26 research outputs found

    Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances

    Get PDF
    Boundary layer receptivity to two-dimensional acoustic disturbances at different incidence angles and to vortical disturbances is investigated by solving the Navier-Stokes equations for Mach 6 flow over a 7deg half-angle sharp-tipped wedge and a cone. Higher order spatial and temporal schemes are employed to obtain the solution. The results show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. It is found that the receptivity of the boundary layer on the windward side (with respect to the acoustic forcing) decreases when the incidence angle is increased from 0 to 30 degrees. However, the receptivity coefficient for the leeward side is found to vary relatively weakly with the incidence angle. The maximum receptivity is obtained when the wave incident angle is about 20 degrees. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that for the acoustic waves. Vortical disturbances first generate the fast acoustic modes and they switch to the slow mode near the continuous spectrum

    Receptivity of Hypersonic Boundary Layers over Straight and Flared Cones

    Get PDF
    The effects of adverse pressure gradients on the receptivity and stability of hypersonic boundary layers were numerically investigated. Simulations were performed for boundary layer flows over a straight cone and two flared cones. The steady and the unsteady flow fields were obtained by solving the two-dimensional Navier-Stokes equations in axi-symmetric coordinates using the 5th order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. The mean boundary layer profiles were analyzed using local stability and non-local parabolized stability equations (PSE) methods. After the most amplified disturbances were identified, two-dimensional plane acoustic waves were introduced at the outer boundary of the computational domain and time accurate simulations were performed. The adverse pressure gradient was found to affect the boundary layer stability in two important ways. Firstly, the frequency of the most amplified second-mode disturbance was increased relative to the zero pressure gradient case. Secondly, the amplification of first- and second-mode disturbances was increased. Although an adverse pressure gradient enhances instability wave growth rates, small nose-tip bluntness was found to delay transition due to the low receptivity coefficient and the resulting weak initial amplitude of the instability waves. The computed and measured amplitude-frequency spectrums in all three cases agree very well in terms of frequency and the shape except for the amplitude

    Transition Induced by a Streamwise Array of Roughness Elements on a Supersonic Flat Plate

    Get PDF
    Roughness is unavoidable on practical high-speed vehicles, so it is critical to determine its impact on boundary layer transition. The flow field downstream of a streamwise array of cylindrical roughness elements is probed with hot-wire anemometry in this experiment. Mean flow distortion is examined in several measurement planes in the wake of the cylindrical roughness using the streak strength profiles and contour plots of the mass flux and total temperature. The roughness element heights and spacings were varied and their instability modes were examined. Cylindrical roughness elements approximately 140 micron tall produce an odd instability mode that grows weakly with downstream distance in the measurement range of this experiment. Cylindrical roughness elements approximately 280 micron tall produce an even instability mode that grows, becomes nonlinear, and then breaks down. Transition onset remains constant relative to the most downstream roughness in the streamwise array when the 280 micron roughness elements are spaced 2 diameters apart. Transition onset occurs at an earlier upstream location relative to the most downstream roughness in the streamwise array when the roughness elements are spaced 4 diameters appear to recover before the next downstream roughness element, so the location of transition shifts with the location of the most downstream roughness element in the array. When the rough- apart. The wake behind roughness elements spaced 2 diameters apart do not ness elements are spaced 4 diameters apart, the flow behind the first roughness element has enough space to recover before feeding into the second roughness element, and thus, moves transition forward

    An Experimental Investigation of a Wing-Fuselage Junction Model in the NASA Langley 14- by 22-Foot Subsonic Tunnel

    Get PDF
    Current turbulence models, such as those employed in Reynolds-averaged Navier-Stokes CFD, are unable to reliably predict the onset and extent of the three-dimensional separated flow that typically occurs in wing-fuselage junctions. To critically assess, as well as to improve upon, existing turbulence models, experimental validation-quality flow-field data in the junction region is needed. In this report, we present an overview of experimental measurements on a wing-fuselage junction model that addresses this need. The experimental measurements were performed in the NASA Langley 14- by 22-Foot Subsonic Tunnel. The model was a full-span wing-fuselage body that was configured with truncated DLR-F6 wings, both with and without leading-edge extensions at the wing root. The model was tested at a fixed chord Reynolds number of 2.4 million, and angles-of-attack ranging from -10 degrees to +10 degrees were considered. Flow-field measurements were performed with a pair of miniature laser Doppler velocimetry (LDV) probes that were housed inside the model and attached to three-axis traverse systems. One LDV probe was used to measure the separated flow field in the trailing-edge junction region. The other LDV probe was alternately used to measure the flow field in the leading-edge region of the wing and to measure the incoming fuselage boundary layer well upstream of the leading edge. Both LDV probes provided measurements from which all three mean velocity components, all six independent components of the Reynolds-stress tensor, and all ten independent components of the velocity triple products were calculated. In addition to the flow-field measurements, static and dynamic pressures were measured at selected locations on the wings and fuselage of the model, infrared imaging was used to characterize boundary-layer transition, oil-flow visualization was used to visualize the separated flow in the leading- and trailing-edge regions of the wing, and unsteady shear stress was measured at limited locations using capacitive shear-stress sensors. Sample results from the measurement techniques employed during the test are presented and discussed

    Unsteady Heat-Flux Measurements of Second-Mode Instability Waves in a Hypersonic Boundary Layer

