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The effects of adverse pressure gradients on the receptivity and stability of hypersonic boundary layers 

were numerically investigated. Simulations were performed for boundary layer flows over a straight 

cone and two flared cones. The steady and the unsteady flow fields were obtained by solving the two-

dimensional Navier-Stokes equations in axi-symmetric coordinates using the 5
th

–order accurate 

weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order 

total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. The mean boundary layer 

profiles were analyzed using local stability and non-local parabolized stability equations (PSE) 

methods. After the most amplified disturbances were identified, two-dimensional plane acoustic waves 

were introduced at the outer boundary of the computational domain and time accurate simulations were 

performed. The adverse pressure gradient was found to affect the boundary layer stability in two 

important ways.  Firstly, the frequency of the most amplified second-mode disturbance was increased 

relative to the zero pressure gradient case.  Secondly, the amplification of first- and second-mode 

disturbances was increased.  Although an adverse pressure gradient enhances instability wave growth 

rates, small nose-tip bluntness was found to delay transition due to the low receptivity coefficient and 

the resulting weak initial amplitude of the instability waves. The computed and measured amplitude-

frequency spectrums in all three cases agree very well in terms of frequency and the shape except for 

the amplitude. 

I. Introduction 

Accurate prediction of transition onset and transition end points, as well as modeling of the transitional and 

turbulent regions, are major concerns when using CFD codes to compute aerodynamic quantities.  Our 

understanding of different instability mechanisms, and of different transition processes in shear layers, have greatly 

improved in the last several decades.
1-8  

Transition-prediction methods, however, have not made much progress
9
.  

The main difficulty is due to the nature of the transition process itself, which depends on the boundary layer 

characteristics and on the frequency and wave number distributions of the disturbances that enter the boundary layer.  

While laminar boundary layer profiles can be computed easily, the computation, prediction or prescription of the 

initial disturbance distributions inside the boundary layer is difficult. These disturbances, which are generated by 

unsteady freestream disturbances or by the interaction between freestream disturbances and surface roughness, are 

stochastic in nature and are difficult to quantify in general. Therefore, in any new transition prediction strategy, 

these disturbances should be quantified with the minimum amount of information necessary to predict the transition 

onset accurately. The objectives of this research work are to address some of these issues and to eventually improve 

transition-prediction methods. 

 

The most popular transition prediction method is the physics based e
N
 correlation method.  This method is easy to 

implement and yields satisfactory results if appropriate N-Factors are used to fix the transition onset.  This number 

depends on several parameters including geometry, tunnel noise and surface roughness.  For a particular case, the 

practice is to choose transition onset N-Factors that are based on previous correlations for similar conditions.  One 

example illustrating the difficulty in predicting transition using this simple method is shown in Fig. 1 (from Horvath 

et al.
10

).  Here, the transition onset locations obtained over a 5° flared cone under different tunnel noise conditions is 

shown.  The measurements were performed in the NASA LaRC Mach 6 Quiet Tunnel under low and high noise 

levels, and in the NASA LaRC 20 inch Mach 6 Tunnel, which is a conventional tunnel with a high freestream noise 
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level.  The measured transition onset locations were at 16, 10 and 12 inches for the three cases respectively, and the 

corresponding computed N-Factors at transition onset were 7.8, 3.0 and 3.8 respectively. The reason for this scatter 

is mainly attributed to the different freestream noise levels that exist in the different tunnels or at different test 

conditions. Therefore, a rational approach to improve the prediction capability is to include the effects of freestream 

acoustic disturbances on the boundary layer in the prediction methods.  

 

 In our previous work,
11-14 

we have investigated the interaction of forced slow and fast acoustic waves with 

hypersonic boundary layers over sharp and blunt flat plates, wedges and cones.  The results showed that for flows 

over sharp-nose cases, the instability waves are generated very close to the leading edge and the receptivity 

coefficient is about 5-10 times the amplitude of the forced slow acoustic wave.  The amplitude of the instability 

waves generated by slow acoustic waves was found to be about 20 times larger than those generated by fast acoustic 

waves. The results also revealed that bluntness and wall cooling stabilize the first mode and produce instability 

waves with an initial amplitude that is orders of magnitude smaller than the amplitude of the forced acoustic waves. 

