in quantum fluctuations t, t′

and t′′. We have found that the three-spin interaction ‘κ′ in the pseudo-spin Hamiltonian

plays a role of the unspecified control parameter ‘g’ suggested by Batista and Trugman
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・
・
・
・
・

Figure 8. (Color online) [Left] Shift of a solid column (the rightmost one) in the
vertical direction destroys the herringbone-like order (hatched plaquettes in the middle
column). The necessary energy cost is estimated as ∆Esmectic

shift ∼ O(Ny). [Right]
Destruction of a columnar (1D) solid itself occurs by the insertion of wrong plaquettes
into the column. The energy to destroy one-dimensional solid itself is estimated as
∆Esmectic

column ∼ O(1).

which drives the first-order phase transition between the above two VBS phases. We

have also found that there does exist a new VBS phase called the dimer smectic. This

novel phase forms period-3 structure only in one (say, vertical) direction, and each

ordered columns are connected by the herringbone-like plaquettes. The order in the

horizontal direction is formed so as to break the translational symmetry and leads to

huge ground-state degeneracy. A resonance process involving three dimers (t′) resolves

this massive degeneracy and dimer smectic eventually gets ordered (see the alternating

pattern in Fig.7) through the order-by-disorder mechanism.

Last, in this paper, we did not pursued the (approximate) realization of our EQDM

in specific spin models. Though our original motivation of introducing EQDM is to

present a specific model which realizes a first-order staggered-herringbone transition

predicted in Ref.[34] and exhibits a novel dimer smectic phase, this phase unfortunately

does not satisfy the condition for the ground state of the generalized J1-J2 spin model

of Batista and Trugman (some plaquettes in the dimer smectic do not contain dimer

bonds). Therefore it is interesting to look for spin Hamiltonians which exhibit the dimer

smectic.
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Appendix A. Definition of Extended QDM

In this appendix, we describe an interesting mapping between the EQDM (2) and a

(pseudo)spin-1 Hamiltonian with multi-spin interactions. This mapping helps us reduce

the number of free parameters and keep a small number of relevant dimer configurations.

in the spirit close to that of Moessner, Sondhi and Fradkin(see Ref.[50]).

The key step in establishing the mapping is to assign the eigenstates |1〉, |0〉 and

| − 1〉 of the pseudo-spin-1 operator sz to the dimer configurations not on a single bond

but on an extended cluster containing the bond on which the spin-1 is defined (see

Fig.A1). The state |1〉 is assigned when the bond is occupied by a dimer and either |0〉
or | − 1〉 is assigned otherwise. This rule connects the dimer configurations to those of

the S = 1 pseudo-spins.

Z

Z

Z

map map

s

s
s

Figure A1. (Color online) Definition of the eigenstates | ± 1 > |0 > . |1 > is located
on the center of link which is occupied by a dimer, and |0 >, |-1> are located on the
center of links where dimers are absent. |-1> is placed on the link where either sides
links are not occupied by dimer, and |0 > is the others.

In principle, one could have taken another strategy. Namely, one could have used

the S = 1/2 operators to map a QDM containing large resonance loops and long-range

(dimer-dimer) interactions[28] onto an S = 1/2 (pseudo)spin Hamiltonian with multi-

spin- (six-spin and more) and long-range interactions. However, this may lead to the

complexity of the interactions and hinder further analyses of the resulting (pseudo-spin)

Hamiltonian as well as loss of local Ising gauge invariance. If we use the spin-1 mapping,

on the other hand, we can still work within the space of Hamiltonians with only short-

range interactions in the sense that the spin-spin interactions exist only among four

spins forming a plaquette. In this sense, our EQDM may be thought of as a minimal

model of generalized QDMs.

Obviously, the naive state space spanned by the pseudo-spin 1s are much larger

than that of the QDM and we have to implement the hardcore dimer constraint in the

pseudo-spin language:∑
+

Θ(sz) = 1 with Θ(x) ≡

{
1 when 0 < x

0 when x ≤ 0
. (A.1)



Extended Quantum Dimer Model 14

When the hardcore constraint is neglected, a single plaquette can take 34 different

configurations. When the hardcore dimer constraint that at each site only one of the

four links emanating from it can be occupied by a dimer and coefficient of diagonal terms

(VEQDM discussed in the next chapter) into account, then relevant dimer arrangements

of a plaquette are restricted to the five patterns shown in Fig. A2. At this point, one

may notice that some dimer configurations allowed by the hardcore dimer constraint are

missing in the patterns shown in Fig. A2. For instance, a spin-1 state |sz
1〉|sz

2〉|sz
3〉|sz

4〉
with sz

1=sz
2=sz

3=sz
4=0 (a pinwheel-like configuration) is permissible but the coefficient of

the diagonal term corresponding to this state is zero as will be seen in eq.(A.2). A similar

argument enables us to drop other constraint-allowed configurations from Fig. A2.

sz =

s s

s

s

z

z

z

z

V

V

V

V

V

(b)

(a)

(e)

(c)

(d)

V
(b)

V
(a)

(ex)

Figure A2. (Color online) Five states allowed by the hardcore constraint and VEQDM.
Some of the configurations allowed by hardcore constraint have been dropped for the
reason that they have zero coefficient in the diagonal part of the Hamiltonian. The
pseudo-spins are located on the middle of each link.