    Get PDF
    In this paper, we report on the application of the atomic layer thermopile (ALTP) heat-flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat-plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors, and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are consistent with data previously reported in the literature. Heat flux time series, and the Morlet wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was used to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth

    Transition Induced by Tandem Rectangular Roughness Elements on a Supersonic Flat Plate

    Get PDF
    The flow behind two rectangular roughness elements with a height approximately 38-41 percent of the boundary layer thickness was examined with a hot-wire probe. The rectangular roughness elements are oriented so that one element was at a plus 45-degree angle relative to the leading edge of the plate. A second roughness element was placed 7.16 millimeters downstream of the first one with either the same orientation relative to the leading edge of the plate, or an opposing orientation of minus 45 degrees from the leading edge. Mean mass-flux and total-temperature profiles of the flow field downstream of the tandem roughness elements were examined for mean-flow distortion. Using streak strength as a measure of mean-flow distortion, the tandem roughness elements had approximately the same amount of distortion, regardless of their relative orientation. Mass-flux fluctuation profiles show that the dominant mode downstream of the tandem roughness elements with the same orientation was similar to that of a single roughness element and centered at a frequency of approximately 55 kilohertz (kHz). The dominant instability downstream of the tandem roughness elements with opposing orientation was centered at a frequency of 65 kHz and grew more slowly than the instabilities behind the single roughness element

    Effect of Protuberance Shape and Orientation on Space Shuttle Orbiter Boundary-Layer Transition

    Get PDF
    This document describes an experimental study conducted to examine the effects of protuberances on hypersonic boundary-layer transition. The experiment was conducted in the Langley 20-Inch Mach 6 Tunnel on a series of 0.9%-scale Shuttle Orbiter models. The data were acquired to complement the existing ground-based boundary-layer transition database that was used to develop Version 1.0 of the boundary-layer transition RTF (return-to-flight) tool. The existing ground-based data were all acquired on 0.75%-scale Orbiter models using diamond-shaped ( pizza-box ) trips. The larger model scale facilitated in manufacturing higher fidelity protuberances. The end use of this experimental database will be to develop a technical basis (in the form of a boundary-layer transition correlation) to assess representative protrusion shapes, e.g., gap fillers and protrusions resulting from possible tile repair concepts. The primary objective of this study is to investigate the effects of protuberance-trip location and geometry on Shuttle Orbiter boundary-layer transition. Secondary goals are to assess the effects of gap-filler orientation and other protrusion shapes on boundary-layer transition. Global heat-transfer images using phosphor thermography of the Orbiter windward surface and the corresponding streamwise and spanwise heating distributions were used to infer the state of the boundary layer, i.e., laminar, transitional, or turbulent

    High-Speed Boundary-Layer Transition Induced by an Isolated Roughness Element

    Get PDF
    Progress on an experimental effort to quantify the instability mechanisms associated with roughness-induced transition in a high-speed boundary layer is reported in this paper. To simulate the low-disturbance environment encountered during high-altitude flight, the experimental study was performed in the NASA-Langley Mach 3.5 Supersonic Low-Disturbance Tunnel. A flat plate trip sizing study was performed first to identify the roughness height required to force transition. That study, which included transition onset measurements under both quiet and noisy freestream conditions, confirmed the sensitivity of roughness-induced transition to freestream disturbance levels. Surveys of the laminar boundary layer on a 7deg half-angle sharp-tipped cone were performed via hot-wire anemometry and pitot-pressure measurements. The measured mean mass-flux and Mach-number profiles agreed very well with computed mean-flow profiles. Finally, surveys of the boundary layer developing downstream of an isolated roughness element on the cone were performed. The measurements revealed an instability in the far wake of the roughness element that grows exponentially and has peak frequencies in the 150 to 250 kHz range

    Characterization of a Laser-Generated Perturbation in High-Speed Flow for Receptivity Studies

    Get PDF
    A better understanding of receptivity can contribute to the development of an amplitude-based method of transition prediction. This type of prediction model would incorporate more physics than the semi-empirical methods, which are widely used. The experimental study of receptivity requires a characterization of the external disturbances and a study of their effect on the boundary layer instabilities. Characterization measurements for a laser-generated perturbation were made in two different wind tunnels. These measurements were made with hot-wire probes, optical techniques, and pressure transducer probes. Existing methods all have their limitations, so better measurements will require the development of new instrumentation. Nevertheless, the freestream laser-generated perturbation has been shown to be about 6 mm in diameter at a static density of about 0.045 kg/cubic m. The amplitude of the perturbation is large, which may be unsuitable for the study of linear growth

    The NASA Juncture Flow Experiment: Goals, Progress, and Preliminary Testing (Invited)

    Get PDF
    NASA has been working toward designing and conducting a juncture flow experiment on a wing-body aircraft configuration. The experiment is planned to provide validation-quality data for CFD that focuses on the onset and progression of a separation bubble near the wing-body juncture trailing edge region. This paper describes the goals and purpose of the experiment. Although currently considered unreliable, preliminary CFD analyses of several different configurations are shown. These configurations have been subsequently tested in a series of "risk-reduction" wind tunnel tests, in order to help down-select to a final configuration that will attain the desired flow behavior. The risk-reduction testing at the higher Reynolds number has not yet been completed (at the time of this writing), but some results from one of the low-Reynolds-number experiments are shown
    corecore