51 research outputs found

    Synthesizing the evidence of nitrous oxide mitigation practices in agroecosystems

    Get PDF
    Nitrous oxide (N2_2O) emissions from agricultural soils are the main source of atmospheric N2_2O, a potent greenhouse gas and key ozone-depleting substance. Several agricultural practices with potential to mitigate N2_2O emissions have been tested worldwide. However, to guide policymaking for reducing N2_2O emissions from agricultural soils, it is necessary to better understand the overall performance and variability of mitigation practices and identify those requiring further investigation. We performed a systematic review and a second-order meta-analysis to assess the abatement efficiency of N2_2O mitigation practices from agricultural soils. We used 27 meta-analyses including 41 effect sizes based on 1119 primary studies. Technology-driven solutions (e.g. enhanced-efficiency fertilizers, drip irrigation, and biochar) and optimization of fertilizer rate have considerable mitigation potential. Agroecological mitigation practices (e.g. organic fertilizer and reduced tillage), while potentially contributing to soil quality and carbon storage, may enhance N2_2O emissions and only lead to reductions under certain pedoclimatic and farming conditions. Other mitigation practices (e.g. lime amendment or crop residue removal) led to marginal N2_2O decreases. Despite the variable mitigation potential, evidencing the context-dependency of N2_2O reductions and tradeoffs, several mitigation practices may maintain or increase crop production, representing relevant alternatives for policymaking to reduce greenhouse gas emissions and safeguard food security

    Long‐term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems

    Get PDF
    Increased human‐derived nitrogen (N) deposition to terrestrial ecosystems has resulted in widespread phosphorus (P) limitation of net primary productivity. However, it remains unclear if and how N‐induced P limitation varies over time. Soil extracellular phosphatases catalyze the hydrolysis of P from soil organic matter, an important adaptive mechanism for ecosystems to cope with N‐induced P limitation. Here we show, using a meta‐analysis of 140 studies and 668 observations worldwide, that N stimulation of soil phosphatase activity diminishes over time. Whereas short‐term N loading (≤5 years) significantly increased soil phosphatase activity by 28%, long‐term N loading had no significant effect. Nitrogen loading did not affect soil available P and total P content in either short‐ or long‐term studies. Together, these results suggest that N‐induced P limitation in ecosystems is alleviated in the long‐term through the initial stimulation of soil phosphatase activity, thereby securing P supply to support plant growth. Our results suggest that increases in terrestrial carbon uptake due to ongoing anthropogenic N loading may be greater than previously thought.This study was funded by Aarhus University Centre for Circular Bioeconomy, Aarhus University Research Foundation AUFF Starting Grants (AUFF-E-2019-7-1), and Marie Skłodowska-Curie Individual Fellowship H2020-MSCA-IF-2018 (no. 839806). Ji Chen acknowledges funding support from the National Natural Science Foundation of China (41701292) and China Postdoctoral Science Foundation (2017M610647, 2018T111091) when constructing the databases. César Terrer was supported by a Lawrence Fellow award through Lawrence Livermore National Laboratory (LLNL). This work was performed under the auspices of the U.S. Department of Energy by LLNL under contract DEAC52-07NA27344 and was supported by the LLNL-LDRD Program under Project No. 20-ERD-055. Fernando T. Maestre was supported by the European Research Council (ERC Grant agreement 647038 [BIODESERT]) and Generalitat Valenciana (CIDEGENT/2018/041)

    Global cropland nitrous oxide emissions in fallow period are comparable to growing-season emissions

    Get PDF
    This study was supported by the Youth Innovation Program of Chinese Academy of Agricultural Sciences (No. Y2023QC02), the National Natural Science Foundation of China (42225102, 42301059, 32172129, 42207378), the National Key Research and Development Program of China (2021YFD1700801, 2022YFD2300400), Technology Research System-Green manure (Grant No. CARS-22-G-16).Peer reviewedPostprin

    Using metabolic tracer techniques to assess the impact of tillage and straw management on microbial carbon use efficiency in soil

    Get PDF
    a b s t r a c t Tillage practices and straw management can affect soil microbial activities with consequences for soil organic carbon (C) dynamics. Microorganisms metabolize soil organic C and in doing so gain energy and building blocks for biosynthesis, and release CO 2 to the atmosphere. Insight into the response of microbial metabolic processes and C use efficiency (CUE; microbial C produced per substrate C utilized) to management practices may therefore help to predict long term changes in soil C stocks. In this study, we assessed the effects of reduced (RT) and conventional tillage (CT) on the microbial central C metabolic network, using soil samples from a 12-year-old field experiment in an Irish winter wheat cropping system. Straw was removed from half of the RT and CT plots after harvest or incorporated into the soil in the other half, resulting in four treatment combinations. We added 1-13 C and 2,3-13 C pyruvate and 1-13 C and U-13 C glucose as metabolic tracer isotopomers to composite soil samples taken at two depths (0e15 cm and 15e30 cm) from each of the treatments and used the rate of position-specific respired 13 CO 2 to parameterize a metabolic model. Model outcomes were then used to calculate CUE of the microbial community. Whereas the composite samples differed in CUE, the changes were small, with values ranging between 0.757 and 0.783 across treatments and soil depth. Increases in CUE were associated with a reduced tricarboxylic acid cycle and reductive pentose phosphate pathway activity and increased consumption of metabolic intermediates for biosynthesis. Our results suggest that RT and straw incorporation do not substantially affect CUE

    Elevated CO2_{2} negates O3_{3} impacts on terrestrial carbon and nitrogen cycles

    Get PDF
    Increasing tropospheric concentrations of ozone (e[O3_{3}]) and carbon dioxide (e[CO2_{2}]) profoundly perturb terrestrial ecosystem functions through carbon and nitrogen cycles, affecting beneficial services such as their capacity to combat climate change and provide food. However, the interactive effects of e[O3_{3}] and e[CO2_{2}] on these functions and services remain unclear. Here, we synthesize the results of 810 studies (9,109 observations), spanning boreal to tropical regions around the world, and show that e[O3_{3}] significantly decreases global net primary productivity and food production as well as the capacity of ecosystems to store carbon and nitrogen, which are stimulated by e[CO2_{2}]. More importantly, simultaneous increases in [CO2_{2}] and [O3_{3}] negate or even overcompensate the negative effects of e[O3_{3}3] on ecosystem functions and carbon and nitrogen cycles. Therefore, the negative effects of e[O3_{3}] on terrestrial ecosystems would be overestimated if e[CO2_{2}] impacts are not considered, stressing the need for evaluating terrestrial carbon and nitrogen feedbacks to concurrent changes in global atmospheric composition

    Shifts in soil ammonia-oxidizing community maintain the nitrogen stimulation of nitrification across climatic conditions

    Get PDF
    Anthropogenic nitrogen (N) loading alters soil ammonia-oxidizing archaea (AOA) and bacteria (AOB) abundances, likely leading to substantial changes in soil nitrification. However, the factors and mechanisms determining the responses of soil AOA:AOB and nitrification to N loading are still unclear, making it difficult to predict future changes in soil nitrification. Herein, we synthesize 68 field studies around the world to evaluate the impacts of N loading on soil ammonia oxidizers and nitrification. Across a wide range of biotic and abiotic factors, climate is the most important driver of the responses of AOA:AOB to N loading. Climate does not directly affect the N-stimulation of nitrification, but does so via climate-related shifts in AOA:AOB. Specifically, climate modulates the responses of AOA:AOB to N loading by affecting soil pH, N-availability and moisture. AOB play a dominant role in affecting nitrification in dry climates, while the impacts from AOA can exceed AOB in humid climates. Together, these results suggest that climate-related shifts in soil ammonia-oxidizing community maintain the N-stimulation of nitrification, highlighting the importance of microbial community composition in mediating the responses of the soil N cycle to N loading

    Predicting soil carbon loss with warming

    Get PDF
    Journal ArticleThis is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.ARISING FROM: T. W. Crowther et al. Nature 540, 104–108 (2016); doi:10.1038/nature2015
    corecore