Having defined the three S = 1 pseudo-spin eigenstates in terms of the dimer

configurations on an extended (three-bond) cluster, we are at the position of defining

the diagonal part of our pseudo-spin Hamiltonian:

VEQDM = Jsz
i s

z
i+1 + J ′sz

i s
z
i+2 + κsz

i s
z
i+1s

z
i+2 + λsz

i s
z
i+1s

z
i+2s

z
i+3 , (A.2)

where the first two are the well-known J1-J2 interactions[16, 20] and the third one (κ

term) is a three-spin interaction. Note that this is the most general form which contains

all possible short-range many-body spin-spin interactions. The interaction VEQDM and

the correspondence Fig. A2 determine the coefficients of the diagonal terms as‖:

V
(a)
EQDM = −4J + 2J ′ + λ. (A.3)

V
(b)
EQDM = −J ′. (A.4)

‖ VEQDM is assigned per a plaquette.
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V
(c)
EQDM = J ′. (A.5)

V
(d)
EQDM = −J. (A.6)

V
(e)
EQDM = −2J + J ′ + κ. (A.7)

Now it is clear why we have dropped in the previous section several dimer configurations

allowed by the hardcore constraint alone (see Fig. A2). In fact, the pinwheel state

|0〉1|0〉2|0〉3|0〉4 mentioned before yields zero when VEQDM is applied. For the clarity of

the argument, in what follows, we shall restrict our discussion to the diagonal parts

of the Hamiltonians, although it is possible to write down the pseudo-spin interactions

corresponding to the off-diagonal part of the EQDM.

The mapping is not completed yet at this stage; there exist configurations as

shown in Fig.A3 that are permitted by the constraint eq.(A.1) in the spin system,

but not in the dimer systems because of the consistency of the definition Fig.A1 of

the three eigenstates¶. In order to suppress these forbidden states and realize one-to-

one correspondence between the EQDM and the pseudo-spin Hamiltonian, we add the

following interaction term to the spin Hamiltonian:

Vconsistency = J ′′
∑
+

[
sz

js
z
k −

1

2

]2

(A.8)

with |J ′′| À |J |, |J ′|, J ′′ > 0. The summation is taken over all the vertices of the original

lattice (see Fig.(A3). The auxiliary interaction Vconsistency excludes in the limit J ′′ ↗ ∞
the unwanted configurations ([Forbidden]) and selects the allowed ones ([Permitted])

while leaving the latter degenerate:

V Forbidden
consistency =

9

4
J ′′ , V Permitted

consistency =
1

4
J ′′. (A.9)

This finally establishes the one-to-one mapping between the diagonal part of the EQDM

and that of the pseudo-spin Hamiltonian+.

The resulting pseudo spin Hamiltonian consists of the diagonal part and the

auxiliary interaction Vconsistency which imposes the consistency condition:

Vpseudo = VEQDM + Vconsistency

=
∑

˜

[Jsz
i s

z
i+1 + J ′sz

i s
z
i+2 + κsz

i s
z
i+1s

z
i+2 + λsz

i s
z
i+2s

z
i+3s

z
i+4]

+
∑
+

J ′′
[
sz

js
z
k −

1

2

]2

+ (rotations), (A.10)

where the parameters must satisfy | J ′′ | À | J |, | J ′ |. By using the equivalence, the

corresponding EQDM is then written down as:

Hdiagonal
EQDM =

∑
˜

{
(−4J + 2J ′ + λ) | 〉〈 | − J

∣∣∣ 〉〈 ∣∣∣
¶ The configuration where the two states |1〉 and | − 1〉 are adjacent is not allowed since these are
incompatible when on the neighboring bonds.
+ It is evident that for a given dimer configuration we can determine the S = 1 configuration uniquely
by Fig.A1. Given a pseudo-spin configuration, on the other hand, the constraint (A.1) and Vconsistency

guarantees that it satisfies the hardcore dimer constraint. Hence the mapping is one-to-one.
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λ

sz szj k

Figure A3. (Color online) [Left] Interactions VEQDM of the pseudo-spin Hamiltonian.
dotted dashed lines denote the original square lattice on which dimers are defined and
the crosses marks the lattice sites where the pseudo-spins are located. The two-spin
interactions J and J ′ are similar to those of the J1-J2 model and λ is the four-spin
interaction necessary to realize the RK-point. J ′′ forces the one-to-one correspondence
between the EQDM and the pseudo S = 1 Hamiltonian. [Right] Dimer configurations
which are forbidden/permitted in the EQDM, due to the definition of the three S = 1
eigenstates.

