21 research outputs found

    Non-Abelian Stokes Theorem and Quark Confinement in SU(3) Yang-Mills Gauge Theory

    Get PDF
    We derive a new version of SU(3) non-Abelian Stokes theorem by making use of the coherent state representation on the coset space SU(3)/(U(1)×U(1))=F2SU(3)/(U(1)\times U(1))=F_2, the flag space. Then we outline a derivation of the area law of the Wilson loop in SU(3) Yang-Mills theory in the maximal Abelian gauge (The detailed exposition will be given in a forthcoming article). This derivation is performed by combining the non-Abelian Stokes theorem with the reformulation of the Yang-Mills theory as a perturbative deformation of a topological field theory recently proposed by one of the authors. Within this framework, we show that the fundamental quark is confined even if G=SU(3)G=SU(3) is broken by partial gauge fixing into H=U(2)H=U(2) just as GG is broken to H=U(1)×U(1)H=U(1) \times U(1). An origin of the area law is related to the geometric phase of the Wilczek-Zee holonomy for U(2). Abelian dominance is an immediate byproduct of these results and magnetic monopole plays the dominant role in this derivation.Comment: 14 pages, Latex, no figures, version accepted for publication in Mod. Phys. Lett. A (some comments are added in the final parts

    Flavor-Dependence and Higher Orders of Gauge-Independent Solutions in Strong Coupling Gauge Theory

    Full text link
    The fermion flavor NfN_f dependence of non-perturbative solutions in the strong coupling phase of the gauge theory is reexamined based on the interrelation between the inversion method and the Schwinger-Dyson equation approach. Especially we point out that the apparent discrepancy on the value of the critical coupling in QED will be resolved by taking into account the higher order corrections which inevitably lead to the flavor-dependence. In the quenched QED, we conclude that the gauge-independent critical point αc=2π/3\alpha_c=2\pi/3 obtained by the inversion method to the lowest order will be reduced to the result αc=π/3\alpha_c=\pi/3 of the Schwinger-Dyson equation in the infinite order limit, but its convergence is quite slow. This is shown by adding the chiral-invariant four-fermion interaction.Comment: CHIBA-EP-72, 13 pages (including 1 Table), LaTex fil

    The exact decomposition of gauge variables in lattice Yang-Mills theory

    Full text link
    In this paper, we consider lattice versions of the decomposition of the Yang- Mills field a la Cho-Faddeev-Niemi, which was extended by Kondo, Shinohara and Murakami in the continuum formulation. For the SU(N) gauge group, we propose a set of defining equations for specifying the decomposition of the gauge link variable and solve them exactly without using the ansatz adopted in the previous studies for SU(2) and SU(3). As a result, we obtain the general form of the decomposition for SU(N) gauge link variables and confirm the previous results obtained for SU(2) and SU(3).Comment: 16 page

    Abelian-Projected Effective Gauge Theory of QCD with Asymptotic Freedom and Quark Confinement

    Get PDF
    We give an outline of a recent proof that the low-energy effective gauge theory exhibiting quark confinement due to magnetic monopole condensation can be derived from QCD without any specific assumption. We emphasize that the low-energy effective abelian gauge theories obtained here give the dual description of the same physics in the low-energy region. They show that the QCD vacuum is nothing but the dual (type II) superconductor.Comment: 15 pages, Latex, no figures, Talk given at YKIS'97, Non-perturbative QCD, Kyot

    Abelian-Projected Effective Gauge Theory of QCD with Asymptotic Freedom and Quark Confinement

    Get PDF
    Starting from SU(2) Yang-Mills theory in 3+1 dimensions, we prove that the abelian-projected effective gauge theories are written in terms of the maximal abelian gauge field and the dual abelian gauge field interacting with monopole current. This is performed by integrating out all the remaining non-Abelian gauge field belonging to SU(2)/U(1). We show that the resulting abelian gauge theory recovers exactly the same one-loop beta function as the original Yang-Mills theory. Moreover, the dual abelian gauge field becomes massive if the monopole condensation occurs. This result supports the dual superconductor scenario for quark confinement in QCD. We give a criterion of dual superconductivity and point out that the monopole condensation can be estimated from the classical instanton configuration. Therefore there can exist the effective abelian gauge theory which shows both asymptotic freedom and quark confinement based on the dual Meissner mechanism. Inclusion of arbitrary number of fermion flavors is straightforward in this approach. Some implications to lower dimensional case will also be discussed.Comment: 39 pages, Latex, no figures, (2.2, 4.1, 4.3 are modified; 4.4, Appendices A,B,C and references are added. No change in conclusion

    Preheating of the nonminimally coupled inflaton field

    Get PDF
    We investigate preheating of an inflaton field ϕ\phi coupled nonminimally to a spacetime curvature. In the case of a self-coupling inflaton potential V(ϕ)=λϕ4/4V(\phi)=\lambda \phi^4/4, the dynamics of preheating changes by the effect of the negative Ο\xi. We find that the nonminimal coupling works in two ways. First, since the initial value of inflaton field for reheating becomes smaller with the increase of âˆŁÎŸâˆŁ|\xi|, the evolution of the inflaton quanta is delayed for fixed λ\lambda. Second, the oscillation of the inflaton field is modified and the nonadiabatic change around ϕ=0\phi=0 occurs significantly. That makes the resonant band of the fluctuation field wider. Especially for strong coupling regimes âˆŁÎŸâˆŁâ‰«1|\xi| \gg 1, the growth of the inflaton flutuation is dominated by the resonance due to the nonminimal coupling, which leads to the significant enhancement of low momentum modes. Although the final variance of the inflaton fluctuation does notchange significantly compared with the minimally coupled case, we have found that the energy transfer from the homogeneous inflaton to created particles efficiently occurs for Ο<−60\xi<-60.Comment: 13pages, 11figure

    Infrared and ultraviolet asymptotic solutions to gluon and ghost propagators in Yang-Mills theory

    Get PDF
    We examine the possibility that there may exist a logarithmic correction to the infrared asymptotic solution with power behavior which has recently been found for the gluon and Faddeev-Popov ghost propagators in the Landau gauge. We propose a new Ansatz to find a pair of solutions for the gluon and ghost form factors by solving the coupled Schwinger-Dyson equation under a simple truncation. This Ansatz enables us to derive the infrared and ultraviolet asymptotic solutions simultaneously and to understand why the power solution and the logarithmic solution is possible only in the infrared and ultraviolet limit respectively. Even in the presence of the logarithmic correction, the gluon propagator vanishes and the ghost propagator is enhanced in the infrared limit, and the gluon-ghost-antighost coupling constant has an infrared fixed point (but with a different ÎČ\beta function). This situation is consistent with Gribov-Zwanziger confinement scenario and color confinement criterion of Kugo and Ojima.Comment: 15 pages, 2 figures, version to appear in Phys. Lett.
    corecore