27 research outputs found

    Observations on the water distribution and extractable sugar content in carrot slices after pulsed electric field treatment

    Get PDF
    peer-reviewedThe impact of pulsed electric field (PEF) processing conditions on the distribution of water in carrot tissue and extractability of soluble sugars from carrot slices was studied. Time domain NMR relaxometry was used to investigate the water proton mobility in PEF-treated carrot samples. Three distinct transverse relaxation peaks were observed in untreated carrots. After PEF treatment only two slightly-overlapping peaks were found; these were attributed to water present in the cytoplasm and vacuole of carrot xylem and phloem tissues. This post-treatment observation indicated an increase in water permeability of tissues and/or a loss of integrity in the tonoplast. In general, the stronger the electric field applied, the lower the area representing transverse relaxation (T2) values irrespective of treatment duration. Moreover an increase in sucrose, ÎČ- and α-glucose and fructose concentrations of carrot slice extracts after PEF treatment suggested increases in both cell wall and vacuole permeability as a result of exposure to pulsed electric fields.The authors acknowledge financial support from the Irish Phytochemical Food Network (IPFN) project funded under the Food Institutional Research Measure (FIRM, 06/TNI/AFRC6) of the Irish Department of Agriculture, Food and Marine. Dr. AguilĂł-Aguayo thanks Generalitat of Catalonia for the postdoctoral grant Beatriu de PinĂłs (BP-DGR2010). E. BalaguerĂł thanks the Lifelong Learning Programme for the internship grant Leonardo da Vinci MOTIVA3 (201 1-1-ES1-LEO02-34225)

    Optimization of protein recovery from bovine lung by pH shift process using response surface methodology

    Get PDF
    peer-reviewedBACKGROUND Response surface methodology (RSM) was used in a sequential manner to optimize solubilization and precipitation conditions in the recovery of protein from bovine lung using pH shift. RESULTS Separate D‐optimal designs were employed for protein solubilization and precipitation. Independent variables investigated for protein solubilization were time (10–120 min), temperature (4–20 °C), pH (8.0–11.0) and solvent/sample ratio (2.5–10). Variables for protein precipitation were time (0–60 min) and pH (4.25–6.00). Soluble protein yields ranged from 323 to 649 g kg−1 and the quadratic model for protein solubilization revealed a coefficient of determination R2 of 0.9958. Optimal conditions for maximum protein solubility were extraction time 140 min, temperature 19 °C, pH 10.8 and solvent/sample ratio 13.02. Protein precipitation yields varied from 407 to 667 g kg−1, giving a coefficient of determination R2 of 0.9335. Optimal conditions for maximum protein precipitation were pH 5.03 and 60 min. Based on the RSM model, solubilization conditions were manipulated to maximize protein solubilization under reduced water and alkaline usage. These conditions were also validated. CONCLUSION Models for solubilization and precipitation using bovine and porcine lung were validated; predicted and actual yields were in good agreement, showing cross‐species applicability of the results. © 2017 Society of Chemical Industr

    Mechanical and Biochemical Methods for Rigor Measurement: Relationship with Eating Quality

    Get PDF
    peer-reviewedMeat quality parameters are affected by a complex series of interacting chemical, biochemical, physical, and physiological components that determine not only the suitability for consumption and the conditions for further processing and storage but also consumer acceptability. Deep understanding and careful manipulation of these intrinsic and extrinsic factors have to be taken in account to ensure high quality of meat, with better technological properties and increased safety for consumers. Among meat quality characteristics, meat tenderness has been perceived as the most important factor governing consumer acceptability. Therefore, being able to early predict meat texture and other related parameters in order to guarantee consistent eating quality to the final consumer is one of the most sought-after goals in the meat industry. Accurate measurements of both the biochemical and mechanical characteristics that underpin muscle and its transformation into meat are key factors to an improved understanding of meat quality, but also this early-stage measurements may be useful to develop methods to predict final meat texture. It is the goal of this review to present the available research literature on the historical and contemporary analyses that could be applied in early postmortem stages (pre-rigor and rigor) to determine the biochemical and physical characteristics of the meat that can potentially impact the eating quality

