12 research outputs found

    Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG

    Get PDF
    Background: This randomized phase III trial was designed to demonstrate the superiority of autologous peptide-loaded dendritic cell (DC) vaccination over standard dacarbazine (DTIC) chemotherapy in stage IV melanoma patients. Patients and methods: DTIC 850 mg/m2 intravenously was applied in 4-week intervals. DC vaccines loaded with MHC class I and II-restricted peptides were applied subcutaneously at 2-week intervals for the first five vaccinations and every 4 weeks thereafter. The primary study end point was objective response (OR); secondary end points were toxicity, overall (OS) and progression-free survival (PFS). Results: At the time of the first interim analysis 55 patients had been enrolled into the DTIC and 53 into the DC-arm (ITT). OR was low (DTIC: 5.5%, DC: 3.8%), but not significantly different in the two arms. The Data Safety & Monitoring Board recommended closure of the study. Unscheduled subset analyses revealed that patients with normal serum LDH and/or stage M1a/b survived longer in both arms than those with elevated serum LDH and/or stage M1c. Only in the DC-arm did those patients with (i) an initial unimpaired general health status (Karnofsky = 100) or (ii) an HLA-A2+/HLA-B44− haplotype survive significantly longer than patients with a Karnofsky index <100 (P = 0.007 versus P = 0.057 in the DTIC-arm) or other HLA haplotypes (P = 0.04 versus P = 0.57 in DTIC-treated patients). Conclusions: DC vaccination could not be demonstrated to be more effective than DTIC chemotherapy in stage IV melanoma patients. The observed association of overall performance status and HLA haplotype with overall survival for patients treated by DC vaccination should be tested in future trials employing DC vaccine

    Radiosensitization by BRAF inhibitor therapy—mechanism and frequency of toxicity in melanoma patients

    Get PDF
    This study shows radiosensitization by BRAF inhibitors in clinical practice and ex vivo by fluorescence in situ hybridization of chromosomal breaks. Nevertheless, radiotherapy with concomitant BRAF inhibitor therapy is feasible with an acceptable increase in toxicity. Vemurafenib is a more potent radiosensitizer than dabrafenib in both the patient study and the ex vivo experiment

    Lack of clinical efficacy of imatinib in metastatic melanoma

    Get PDF
    This two-centre phase-II trial aimed at investigating the efficacy of imatinib in metastasised melanoma patients in correlation to the tumour expression profile of the imatinib targets c-kit and platelet-derived growth factor receptor (PDGF-R). The primary study end point was objective response according to RECIST, secondary end points were safety, overall and progression-free survival. In all, 18 patients with treatment-refractory advanced melanoma received imatinib 800 mg day−1. In 16 evaluable patients no objective responses could be observed. The median overall survival was 3.9 months, the median time to progression was 1.9 months. Tumour biopsy specimens were obtained from 12 patients prior to imatinib therapy and analysed for c-kit, PDGF-Rα and -Rβ expression by immunohistochemistry. In four cases, cell lines established from these tumour specimens were tested for the antiproliferative effects of imatinib and for functional mutations of genes encoding the imatinib target molecules. The tumour specimens stained positive for CD117/c-kit in nine out of 12 cases (75%), for PDGF-Rα in seven out of 12 cases (58%) and for PDGF-Rβ in eight out of 12 cases (67%). The melanoma cell lines showed a heterogenous expression of the imatinib target molecules without functional mutations in the corresponding amino-acid sequences. In vitro imatinib treatment of the cell lines showed no antiproliferative effect. In conclusion, this study did not reveal an efficacy of imatinib in advanced metastatic melanoma, regardless of the expression pattern of the imatinib target molecules c-kit and PDGF-R

    Mage-3 and influenza-matrix peptide-specific cytotoxic T cells are inducible in terminal stage HLA-A2.1+ melanoma patients by mature monocyte-derived dendritic cells.

    No full text
    Dendritic cell (DC) vaccination, albeit still in an early stage, is a promising strategy to induce immunity to cancer. We explored whether DC can expand Ag-specific CD8+ T cells even in far-advanced stage IV melanoma patients. We found that three to five biweekly vaccinations of mature, monocyte-derived DC (three vaccinations of 6 x 106 s.c. followed by two i.v. ones of 6 and 12 x 106, respectively) pulsed with Mage-3A2.1 tumor and influenza matrix A2. 1-positive control peptides as well as the recall Ag tetanus toxoid (in three of eight patients) generated in all eight patients Ag-specific effector CD8+ T cells that were detectable in blood directly ex vivo. This is the first time that active, melanoma peptide-specific, IFN-gamma-producing, effector CD8+ T cells have been reliably observed in patients vaccinated with melanoma Ags. Therefore, our DC vaccination strategy performs an adjuvant role and encourages further optimization of this new immunization approach

    Radiosensitization by BRAF inhibitor therapy—mechanism and frequency of toxicity in melanoma patients

    No full text
    Background: Recent evidence suggests that ionizing radiation may be associated with unexpected side-effects in melanoma patients treated with concomitant BRAF inhibitors. A large multicenter analysis was carried out to generate reliable safety data and elucidate the mechanism. Methods: A total of 161 melanoma patients from 11 European skin cancer centers were evaluated for acute and late toxicity, of whom 70 consecutive patients received 86 series of radiotherapy with concomitant BRAF inhibitor therapy. To further characterize and quantify a possible radiosensitization by BRAF inhibitors, blood samples of 35 melanoma patients were used for individual radiosensitivity testing by fluorescence in situ hybridization of chromosomal breaks after ex vivo irradiation. Results: With radiotherapy and concomitant BRAF inhibitor therapy the rate of acute radiodermatitis ≥2° was 36% and follicular cystic proliferation was seen in 13% of all radiotherapies. Non-skin toxicities included hearing disorders (4%) and dysphagia (2%). Following whole-brain radiotherapy, rates of radiodermatitis ≥2° were 44% and 8% (P < 0.001) for patients with and without BRAF inhibitor therapy, respectively. Concomitant treatment with vemurafenib induced acute radiodermatitis ≥2° more frequently than treatment with dabrafenib (40% versus 26%, P = 0.07). In line with these findings, analysis of chromosomal breaks ex vivo indicated significantly increased radiosensitivity for patients under vemurafenib (P = 0.004) and for patients switched from vemurafenib to dabrafenib (P = 0.002), but not for patients on dabrafenib only. No toxicities were reported after stereotactic treatment. Conclusion: Radiotherapy with concomitant BRAF inhibitor therapy is feasible with an acceptable increase in toxicity. Vemurafenib is a more potent radiosensitizer than dabrafenib
    corecore