14 research outputs found
A low power 2 x 28 Gb/s electroabsorption modulator driver array with on-chip duobinary encoding
An integrated 2 x 28 Gb/s dual-channel duobinary driver IC is presented. Each channel has integrated coding blocks, transforming a non-return-to-zero input signal into a 3-level electrical duobinary signal to achieve an optical duobinary modulation. To the best of our knowledge this is the fastest modulator driver including on-chip duobinary encoding and precoding. Moreover, it only consumes 652 mW per channel at a differential output swing of 6 V-pp
Subsystems for future access networks
Current evolution and tendencies of Telecom Networks in general and more specifically optical Metro and Access Networks and their convergence are reported. Based on this evolution, a set of research lines are foreseen regarding subsystems and devices as: high speed optical sources, modulators and receivers, for the next generation of Passive Optical Networks. The ICT project EURO-FOS is achieving European level cooperative research among academia and industry, enabling future telecommunication networks
Energy‐efficient colourless photonic technologies for next‐generation DWDM metro and access networks
Within the scope of our EU FP7 C3PO project, we are developing novel, energy-efficient, colourless photonic technologies for low-cost, next-generation dense wavelength-division-multiplexed metro transport and access networks. The colourless transmitters use reflective arrayed photonic integrated circuits, particularly hybrid reflective electroabsorption modulators, and multi-wavelength laser sources, with custom power-efficient driver circuitry. A low-loss piezoelectric beam-steering optical matrix switch allows for dynamic wavelength reconfigurability. Simplifying the required optical and electronic hardware, as well as avoiding the need for expensive, thermally-stabilised tuneable lasers, will yield cost and energy savings for data switching applications in future metro, access, and datacentre interconnection networks. We report on recent advancement towards these low-power optical networks, providing the latest systems results achieved with key enabling hybrid photonic integrated devices and electronic driver/receiver arrays for our targeted applications
Integration of 150 Gbps/fiber optical engines based on multicore fibers and 6-channel VCSELs and PDs
Multicore fiber enables a parallel optic data link with a single optical fiber, thus providing an attractive way to increase the total throughput and the integration density of the interconnections. We study and present photonics integration technologies and optical coupling approaches for multicore transmitter and receiver subassemblies. Such optical engines are implemented and characterized using multimode 6-core fibers and multicore-optimized active devices: 850-nm VCSEL and PD arrays with circular layout and multi-channel driver and receiver ICs. They are developed for bit-rates of 25 Gbps/channel and beyond, i.e. <150 Gbps per fiber, and also optimized for ruggedized transceivers with extended operation temperature range, for harsh environment applications, including space
Next-generation photonic networks with transparency to packet format and network traffic
This Ph.D. thesis was carried out during the period 2002-2007 at the Photonics Communications Research Laboratory, School of Electrical & Computer Engineering, National Technical University of Athens, under the supervision of Associate Professor Hercules Avramopoulos. The aim of the present Ph.D. is the design of next-generation optical node architectures and the design and implementation of the optical sub-systems comprising these optical nodes. The developed optical sub-systems exploit optical signal processing techniques, whereas the fundamental building block of each sub-system is the interferometric optical gate that allows for high-speed operation and bit-rate independent power consumption. An integral part of the research focused on the identification and implementation of layer-2 and layer-3 network functionalities directly in the optical domain, contributing towards a more intelligent and efficient physical layer. The design and demonstration of advanced network functionalities was achieved through functional system-level integration of cascaded optical gates and flip-flops giving rise to the first intelligent all-optical sub-systems. Within the frames of the Ph.D., the use of photonic integrated optical devices, allowed for the demonstration of more advanced and key network functionalities, including all-optical packet-based clock recovery, packet envelope detection, label/payload separation, optical latching and all-optical packet routing. An important attribute of the designed sub-systems is their capability to operate transparently to packet-format and network-traffic. For the first time, sub-systems capable of processing both RZ and NRZ modulated packets that have variable length and variable spacing was demonstrated, exploiting time-of-flight processing and combination of bit-by-bit and packet-to-packet processing capabilities of all-optical gates. In the final stage of the Ph.D., all-optical node and network architectures were studied, in order to investigate the degree of intelligence that can be achieved in the optical layer. A self-routing node and network was designed and theoretically modeled that can achieve high bit-rate operation and high transmission efficiency even for packets with small size, verifying that the node can contribute towards the realization of highly granular and flexible future optical networks.