 In this paper, the effects of an adverse pressure gradient on the receptivity, stability and transition of hypersonic 

boundary layers are investigated.  To that end, we continue our previous approach in which the amplitudes of the 

disturbances inside the boundary layer, generated by freestream acoustic disturbances, are computed.  Simulations 

were performed on three axisymmetric geometries for which experimentally measured instability data are available 

for comparison: 1) a straight cone, 2) a circular flared cone with the flare starting from the nose, and 3) a circular 

flared cone with an initial straight nose region tangent to a flare downstream.  The first two geometries were tested 

in the Boeing/AFOSR Mach 6 Quiet Tunnel at Purdue University
15-16

 and the third geometry was tested in the 

NASA Langley Mach 6 Quiet Tunnel.
17-18

  In each case, we first solved for the mean flow field and then performed 

linear local and non-local stability analyses for the computed boundary-layer profiles.  After the parameters for the 

most amplified disturbances were identified, two-dimensional acoustic disturbances were superimposed on the outer 

boundary of the computational domain and time accurate simulations were performed.  The results of the 

simulations were then compared to the available experimental data. 

 

II.  Models and Flow Conditions 

 

 The first model is a 7° half-angle sharp-tipped cone with a nose radius of 0.0125 mm (Fig. 2).  Computations 

were performed for a freestream Mach number of 6. The freestream stagnation temperature and pressure were 

430°K and 12.2 kPa (140 psi), yielding a unit Reynolds number of 10.4*10
6
/m. The simulations were performed for 

a constant wall temperature of 300°K.  This model geometry was tested in the Boeing/AFOSR Mach 6 Quiet Tunnel 

at the same freestream conditions.
15-16 

 

 The second model is a circular flared cone with a spherical blunt nose region (Fig. 3). The flared region is joined 

to the blunt nose very near the tip. The concave circular flare has a radius of 3.0 m and the nose has a radius of 1.0 

mm.  At the juncture, the flare and the nose have a slope of 2 degrees.  Computations were performed for a free-

stream Mach number of 6.  The freestream stagnation temperature and pressure were 433°K and 12.2 kPa (140 psi), 

yielding a unit Reynolds number of 10.3*10
6
/m.  The simulations were also performed for a constant wall 

temperature of 300°K.  As with the previous model, this geometry was tested in the Boeing/AFOSR Mach 6 Quiet 

Tunnel at the same freestream conditions.
15 

 

 The third model consists of a 5° half-angle sharp-cone region and a circular flared-cone region (Fig. 4).  The 

model is 50.8 cm (20 in.) long with a 25.4 cm (10 in.) front straight-cone region that is connected to a circular 

flared-cone with a radius of 2.36 m (93.07 in.).  At the juncture, the straight cone and the flared cone have the same 

slope.  Computations were performed for a freestream Mach number of 6. The freestream stagnation temperature 

and pressure were 400°K (810°R) and 11.33 kPa (130 psi), yielding a unit Reynolds number of 8.950*10
6
/m 

(2.727*10
6
/ft). The simulations were performed for an adiabatic wall condition.  This model geometry was tested in 

the NASA Langley Mach 6 Quiet Tunnel.
17-18
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III. Governing Equations 

The governing equations are the two-dimensional unsteady compressible Navier-Stokes equations, written in 

conservation form and in cylindrical coordinates: 
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Here, (x, r) are the cylindrical coordinates, (u, v) are the velocity components, ! is the density, and p is the pressure. 

The total energy, E, is given by:  

! 

E = e +
u
2

+ v
2

2
, 

 e = c
v
T ,  p = !RT,                                                                        (3) 

where e is the internal energy and T is the temperature. The fluxes F, G and the source term S are described in Kara 

et al.
12

  The viscosity, µ, is computed using Sutherland’s law and the thermal conductivity, k, is given in terms of the 

Prandtl number, Pr. The variables !, p, T and velocity are non-dimensionalized by their corresponding reference 

variables !", p", T" and RT!  respectively. The reference value for length is given by !x
0
/U" , where x0 is a 

reference location. For the computations, the equations were transformed from the physical coordinate system (x, r) 

to the computational curvilinear coordinate system 

! 

",#( )  in a conservative manner. 