    The effects of potato and rice starch as substitutes for phosphate in and degree of comminution on the technological, instrumental and sensory characteristics of restructured ham

    Get PDF
    peer-reviewedThe effects of sodium tripolyphosphate (STPP), two sources of starch (potato starch: PS and rice starch: RS) and comminution degree (CD) on the technological, instrumental and sensory characteristics of reformed hams were studied using response surface methodology. Both starches reduced cook loss and decreased ham flavour intensity, but RS had stronger effects on instrumental measures of texture, while PS was associated with improved juiciness when low/no added STPP was included. Coarsely ground meat, processed 100% with the kidney plate was associated with slightly increased cook loss, reduced texture profile analysis parameters and a more intense ham flavour compared to the other treatment (80% ground with a kidney plate plus 20% with a 9 mm plate). STPP was the sole factor affecting overall liking. If starch is included in the formulation, the standard level of STPP (0.3%) can be reduced by half with no increase in cook losses, but some decline in sensory quality cannot be avoided.Department of Agriculture, Food and the Marine, Irelan

    Treatment seeking and antibiotic use for urinary tract infection symptoms in the time of COVID-19 in Tanzania and Uganda

    Get PDF
    Funding: CARE: COVID-19 and Antimicrobial Resistance in East Africa – impact and response is a Global Effort on COVID-19 (GECO) Health Research Award (MR/V036157/1) funded by UK Research and Innovation (Medical Research Council) and the Department of Health and Social Care (National Institute for Health Research).Background There is still little empirical evidence on how the outbreak of coronavirus disease 2019 (COVID-19) and associated regulations may have disrupted care-seeking for non-COVID-19 conditions or affected antibiotic behaviours in low- and middle-income countries (LMICs). We aimed to investigate the differences in treatment-seeking behaviours and antibiotic use for urinary tract infection (UTI)-like symptoms before and during the pandemic at recruitment sites in two East African countries with different COVID-19 control policies: Mbarara, Uganda and Mwanza, Tanzania. Methods In this repeated cross-sectional study, we used data from outpatients (pregnant adolescents aged >14 and adults aged >18) with UTI-like symptoms who visited health facilities in Mwanza, Tanzania and Mbarara, Uganda. We assessed the prevalence of self-reported behaviours (delays in care-seeking, providers visited, antibiotics taken) at three different time points, labelled as ‘pre-COVID-19 phase’ (February 2019 to February 2020), ‘COVID-19 phase 1’ (March 2020 to April 2020), and ‘COVID-19 phase 2’ (July 2021 to February 2022). Results In both study sites, delays in care-seeking were less common during the pandemic than they were in the pre-COVID phase. Patients in Mwanza, Tanzania had shorter care-seeking pathways during the pandemic compared to before it, but this difference was not observed in Mbarara, Uganda. Health centres were the dominant sources of antibiotics in both settings. Over time, reported antibiotic use for UTI-like symptoms became more common in both settings. During the COVID-19 phases, there was a significant increase in self-reported use of antibiotics like metronidazole (<30% in the pre-COVID-19 phase to 40% in COVID phase 2) and doxycycline (30% in the pre-COVID-19 phase to 55% in COVID phase 2) that were not recommended for treating UTI-like symptoms in the National Treatment Guidelines in Mbarara, Uganda. Conclusions There was no clear evidence that patients with UTI-like symptoms attending health care facilities had longer or more complex treatment pathways despite strict government-led interventions related to COVID-19. However, antibiotic use increased over time, including some antibiotics not recommended for treating UTI, which has implications for future antimicrobial resistance.Publisher PDFPeer reviewe