Το ερευνητικό έργο της παρούσας διατριβής έχει ως στόχο τη μελέτη και τη σχεδίαση οπτικών κόμβων επόμενης γενιάς. Συγκεκριμένα, μελετήθηκαν και σχεδιάστηκαν τα οπτικά υποσυστήματα που θα αποτελέσουν τους κόμβους ενός οπτικού δικτύου, οι αρχιτεκτονικές των κόμβων αυτών, καθώς και η αποδοτικότητα δικτυακών τοπολογιών βασισμένων στους εν λόγω κόμβους. Για την επίτευξη των επιμέρους δικτυακών λειτουργιών στα σχεδιαζόμενα υποσυστήματα χρησιμοποιήθηκαν τεχνικές αμιγούς οπτικής επεξεργασίας σήματος, με το βασικό δομικό στοιχείο των υποσυστημάτων να είναι ο υψίρρυθμης λειτουργίας οπτικός συμβολομετρικός διακόπτης. Στα πλαίσια της διατριβής, υλοποιήθηκαν αμιγώς οπτικά υποσυστήματα που επιτελούν λειτουργικές διεργασίες επιπέδων OSI 2 και 3, με την αμιγώς οπτική δρομολόγηση, προώθηση και μεταγωγή να βρίσκονται στο επίκεντρο της ερευνητικής εργασίας. Η επίδειξη ευφυών δικτυακών λειτουργιών κατευθείαν στο οπτικό επίπεδο επιτυγχάνεται με χρήση πολλαπλών οπτικών διακόπτων και αντίστοιχη λειτουργική τους διασύνδεση. Χρησιμοποιώντας φωτονικά ολοκληρωμένους οπτικούς διακόπτες, η ανάπτυξη οπτικών υπο-συστημάτων προχώρησε ένα βήμα παραπέρα από τις κλασσικές λειτουργίες της μετατροπής μήκους κύματος και 2R αναγέννησης, σε ποιο σύνθετες λειτουργίες όπως ανάκτηση ρολογιού και περιβάλλουσας πακέτων, διαχωρισμός επικεφαλίδας/φορτίου, αναγνώριση και επεξεργασία επικεφαλίδων και τέλος ολοκληρωμένη μεταγωγή και δρομολόγηση 40 Gb/s πακέτων δεδομένων στο οπτικό επίπεδο με χρήση οπτικών μανταλωτών (flip-flops). Ο σχεδιασμός των υπο-συστημάτων έγινε με γνώμονα την οπτική επεξεργασία σήματος με διαφάνεια στο είδος διαμόρφωσης και στον τύπο των επεξεργαζόμενων δεδομένων. Για πρώτη φορά, παρουσιάστηκαν υψίρρυθμα υπο-συστήματα μεταγωγής πακέτων ικανά να επεξεργάζονται πακέτα με διαμόρφωση τύπου RZ και NRZ, να έχουν την ικανότητα επεξεργασίας ασύγχρονων ροών πακέτων μικρού μεγέθους με μεταβλητό μήκος πακέτου και μεταβλητή απόσταση πακέτων. Στο τελικό στάδιο της διατριβής σχεδιάστηκαν και μελετήθηκαν θεωρητικά καινοτόμες αρχιτεκτονικές κόμβων με βάση τα χαρακτηριστικά των υπο-συστημάτων που υλοποιήθηκαν στα πλαίσια της διατριβής. Γνώμονας για το σχεδίασμά και την υλοποίηση των συστημάτων και κόμβων ήταν η ικανότητα για υψηλή ταχύτητα λειτουργίας, η χαμηλότερη κατανάλωση ισχύος από αντίστοιχες ηλεκτρονικές διατάξεις, η δυνατότητα φωτονικής ολοκλήρωσης σε συμπαγής συσκευασίες και η διαφάνεια στο είδος πληροφορίας και το ρυθμό μετάδοσης, η χαμηλή απαίτηση για προστατευτικές ζώνες και η ικανότητα επεξεργασίας μικρού μήκους πακέτων με υψηλή αποδοτικότητα, γεγονός που οδηγεί στη δημιουργία ευέλικτων οπτικών δικτύων
Photonic Routing Systems Using All-optical, Hybrid Integrated Wavelength Converter Arrays
Abstract—The integration of a new generation of all-optical wavelength converters within European project IST-MUFINS has enabled the development of compact and multi-functional photonic processing systems. Here we present the realization of demanding functionalities required in high-capacity photonic routers using these highly integrated components including: Clock recovery, data/label recovery, wavelength routing and contention resolution; all implemented with multi-signal processing using a single photonic chip – a quadruple array of SOA-MZI wavelength converters which occupies a chip area of only 15 x 58 mm 2. In addition, we present the capability of the technology to build WDM signal processing systems with the simultaneous operation of four quad devices in a four wavelength burst-mode regenerator. Finally, the potential of the technology to provide photonic systems-onchip is demonstrated with the first hybrid integrated alloptical burst-mode receiver prototype. Index Terms — photonic routers, optical packet switching, all-optical wavelength converters, photonic integration, silicon optical bench, silica-on-silicon, functional integration I
High-speed low-power and board-mountable optical transceivers for scalable & energy efficient advanced on-board digital processors
We present the development and verification testing of a high speed multimode, multicore transceiver technology for intra-satellite optical interconnects. We report the fabrication and functional testing of opto-parts including 25 Gb/s 850 nm VCSEL/PD as well as the verification testing of the VCSELs against radiation and lifetime performance. In addition we report the development and evaluation testing of a multi-core cable assembly that was fabricated and mated with MiniAVIM multi-core connectors to develop hi-rel multi-core optical patchcords for pigtailing the transceiver modules. The fiber optic, electronic and opto-parts were used to assemble the first ever fully packaged and pigtailed, six-core optical transceiver prototype module that operates at 25 Gb/s channel bit rate at an energy consumption of ∠4.5 mW/Gb/s