A. Solution Algorithm 

The governing equations were solved using a 5
th

-order accurate weighted essentially non-oscillatory (WENO) 

scheme for space discretization and a 3
rd

-order total-variation-diminishing (TVD) Runge-Kutta scheme for time 

integration. The WENO and TVD methods and formulas are explained in Shu.
19

  The application of the ENO 

method to the Navier-Stokes equations is presented by Atkins.
20

  The solution method implemented in the present 

computations is described in Balakumar.
21 

Schematic diagrams of the computational setup for each model case are shown in Figs. 2-4.  The outer boundary 

of the computational domain lies outside the shock and follows a parabola so that the boundary layer growth was 

accurately captured.  At the outflow boundary of the computational domain, an extrapolation boundary condition 

was used.  At the wall, the simulations employed viscous conditions for the velocities and an adiabatic or constant 

wall temperature.  The density was computed from the continuity equation.  In the mean-flow computations, the 

free-stream values at the outer boundary were prescribed.  In all cases, the model centerline was aligned with the 

freestream flow.  In the unsteady computations, acoustic perturbations were superimposed on the uniform mean flow 

at the outer boundary of the computational domain.   

The solution procedure was to first compute the steady mean flow by performing unsteady computations using a 

variable time step until the maximum residual reaches a small value (~10
-11

).  For those computations, a CFL 

number of 0.2 was used.  The next step was to introduce an unsteady acoustic disturbance at the outer boundary of 

the computational domain with the following form: 

                                                                     

! 

pac (x, t) = ˜ p ace
i("ac x#$t )

,                                                                (4) 
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where #ac is the x wave number of the acoustic disturbance and $ is the corresponding frequency.  Then, time 

accurate computations were performed to investigate the interaction of these disturbances with the boundary layer 

and their subsequent downstream evolution.  The computational grid, which was generated using analytical 

formulae, stretches in the ! direction close to the wall and is uniform outside of the boundary layer.  In the " 

direction, the grid was very fine near the nose and then uniform in the region downstream.  

 

IV. Results 

A. 7°  Half-Angle Sharp-Tipped Cone 

1. Mean Flow 

Figure 5 presents the computed mean density contours for the sharp-tipped cone.  In Fig. 5a, the flow field for 

the entire computational domain is shown, while Fig. 5b shows a close-up view of the nose region.  The mean 

surface pressure distribution along the axial direction of the cone is depicted in Fig. 6a, and as expected, the pressure 

gradient is zero except for a region very close to the nose tip.  Figure 6b presents the boundary layer density profiles 

at different axial locations in similarity coordinates. The compressible Blasius similarity profile is also included for 

comparison.  In this figure, the boundary layer profiles are observed to slowly approach the Blasius similarity 

profile, and by x = 3.0 cm, the boundary layer profiles are essentially equal to the similarity profile. 

2. Linear Stability 

Linear stability analysis and the PSE analysis were performed on the computed boundary layer profiles for the 

sharp-tipped cone boundary layer. The results are shown in Fig. 7, where the computed N-factor curves obtained 

from the linear stability analysis and the PSE calculations are plotted.  For the PSE results in particular, the 

presented N-Factors were obtained using (!u)max. The two axial locations annotated in the figure at x = 208 and 490 

mm, correspond to those where measured wall-pressure fluctuation data are available for comparison.
16

  At these 

locations the maximum N-factors are 3.5 and 7.0 respectively, and the corresponding frequencies are 350 and 220 

kHz. 

3. Interaction of Slow Acoustic Waves with the sharp-tipped cone 

After the mean flow was computed, two-dimensional slow acoustic disturbances (phase speed equal to U!- c!) 

were introduced at the outer boundary of the computational domain and time-accurate simulations were performed.  

The amplitude of these forced acoustic disturbances was given a small value of 

! 

˜ p ac / p" = 2 *10
#5  to ensure that the 

disturbances evolving in the boundary layer remained in the linear regime.  This allowed the results of the 

computations to be compared to linear PSE calculations.  Several frequencies were considered in the simulations, 

but here, we present the results for a frequency of 216 kHz, which corresponds to the maximum N-factor at x = 490 

mm.  Figures 8, 9, and 10 show the results for the evolution of unsteady fluctuations produced by the slow acoustic 

wave at a fixed time.  Contours of the density fluctuations in the entire computational domain are shown in Fig. 8.  