    Predominance of multidrug-resistant bacteria causing urinary tract infections among symptomatic patients in East Africa : a call for action

    Get PDF
    Background In low- and middle-income countries, antibiotics are often prescribed for patients with symptoms of urinary tract infections (UTIs) without microbiological confirmation. Inappropriate antibiotic use can contribute to antimicrobial resistance (AMR) and the selection of MDR bacteria. Data on antibiotic susceptibility of cultured bacteria are important in drafting empirical treatment guidelines and monitoring resistance trends, which can prevent the spread of AMR. In East Africa, antibiotic susceptibility data are sparse. To fill the gap, this study reports common microorganisms and their susceptibility patterns isolated from patients with UTI-like symptoms in Kenya, Tanzania and Uganda. Within each country, patients were recruited from three sites that were sociodemographically distinct and representative of different populations. Methods UTI was defined by the presence of >104 cfu/mL of one or two uropathogens in mid-stream urine samples. Identification of microorganisms was done using biochemical methods. Antimicrobial susceptibility testing was performed by the Kirby–Bauer disc diffusion assay. MDR bacteria were defined as isolates resistant to at least one agent in three or more classes of antimicrobial agents. Results Microbiologically confirmed UTI was observed in 2653 (35.0%) of the 7583 patients studied. The predominant bacteria were Escherichia coli (37.0%), Staphylococcus spp. (26.3%), Klebsiella spp. (5.8%) and Enterococcus spp. (5.5%). E. coli contributed 982 of the isolates, with an MDR proportion of 52.2%. Staphylococcus spp. contributed 697 of the isolates, with an MDR rate of 60.3%. The overall proportion of MDR bacteria (n = 1153) was 50.9%. Conclusions MDR bacteria are common causes of UTI in patients attending healthcare centres in East African countries, which emphasizes the need for investment in laboratory culture capacity and diagnostic algorithms to improve accuracy of diagnosis that will lead to appropriate antibiotic use to prevent and control AMR.Peer reviewe

    Treatment seeking behaviours, antibiotic use and relationships to multi-drug resistance : a study of urinary tract infection patients in Kenya, Tanzania and Uganda

    Get PDF
    Antibacterial resistance (ABR) is a major public health threat. An important accelerating factor is treatment-seeking behaviour, including inappropriate antibiotic (AB) use. In many low- and middle-income countries (LMICs) this includes taking ABs with and without prescription sourced from various providers, including health facilities and community drug sellers. However, investigations of complex treatment-seeking, AB use and drug resistance in LMICs are scarce. The Holistic Approach to Unravel Antibacterial Resistance in East Africa (HATUA) Consortium collected questionnaire and microbiological data from adult outpatients with urinary tract infection (UTI)-like symptoms presenting at healthcare facilities in Kenya, Tanzania and Uganda. Using data from 6,388 patients, we analysed patterns of self-reported treatment seeking behaviours (‘patient pathways’) using process mining and single-channel sequence analysis. Among those with microbiologically confirmed UTI (n = 1,946), we used logistic regression to assess the relationship between treatment seeking behaviour, AB use, and the likelihood of having a multi-drug resistant (MDR) UTI. The most common treatment pathway for UTI-like symptoms in this sample involved attending health facilities, rather than other providers like drug sellers. Patients from sites in Tanzania and Uganda, where over 50% of patients had an MDR UTI, were more likely to report treatment failures, and have repeat visits to providers than those from Kenyan sites, where MDR UTI proportions were lower (33%). There was no strong or consistent relationship between individual AB use and likelihood of MDR UTI, after accounting for country context. The results highlight the hurdles East African patients face in accessing effective UTI care. These challenges are exacerbated by high rates of MDR UTI, suggesting a vicious cycle of failed treatment attempts and sustained selection for drug resistance. Whilst individual AB use may contribute to the risk of MDR UTI, our data show that factors related to context are stronger drivers of variations in ABR.Peer reviewe

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore