3,317 research outputs found

    Search for Rapid Changes in the Visible-Light Corona during the 21 June 2001 Total Solar Eclipse

    Full text link
    Some 8000 images obtained with the SECIS fast-frame CCD camera instrument located at Lusaka, Zambia, during the total eclipse of 21 June 2001 have been analyzed to search for short-period oscillations in intensity that could be a signature of solar coronal heating mechanisms by MHD wave dissipation. Images were taken in white- light and Fe XIV green-line (5303 A) channels over 205 seconds (frame rate 39 s-1), approximately the length of eclipse totality at this location, with a pixel size of four arcseconds square. The data are of considerably better quality than were obtained during the 11 August 1999 total eclipse, observed by us (Rudawy et al.: Astron. Astrophys. 416, 1179, 2004), in that the images are much better exposed and enhancements in the drive system of the heliostat used gave a much improved image stability. Classical Fourier and wavelet techniques have been used to analyze the emission at 29518 locations, of which 10714 had emission at reasonably high levels, searching for periodic fluctuations with periods in the range 0.1-17 seconds (frequencies 0.06-10 Hz). While a number of possible periodicities were apparent in the wavelet analysis, none of the spatially and time-limited periodicities in the local brightness curves was found to be physically important. This implies that the pervasive Alfven wave-like phenomena (Tomczyk et al.: Science 317, 1192, 2007) using polarimetric observations with the CoMP instrument do not give rise to significant oscillatory intensity fluctuations.Comment: Accepted by Solar Physics; 16 figure

    Propagating Wave Phenomena Detected in Observations and Simulations of the Lower Solar Atmosphere

    Get PDF
    We present high-cadence observations and simulations of the solar photosphere, obtained using the Rapid Oscillations in the Solar Atmosphere imaging system and the MuRAM magneto-hydrodynamic code, respectively. Each dataset demonstrates a wealth of magneto-acoustic oscillatory behaviour, visible as periodic intensity fluctuations with periods in the range 110-600 s. Almost no propagating waves with periods less than 140s and 110s are detected in the observational and simulated datasets, respectively. High concentrations of power are found in highly magnetised regions, such as magnetic bright points and intergranular lanes. Radiative diagnostics of the photospheric simulations replicate our observational results, confirming that the current breed of magneto-hydrodynamic simulations are able to accurately represent the lower solar atmosphere. All observed oscillations are generated as a result of naturally occurring magnetoconvective processes, with no specific input driver present. Using contribution functions extracted from our numerical simulations, we estimate minimum G-band and 4170 Angstrom continuum formation heights of 100 km and 25 km, respectively. Detected magneto-acoustic oscillations exhibit a dominant phase delay of -8 degrees between the G-band and 4170 Angstrom continuum observations, suggesting the presence of upwardly propagating waves. More than 73% of MBPs (73% from observations, 96% from simulations) display upwardly propagating wave phenomena, suggesting the abundant nature of oscillatory behaviour detected higher in the solar atmosphere may be traced back to magnetoconvective processes occurring in the upper layers of the Sun's convection zone.Comment: 13 pages, 9 figures, accepted into Ap

    The Velocity Distribution of Solar Photospheric Magnetic Bright Points

    Get PDF
    We use high spatial resolution observations and numerical simulations to study the velocity distribution of solar photospheric magnetic bright points. The observations were obtained with the Rapid Oscillations in the Solar Atmosphere instrument at the Dunn Solar Telescope, while the numerical simulations were undertaken with the MURaM code for average magnetic fields of 200 G and 400 G. We implemented an automated bright point detection and tracking algorithm on the dataset, and studied the subsequent velocity characteristics of over 6000 structures, finding an average velocity of approximately 1 km/s, with maximum values of 7 km/s. Furthermore, merging magnetic bright points were found to have considerably higher velocities, and significantly longer lifetimes, than isolated structures. By implementing a new and novel technique, we were able to estimate the background magnetic flux of our observational data, which is consistent with a field strength of 400 G.Comment: Accepted for publication in ApJL, 12 pages, 2 figure

    A non-LTE abundance analysis of the post-AGB star ROA 5701

    Get PDF
    An analysis of high-resolution Anglo-Australian Telescope (AAT)/ University College London Echelle Spectrograph (UCLES) optical spectra for the ultraviolet (UV)-bright star ROA 5701 in the globular cluster omega Cen (NGC 5139) is performed, using non-local thermodynamic equilibrium (non-LTE) model atmospheres to estimate stellar atmospheric parameters and chemical composition. Abundances are derived for C, N, O, Mg, Si and S, and compared with those found previously by Moehler et al. We find a general metal underabundance relative to young B-type stars, consistent with the average metallicity of the cluster. Our results indicate that ROA 5701 has not undergone a gas-dust separation scenario as previously suggested. However, its abundance pattern does imply that ROA 5701 has evolved off the AGB prior to the onset of the third dredge-up.Comment: 9 pages, 2 figures. Accepted for publication in MNRAS (Online Early

    Dust in the Ionized Medium of the Galaxy: GHRS Measurements of Al III and S III

    Get PDF
    We present interstellar absorption line measurements of the ions S III and Al III towards six stars using archival Goddard High Resolution Spectrograph data. The ions Al III and S III trace heavily depleted and non-depleted elements, respectively, in ionized gas. We use the photoionization code CLOUDY to derive the ionization correction relating N(Al III)/N(S III) to the gas-phase abundance [Al/S]_i in the ionized gas. For spectral types considered here, the corrections are small and independent of the assumed ionization parameter. Using the results of these photoionization models, we find [Al/S]_i = -1.0 in the ionized gas towards three disk stars. These values of [Al/S]_i (=[Al/H]_i) imply that Al-bearing grains are present in the ionized nebulae around these stars. If the WIM of the Galaxy is photoionized by OB stars, our data for two halo stars imply [Al/S]_i = -0.4 to -0.5 in the WIM and thus the presence of dust grains containing Al in this important phase of the ISM. While photoionization appears to be the most likely origin of the ionization for Al III and S III, we cannot rule out confusion from the presence of hot, collisionally ionized gas along two sightlines. We find that [Al/S]_i in the ionized gas along the six sightlines is anti-correlated with the electron density and average sightline neutral density. The degree of grain destruction in the ionized medium of the Galaxy is not much higher than in the warm neutral medium. The existence of grains in the ionized regions studied here has important implications for the thermal balance of these regions. (Abstract Abridged)Comment: 30 pages including 8 embedded tables and 8 embedded figures. Accepted for publication in the Astrophysical Journa

    Electron-Ion Recombination on Grains and Polycyclic Aromatic Hydrocarbons

    Get PDF
    With the high-resolution spectroscopy now available in the optical and satellite UV, it is possible to determine the neutral/ionized column density ratios for several different elements in a single cloud. Assuming ionization equilibrium for each element, one can make several independent determinations of the electron density. For the clouds for which such an analysis has been carried out, these different estimates disagree by large factors, suggesting that some process (or processes) besides photoionization and radiative recombination might play an important role in the ionization balance. One candidate process is collisions of ions with dust grains. Making use of recent work quantifying the abundances of polycyclic aromatic hydrocarbon molecules and other grains in the interstellar medium, as well as recent models for grain charging, we estimate the grain-assisted ion recombination rates for several astrophysically important elements. We find that these rates are comparable to the rates for radiative recombination for conditions typical of the cold neutral medium. Including grain-assisted ion recombination in the ionization equilibrium analysis leads to increased consistency in the various electron density estimates for the gas along the line of sight to 23 Orionis. However, not all of the discrepancies can be eliminated in this way; we speculate on some other processes that might play a role. We also note that grain-assisted recombination of H+ and He+ leads to significantly lower electron fractions than usually assumed for the cold neutral medium.Comment: LaTeX(12 pages, 8 figures, uses emulateapj5.sty, apjfonts.sty); submitted to ApJ; corrected typo

    The Resolved Near-Infrared Extragalactic Background

    Full text link
    We present a current best estimate of the integrated near-infrared (NIR) extragalactic background light (EBL) attributable to resolved galaxies in J, H, and Ks. Our results in units of nW m-2 sr-1 are 11.7+5.6 -2.6 in J, 11.5+4.5 -1.5 in H and 10.0+2.8 -0.8 in Ks. We derive these new limits by combining our deep wide-field NIR photometry from five widely separated fields with other studies from the literature to create a galaxy counts sample that is highly complete and has good counting statistics out to JHKs ~ 27-28. As part of this effort we present new ultradeep Ks-band galaxy counts from 22 hours of observations with the Multi Object Infrared Camera and Spectrograph (MOIRCS) instrument on the Subaru Telescope. We use this MOIRCS Ks-band mosaic to estimate the total missing flux from sources beyond our detection limits. Our new limits to the NIR EBL are in basic agreement with, but 10 - 20% higher than previous estimates, bringing them into better agreement with estimates of the total NIR EBL (resolved + unresolved sources) obtained from TeV gamma-ray opacity measurements and recent direct measurements of the total NIR EBL. We examine field to field variations in our photometry to show that the integrated light from galaxies is isotropic to within uncertainties, consistent with the expected large-scale isotropy of the EBL. Our data also allow for a robust estimate of the NIR light from Galactic stars, which we find to be 14.7 +/- 2.4 in J, 10.1 +/- 1.9 in H and 7.6 +/- 1.8 in Ks in units of nW m-2 sr-1.Comment: Accepted to Ap

    Synthetic ozone deposition and stomatal uptake at flux tower sites

    Get PDF
    We develop and evaluate a method to estimate O-3 deposition and stomatal O-3 uptake across networks of eddy covariance flux tower sites where O-3 concentrations and O-3 fluxes have not been measured. The method combines standard micrometeorological flux measurements, which constrain O-3 deposition velocity and stomatal conductance, with a gridded dataset of observed surface O-3 concentrations. Measurement errors are propagated through all calculations to quantify O-3 flux uncertainties. We evaluate the method at three sites with O(3 )flux measurements: Harvard Forest, Blodgett Forest, and Hyytiala Forest. The method reproduces 83 % or more of the variability in daily stomatal uptake at these sites with modest mean bias (21 % or less). At least 95 % of daily average values agree with measurements within a factor of 2 and, according to the error analysis, the residual differences from measured O-3 fluxes are consistent with the uncertainty in the underlying measurements. The product, called synthetic O-3 flux or SynFlux, includes 43 FLUXNET sites in the United States and 60 sites in Europe, totaling 926 site years of data. This dataset, which is now public, dramatically expands the number and types of sites where O-3 fluxes can be used for ecosystem impact studies and evaluation of air quality and climate models. Across these sites, the mean stomatal conductance and O-3 deposition velocity is 0.03-1.0 cm s(-1). The stomatal O-3 flux during the growing season (typically April-September) is 0.5-11.0 nmol O-3 m(-2) s(-1) with a mean of 4.5 nmol O(3 )m(-2) s(-1) and the largest fluxes generally occur where stomatal conductance is high, rather than where O-3 concentrations are high. The conductance differences across sites can be explained by atmospheric humidity, soil moisture, vegetation type, irrigation, and land management. These stomatal fluxes suggest that ambient O-3 degrades biomass production and CO2 sequestration by 20 %-24 % at crop sites, 6 %-29 % at deciduous broadleaf forests, and 4 %-20 % at evergreen needleleaf forests in the United States and Europe.Peer reviewe
    corecore