Here, the perturbation field can be divided into four regions.  The first region is the area outside the shock, where the 

acoustic waves propagate uniformly.  The second region is the shock layer across which acoustic waves are 

transmitted.  The third region is the area between the shock and the boundary layer, which consists of the transmitted 

external acoustic field and disturbances that are radiated from the boundary layer.  The fourth region is the boundary 

layer where instability waves evolve in the downstream direction.  Figure 9 provides more detailed views of the 

perturbation field in the nose region (Fig. 9a), in the tip region (Fig. 9b), and near the end of the computational 

domain (Fig. 9c).  In the tip region, we see that the freestream acoustic disturbances penetrate the shock layer and 

transform smoothly to boundary layer instability waves, which have a wavelength that is comparable to the 

wavelength of the acoustic disturbance.  Moving further downstream (Figs. 9a and 9c), we see that the penetration of 

freestream disturbances across the shock layer is diminished, and in the region between the shock and the boundary 

layer, the disturbance levels are very low.  This suggests that the freestream acoustic disturbances do not excite the 

boundary layer downstream of the cone tip; instead, the boundary layer disturbances originate from the nose region 

of the cone. 

Figure 10 shows the evolution of the wall pressure fluctuations on the cone that are associated with the 

acoustically driven boundary layer instabilities.  In Fig. 10a, the amplitude of the wall pressure fluctuations is 
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plotted on a linear scale, while Fig. 10b depicts the results on a log scale.  The initial amplitude of the wall-pressure 

fluctuation, very close to the tip (x " 0), is observed to be approximately equal to the amplitude of the freestream 

acoustic level.  The disturbance growth over the first 25 cm of the cone, which is associated with the first mode, is 

observed to be very weak.  As the disturbances transform to second mode with increasing downstream distance, the 

disturbance grows exponentially as expected.  The results of linear PSE calculations for the same mean boundary 

layer profile are included in Fig. 10b for comparison with the computations.  The PSE results are observed to agree 

very well with the computations.  This agreement is also further evidence that the boundary-layer disturbances 

originate from a small region near the cone tip since the PSE calculations were performed with a disturbance input at 

a single axial location. 

A receptivity coefficient was defined as the amplitude of the wall-pressure fluctuations at the neutral point non-

dimensionalized by the freestream acoustic pressure:  

 
,

( )
wall

wall n
recpt p

ac

p
C

p
=  

The amplitude of the wall-pressure fluctuation at the neutral point was estimated by following the PSE results up to 

the neutral point.  With that value, and a freestream acoustic level of 2*10
-5

, the receptivity coefficient is 

approximately 7.0 for a frequency of 216 kHz.   

Figure 11 presents a comparison between the computed and the measured amplitudes of the wall-pressure 

fluctuations at two axial locations (x = 208 and 490 mm).  Recall that the simulations were performed for freestream 

acoustic disturbances over a range of frequencies, so the amplitude data are presented as a function of frequency.  

Also in the computations, the amplitude of the acoustic disturbances was set to 

! 

˜ p ac / p" = 2*10
#5.  The actual 

amplitude of the freestream acoustic disturbances present in the experimental measurements is unknown.  Figure 

11a compares the computed wall-pressure amplitude at x = 208 mm, Re/m = 10.4*10
6
 and the wall-pressure 

amplitude spectrum measured at the same axial location and flow condition by Casper et al.
16

  Note that the pressure 

spectrum shown in Fig. 11a was measured under noisy-flow conditions because under quiet-flow conditions, the 

wall-pressure fluctuations were below the noise floor of the pressure transducer.  Also, the transducer used for this 

measurement had a sensor size of approximately 1 mm, which is on the order of the instability wavelengths (2.4 to 

3.5 mm) in the boundary layer.  Since the effect of spatial averaging on the sensor dynamic response was not 

characterized in the experiment, the measured spectrum amplitude shown in the plot is qualitative.  Nevertheless, the 

frequencies and shape of the computed amplitude spectrum compare favorably with the experimental data.  Figure 

11b presents a similar comparison between the computational and experimental wall-pressure spectrum at x = 490 

mm, Re/m = 10.4*10
6
.  This experimental data was obtained under quiet-flow conditions with the same pressure 

transducer.  As before, the frequencies and shape of the computed wall-pressure spectrum agree very well with the 

measurements.  Although the spectral comparisons made here are qualitative in amplitude, the computational 

approach presented in this paper should be able to quantitatively predict the amplitude of the instability waves 

provided we know the actual amplitude of the freestream acoustic disturbances that were present in the experiment. 