− J ′
∣∣∣ 〉〈 ∣∣∣ + (−2J + J ′ + κ)

∣∣∣ 〉〈 ∣∣∣
+ J ′

∣∣∣ 〉〈 ∣∣∣ + (h.c.) + (rotations) + (reflections)

}
. (A.11)

As an effective Hamiltonian for Batista and Trugman’s generalized J1-J2 Heisenberg

model (i.e. any states having at least one singlet dimer per plaquette are ground states),

the region of each parameters are restricted as

V
(d)
EQDM < 0 ⇔ J > 0. (A.12)

V
(e)
EQDM < 0 ⇔ κ < 2J − J ′. (A.13)

V
(a)
EQDM + V

(b)
EQDM < 0, 2V

(a)
EQDM + V

(c)
EQDM > 0. (A.14)

⇔ 4J − 5

2
J ′ < λ < 4J − J ′, J ′ > 0. (A.15)

Introducing the resonance terms

Hresonance
EQDM =

∑
˜

{
−t | 〉〈 | − t′

∣∣∣ 〉〈 ∣∣∣ − t′′
∣∣∣ 〉〈 ∣∣∣

+ (rotations) + (reflections)

}
. (A.16)

by hand, we arrive at the EQDM Hamiltonian (2). The coefficient t describes the usual

resonance of parallel dimers and the new term t′ (t′′) moves three (four) dimers on

a length-6 (8) loop. Thus, the EQDM is defined as HEQDM = Hresonance
EQDM + Hdiagonal

EQDM .

When t′, t′′, J, J ′, κ = 0, the EQDM reduces to the usual Rokhsar-Kivelson QDM[23].

Furthermore, when t = J ′ = t′′ = λ = κ = 0, the phase transition from the columnar

VBS to the herringbone, which has been studied by Papanikolaou et al.[28], occurs.
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In summary, the requirement that the pseudo-spin Hamiltonian should consist

only of short-range interactions enabled us to keep only a restricted class of dimer

configurations out of infinitely many ones. This is the greatest advantage of using the

pseudo-spin representation of EQDM.

Appendix B. Calculation of t′ resonance effect in dimer smectic

In this section, we outline the second-order calculation of the energy shift (eq.8) caused

by the t′ resonance effect for the dimer smectic. Our calculation closely follows the work

of Papanikolaou et al[28].

We treat the small positive resonance terms t′ as perturbation:

V t′

perturb =
∑

˜

{
−t′

∣∣∣ 〉〈 ∣∣∣ + (rotations) + (h.c.)

}
. (B.1)

The first non-trivial contribution of V t′

perturb occurs at the second order and the energy

shift due to the resonance is given by

Et′

resonance = ε − t′
2
∑′

m

VnmVmn

εm − εn

+ O(t′
4
), (B.2)

where ε is the unperturbed energy and the primed summation is over all dimer coverings

except the original state. The terms in the sum which give nonzero contribution

correspond to states connected to the initial state by a single flipped cluster; these

processes are interpreted as brought about by quantum fluctuations.

Let us consider the energy shift for the dimer smectic case. As has been discussed in

section 2.2, dimer smectic has two possible configurations of three neighboring columns

(Fig.3) and therefore, we have to treat the two different patterns type-(η) and (τ)

carefully.

Type-(η); First, we have to realize furthermore the two different ways (type[η-1] and

type[η-2] in Fig.B1) how a cluster is flipped by t′. In fact, the intermediate states are

different and their energies∗ are different from each other too;

∆smectic
t′[η-1] = (0) − (−10J) = 10J, (B.3)

∆smectic
t′[η-2] = (−8J − 2h) − (−12J) = 4J − 2h. (B.4)

Type-(τ); we do not have to worry about the above difference, because both cases give

the same results. The energy shift is as below (Fig.B2):

∆smectic
t′[τ ] = (−4J − h) − (−11J) = 7J − h. (B.5)

Putting all these effects of the resonance t′ together, we obtain the energy shift caused

by t′-resonance of the dimer smectic as

∆Esmectic
t′resonance = − t′2

4J − 2h
Nη

Ny

3
− t′2

10J
Nη

Ny

3
− t′2

7J − h
Nτ

2Ny

3
. (B.6)

The calculation goes similarly for t and t′′ as well and collecting all the terms, we obtain

the energy of the dimer smectic with all resonance effects as eq.(8).

∗ VEQDM (i.e. potential term) is assigned per a plaquette as shown in Fig.A2.
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-2J

-2J-2J

-J

-J -J

-J

-2J

-2J

-2J

-2J

+2J

t’-2J

-2J

-2J

-2J

-2J

-J

-J

-J

-J

-J

-J

-2J

+2J

-2J

-2J

-J -J

-2J

-J-h -J-ht’

-2J

-2J

Type[η-1] Type[η-2]

Figure B1. (Color online) An example of intermediate state caused by t′ resonance
term in type-(η) dimer smectic. There are two types of intermediate states (type[η-1]
and [η-2]).
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