B. Circular Flared Cone with Spherical Blunt Nose 

1. Mean Flow  

Figure 12 presents the computed mean density contours for the circular flared cone with a spherical blunt nose 

region.  In Fig. 12a, the flow field for the entire computational domain is shown, while Fig. 12b shows a close-up 

view of the nose region. The leading edge shock and the compression waves formed by the circular flare are clearly 

observed in the figures.  The mean surface pressure distribution along the axial direction of the flared cone is 

depicted in Fig. 6a, and as expected, the flare introduces an adverse pressure gradient along the surface, starting 

from the tip. The mean density and velocity profiles in the boundary layer at several different axial locations are 

shown in Figs. 13a and 13b, respectively.  Beyond an axial location of approximately 5 cm, the boundary layer 

thickness is observed to remain nearly constant at a thickness of 0.12 cm: a consequence of the balancing forces 

generated by the concave curvature of the flared-cone surface. It is also noted from Fig. 13b that the velocity profiles 

change slowly along the axial direction. 
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2. Linear Stability 

Linear local stability analysis and non-local PSE calculations were performed on the computed mean velocity 

profiles of the circular flared cone.  The results are shown in Fig. 14, where the computed N-factor curves obtained 

from the linear stability analysis (Fig. 14a) and the PSE calculations (Fig. 14b) are plotted.  For the PSE results in 

particular, the presented N-Factors were obtained using (!u)max; however, N-Factors obtained with other variables 

were not significantly different.  The measured wall-pressure fluctuations, to which the present computational 

results are compared, were obtained in the experiments by Wheaton et al.
15

 at an axial location of x = 400 mm.  

From Fig. 14, the maximum N-Factors at that axial location are about 13.0 for both analysis methods, and the most 

amplified frequencies are about 279.0 kHz (linear stability) and 286.0 kHz (PSE).  Note that even with these large 

N-Factors, transition was not observed on the flared-cone model in the experiment.
15

 

3. Interaction of Acoustic Waves with the flared cone 

As in the previous case, after the mean flow was computed, two-dimensional acoustic disturbances (with an 

amplitude of 

! 

˜ p ac / p" = 2*10
#6) were introduced at the outer boundary of the computational domain and time-

accurate simulations were performed.  These simulations included both slow and fast (phase speed equal to U!+c!) 

acoustic disturbances for a range of frequencies.  Here, we present the results for a frequency of 292.5 kHz.  Figures 

15, 16, and 17 show the results for the evolution of unsteady fluctuations produced by the freestream acoustic 

disturbances at a fixed time.  Contours of the density fluctuations for the slow acoustic wave are shown in Fig. 15 

for the entire computational domain (Fig. 15a), the nose region (Fig. 15b), and the tip region (Fig. 15c) of the 

circular flared cone.  The perturbation field generated by the acoustic disturbance is qualitatively similar to that for 

the sharp-tipped cone and again, we observe that boundary-layer disturbances originate from the nose region of the 

cone. 

Figure 16 shows the evolution of the wall-pressure fluctuations on the flared cone that are induced by the slow 

acoustic wave.  In Fig. 16a, the amplitude of the wall-pressure fluctuation is plotted on a linear scale, while Fig. 16b 

depicts the results on a log scale.  The figures clearly show the generation and the eventual exponential growth of 

the instability waves inside the boundary layer.  However, an important difference between the blunt flared cone and 

the straight sharp-tipped cone (Fig. 10) is the evolution of the first mode near the nose region.  For the sharp-tipped 

straight cone, the first mode grows slightly in the downstream direction due to non-parallel effects in the boundary 

layer.  However, for the blunt flared-cone case, the first mode decreases up to 70 mm and then remains constant up 

to 150 mm before smoothly transforming to the second mode, with subsequent exponential growth in the 

downstream direction.  This behavior is linked to the entropy layer produced by the large bluntness of the flared 

cone geometry (Reynolds number of 10400 based on nose radius).  Another important difference between the 

straight sharp-tipped and blunt flared cone results is the growth rate of the instability waves, which is larger for the 

flared cone due to the adverse pressure gradient.  Figure 17 shows the evolution of the wall pressure fluctuations on 

the flared cone that are associated with the fast acoustic wave.  In this case, the behavior is similar to that for the 

slow acoustic wave.  However, the decay of the first mode is less than that for the slow acoustic wave.  Therefore, 

the disturbances induced by the fast acoustic wave have higher amplitudes than those induced by a slow acoustic 

wave.  In particular, the amplitude of the wall-pressure fluctuations at x = 40 cm are 0.0028 and 0.0055 for the slow 

and fast acoustic waves, respectively.  This amplitude difference was previously observed in computations for 

hypersonic flows over blunt cones.
13

  The results of PSE calculations for the flared cone boundary layer are included 

in Figs. 16b and 17b for comparison to the computations.  The computed disturbance growth, for both slow and fast 

acoustic waves, is observed to agree very well with the PSE results. 

As before, a receptivity coefficient was defined as the amplitude of the wall-pressure fluctuations at the neutral 

point non-dimensionalized by the freestream acoustic pressure, and the amplitude of the wall-pressure fluctuation at 

the neutral point was estimated by following the PSE results up to the neutral point.  The receptivity coefficients for 

the slow and fast acoustic waves, at a frequency of 292.5 kHz, were found to be 4.9*10-3 and 9.3*10-3, respectively.  

These coefficients are much smaller than the receptivity coefficient of 7.0 for the sharp-tipped cone.  This result 

agrees with our earlier receptivity calculations for sharp and blunt circular cones in hypersonic flows.12-13 

Figure 18 presents a comparison between the computed and the measured amplitudes of the wall-pressure 

fluctuations at an axial location of x = 40 cm.  Here, the results for the computations correspond to fast acoustic 

waves over a range of frequencies.  The measured wall-pressure spectrum was obtained in the experiment by 

Wheaton et al.15  As with the sharp-tipped cone, the frequencies and the shape of the computed amplitude spectrum 

compare favorably with the experimental data.  In comparing amplitudes, however, the results are qualitative since 
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the actual amplitude of the freestream acoustic disturbances that were present in the experiment are unknown and 

the measured wall-pressure spectrum was obtained with an uncalibrated pressure transducer. 
 

C. Flared-Cone with a sharp-tipped nose 

1. Mean Flow and Linear Stability 

Details for the computed mean flow and linear stability analysis for the sharp-tipped flared-cone model are 

presented in Balakumar and Malik
22

 and Horvath et al.
10

  Numerical simulation of the stability and receptivity to fast 

acoustic disturbances over a blunt cone is presented in Zhong.
23

 Figure 19 presents the computed mean density 

contours for this geometry.  The leading edge shock and the compression waves generated by the circular flare, 

which starts at x = 25 cm, are clearly observed in the figure.  The mean surface pressure distribution along the axial 

direction of the cone is depicted in Fig. 6a, and as expected, the adverse pressure gradient starts at the flared region 

of the model.  The most amplified frequency for this model geometry, as determined by the linear stability analysis, 

was found to be 220 kHz. 

2. Interaction of Acoustic Waves with the Flared Cone 

With the mean flow computed, two-dimensional acoustic disturbances were introduced at the outer boundary of 

the computational domain and time-accurate simulations were performed.  These simulations included both slow 

and fast acoustic waves for a range of frequencies.  Here, we present the results for the most amplified frequency of 

220 kHz.  Contours of the density fluctuations for the slow acoustic wave (with an amplitude of 

! 

˜ p ac / p" = 2*10
#6) 

are shown in Fig. 20 for the entire computational domain (Fig. 20a) and the nose region (Fig. 20b).  The perturbation 

field generated by the acoustic disturbance is qualitatively similar to that for the other two model cases and again, 

we observe that boundary-layer disturbances originate from the nose region of the cone. 

Figure 21 shows the evolution of the wall-pressure fluctuations on the flared cone that are induced by the slow 

acoustic wave.  Here, data are shown for two freestream acoustic amplitude levels equal to 2*10
-5

 and 2*10
-6

.  

Similar to the sharp-tipped cone, the amplitude of the boundary-layer disturbances near the tip (x ~ 0) is equal to the 

freestream acoustic amplitude.  As expected, the disturbances are observed to grow from the tip region and then 

grow exponentially through the flared region of the cone.  In comparison to the sharp-tipped cone case, the 

disturbance growth rate for the flared-cone model is significantly higher due to the adverse pressure gradient.  In 

fact, the large growth rate leads to non-linear saturation at a pressure level of 

! 

˜ p w / p" ~ 1.0.  It is interesting to note 

that the point at which saturation occurs increases by only 3 cm when the freestream acoustic amplitude is decreased 

by an order of magnitude.  This small difference is a result of the large disturbance growth rate due to the adverse 

pressure gradient in the flared region of the cone.  Experimental measurements on this flared cone model geometry 

(in the NASA Langley Mach 6 Quiet Tunnel) by Blanchard
17

 and Lachowicz et al.
18

 found transition to occur 

around 40 cm.  This is close to the axial location where non-linear saturation of the boundary layer instabilities was 

observed in the present computations. 

The receptivity coefficient for this model geometry was about 5-7 times the freestream acoustic level, which is 

similar to that calculated for the 7° half-angle sharp-tipped cone.  Given that the geometry of the nose region is 

similar for the two cases, and the fact that boundary layer instabilities originate in the nose region, the 

correspondence between the receptivity coefficients is expected. 

Figure 22 presents a comparison between the computed spectrum of maximum mass fluctuations (!u)max and the 

measured disturbance spectrum in the boundary layer at an axial location of x = 40 cm.  Here, the results for the 

computations correspond to slow acoustic waves over a range of frequencies.  The experimental data is an 

uncalibrated hot-wire voltage spectrum measured at the peak location in the boundary layer disturbance profile.
18

  

The peak frequency for the computed amplitude spectrum is 220 kHz, which compares well with the measured peak 

frequency of 226 kHz. 

V. Conclusions 

Numerical simulations were performed to study the effects of adverse pressure gradients on the receptivity and 

stability of hypersonic boundary layers.  These simulations were performed on three axisymmetric geometries for 

which experimentally measured instability data are available for comparison: 1) a 7-degree, sharp-tipped cone, 2) a 

circular flared cone with a blunt tip, and 3) a flared cone comprised of a 5-degree sharp-tipped straight section and 



48
th

 AIAA Aerosciences Meeting, January 4-7, 2010, Orlando, Florida 

 

American Institute of Aeronautics and Astronautics 

 

8 

an aft circular-flare region.  For each case, the mean flow was obtained by solving the two-dimensional Navier-

Stokes equations in axisymmetric coordinates using the 5
th

-order accurate weighted essentially non-oscillatory 

(WENO) scheme for space discretization and the 3
rd

-order total-variation-diminishing (TVD) Runge-Kutta scheme 

for time integration.  Local stability analysis and PSE calculations were then applied to the computed mean 

boundary-layer profiles to identify the most amplified disturbances.  Then, two-dimensional plane acoustic waves 

were introduced at the outer boundary of the computational domain and time-accurate simulations were performed. 

In general, the computations indicate that the receptivity of the boundary layer to freestream acoustic 

disturbances is confined to the nose region for each of the cone geometries considered.  Furthermore, the receptivity 

coefficient for the sharp tipped cone geometries was found to be several orders of magnitude larger than the circular 

flared cone geometry with a blunt tip.  This bluntness effect is in agreement with previous studies of hypersonic 

boundary layer receptivity.
12, 13

  The presence of an adverse pressure gradient was found to affect boundary layer 

stability in two important ways.  Firstly, the frequency of the most amplified second-mode disturbance was shifted 

to a higher value relative to that for a straight cone, which has a zero pressure gradient.  Secondly, the amplification 

of first- and second-mode disturbances is increased by the adverse pressure gradient.  It is interesting to note that 

transition did not occur on the circular flared cone geometry in the experiments by Wheaton et al.,
15

 in spite of the 

enhanced instability wave growth rate resulting from the adverse pressure gradient.  This is probably due to the very 

low receptivity coefficient associated with the cone bluntness, which results in weak initial amplitudes for the 

instability waves.  Finally, the computed and measured wall-pressure spectrums agreed in terms of frequency and 

spectral shape of the most amplified boundary-layer disturbance.  However, to quantitatively predict the amplitude 

of the wall-pressure fluctuation with the present computational approach, a measurement of the freestream acoustic 

spectrum is required.  Nevertheless, the present work represents a rational approach in which the effects of 

freestream acoustic disturbances are included in the analysis, and that will ultimately lead to improved predictions of 

boundary layer transition. 
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Figure 1. Comparison of smooth body transition onset locations over a flared cone obtained in the NASA 

LaRC Mach 6 Quiet Tunnel (at low and high freestream noise levels) and in the NASA LaRC 20 Inch 

Mach 6 Tunnel (Horvath, et al.
10

). 

 

 

Figure 2. Schematic diagram of the computational model for flow over a 7-degree sharp-tipped cone. 

                           

Figure 3. Schematic diagram of the computational model for flow over a blunt-tipped circular flared cone. 
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Figure 4. Schematic diagram of the computational model for flow over a sharp-tipped circular 

flared cone 

 

Figure 5. Mean density contours for flow over a 7-degree sharp-tipped cone at Mach 6. 

 

 
 

Figure 6. (a) Surface pressure distributions for the three model cases and (b) boundary layer density profiles 

at different axial locations for the sharp-tipped cone. 
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Figure 7. N-Factor curves computed from the linear stability analysis and the PSE analysis based on (#u)max 

for the sharp-tipped cone. 

 
Figure 8. Density fluctuations generated by the interaction of a slow two-dimensional acoustic wave with the 

sharp-tipped cone. 

 

 
 

Figure 9. Density fluctuations generated by the interaction of a slow two-dimensional acoustic wave with the 

sharp-tipped cone (a) near the nose region, (b) near the tip of the cone, and (c) further downstream. 
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Figure 10. Wall-pressure fluctuations along the sharp-tipped cone obtained from the DNS for a slow acoustic 

wave.  The results of the PSE calculations are shown for comparison. 

 

                                                                                                

 
 

Figure 11. Comparison between the computed and measured wall-pressure spectrum for the sharp-tipped 

cone at a) x = 208 mm and b) x = 490 mm. Experimental data from Casper et. al.
16

. 
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Figure 12. Mean density contours for flow over a circular flared cone with a blunt tip at Mach 6. 

 

 
 

Figure 13. Boundary layer (a) density and (b) velocity profiles at different axial locations for the circular 

flared cone. 

 

 

 
 

Figure 14. N-Factors computed from a) local linear stability analysis and b) non-local PSE calculations on the 

boundary layer profiles of the circular flared cone. 
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Figure 15. Density fluctuations generated by the interaction of a slow two-dimensional acoustic wave with the 

circular flared cone. 

 

 
Figure 16. Wall-pressure fluctuations along the circular flared cone obtained from the DNS for a slow 

acoustic wave.  The results of the PSE calculations are shown for comparison. 
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Figure 17. Wall-pressure fluctuations along the circular flared cone obtained from the DNS for a fast acoustic 

wave.  The results of the PSE calculations are shown for comparison. 

 

 
 

Figure 18. Comparison between the computed and measured wall-pressure spectrum for the circular flared 

cone at an axial location of x = 0.40 m. Experimental data from Wheaton et. al.
15

. 
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Figure 19. Mean density contours for flow over a circular flared cone with a sharp tip at Mach 6. 

 

 
Figure 20. Density fluctuations generated by the interaction of a slow two-dimensional acoustic wave with the 

sharp-tipped flared cone. 

 

Figure 21. Wall-pressure fluctuations along the sharp-tipped flared cone obtained from the DNS for a slow 

acoustic wave with frequency f= 220 kHz. 
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Figure 22. Comparison between the computed wall-pressure spectrum and a measured hot-wire voltage 

spectrum
18

 for the sharp-tipped flared cone at an axial location of x = 40 cm. Experimental data from 

Lachowicz et. al.
18

. 


