4,919 research outputs found
Atmospheric potential oxygen: New observations and their implications for some atmospheric and oceanic models
Measurements of atmospheric O2/N2 ratios and CO2 concentrations can be combined into a tracer known as atmospheric potential oxygen (APO ≈ O2/N2 + CO2) that is conservative with respect to terrestrial biological activity. Consequently, APO reflects primarily ocean biogeochemistry and atmospheric circulation. Building on the work of Stephens et al. (1998), we present a set of APO observations for the years 1996-2003 with unprecedented spatial coverage. Combining data from the Princeton and Scripps air sampling programs, the data set includes new observations collected from ships in the low-latitude Pacific. The data show a smaller interhemispheric APO gradient than was observed in past studies, and different structure within the hemispheres. These differences appear to be due primarily to real changes in the APO field over time. The data also show a significant maximum in APO near the equator. Following the approach of Gruber et al. (2001), we compare these observations with predictions of APO generated from ocean O2 and CO2 flux fields and forward models of atmospheric transport. Our model predictions differ from those of earlier modeling studies, reflecting primarily the choice of atmospheric transport model (TM3 in this study). The model predictions show generally good agreement with the observations, matching the size of the interhemispheric gradient, the approximate amplitude and extent of the equatorial maximum, and the amplitude and phasing of the seasonal APO cycle at most stations. Room for improvement remains. The agreement in the interhemispheric gradient appears to be coincidental; over the last decade, the true APO gradient has evolved to a value that is consistent with our time-independent model. In addition, the equatorial maximum is somewhat more pronounced in the data than the model. This may be due to overly vigorous model transport, or insufficient spatial resolution in the air-sea fluxes used in our modeling effort. Finally, the seasonal cycles predicted by the model of atmospheric transport show evidence of an excessive seasonal rectifier in the Aleutian Islands and smaller problems elsewhere. Copyright 2006 by the American Geophysical Union
Spontaneous rotating vortex lattices in a pumped decaying condensate
Injection and decay of particles in an inhomogeneous quantum condensate can
significantly change its behaviour. We model trapped, pumped, decaying
condensates by a complex Gross-Pitaevskii equation and analyse the density and
currents in the steady state. With homogeneous pumping, rotationally symmetric
solutions are unstable. Stability may be restored by a finite pumping spot.
However if the pumping spot is larger than the Thomas-Fermi cloud radius, then
rotationally symmetric solutions are replaced by solutions with spontaneous
arrays of vortices. These vortex arrays arise without any rotation of the trap,
spontaneously breaking rotational symmetry.Comment: Updated title and introduction. 4 pages, 3 figure
Precise atmospheric oxygen measurements with a paramagnetic oxygen analyzer
A methodology has been developed for making continuous, high-precision measurements of atmospheric oxygen concentrations by modifying a commercially available paramagnetic oxygen analyzer. Incorporating several design improvements, an effective precision of 0.2 ppm O-2 from repeated measurements over a 1-hour interval was achieved. This is sufficient to detect background changes in atmospheric O-2 to a level that constrains various aspects of the global carbon cycle. The analyzer was used to measure atmospheric O-2 in a semicontinuous fashion from air sampled from the end of Scripps Pier, La Jolla, California, and data from a 1-week period in August 1996 are shown. The data exhibit strongly anticorrelated changes in O-2 and CO2 caused by local or regional combustion of fossil fuels. During periods of steady background CO2 concentrations, however, we see additional variability in O-2 concentrations, clearly not due to local combustion and presumably due to oceanic sources or sinks of O-2. This variability suggests that in contrast to CO2, higher O-2 sampling rates, such as those provided by continuous measurement programs, may be necessary to define an atmospheric O-2 background and thus aid in validating and interpreting other O-2 data from flask sampling programs. Our results have also demonstrated that this paramagnetic analyzer and gas handling design is well suited for making continuous measurements of atmospheric O-2 and is suitable for placement at remote background air monitoring sites
A motif-based approach to network epidemics
Networks have become an indispensable tool in modelling infectious diseases, with the structure of epidemiologically relevant contacts known to affect both the dynamics of the infection process and the efficacy of intervention strategies. One of the key reasons for this is the presence of clustering in contact networks, which is typically analysed in terms of prevalence of triangles in the network. We present a more general approach, based on the prevalence of different four-motifs, in the context of ODE approximations to network dynamics. This is shown to outperform existing models for a range of small world networks
Polariton condensation with localised excitons and propagating photons
We estimate the condensation temperature for microcavity polaritons, allowing
for their internal structure. We consider polaritons formed from localised
excitons in a planar microcavity, using a generalised Dicke model. At low
densities, we find a condensation temperature T_c \propto \rho, as expected for
a gas of structureless polaritons. However, as T_c becomes of the order of the
Rabi splitting, the structure of the polaritons becomes relevant, and the
condensation temperature is that of a B.C.S.-like mean field theory. We also
calculate the excitation spectrum, which is related to observable quantities
such as the luminescence and absorption spectra.Comment: 5 pages, 4 figures, Corrected typos, replaced figure
Recommended from our members
Cognitive appraisals affect both embodiment of thermal sensation and its mapping to thermal evaluation
The physical environment leads to a thermal sensation that is perceived and appraised by occupants. The present study focuses on the relationship between sensation and evaluation. We asked 166 people to recall a thermal event from their recent past. They were then asked how they evaluated this experience in terms of 10 different emotions (frustrated, resigned, dislike, indifferent, angry, anxious, liking, joyful, regretful, proud). We tested whether four psychological factors (appraisal dimensions) could be used to predict the ensuing emotions, as well as comfort, acceptability, and sensation. The four dimensions were: the Conduciveness of the event, who/what caused the event (Causality), who had control (Agency), and whether the event was expected (Expectations). These dimensions, except for Expectations, were good predictors of the reported emotions. Expectations, however, predicted the reported thermal sensation, its acceptability, and ensuing comfort. The more expected an event was, the more uncomfortable a person felt, and the less likely they reported a neutral thermal sensation. Together, these results support an embodied view of how subjective appraisals affect thermal experience. Overall, we show that appraisal dimensions mediate occupants' evaluation of their thermal sensation, which suggests an additional method for understanding psychological adaption
Appropriate models for the management of infectious diseases
Background Mathematical models have become invaluable management tools for epidemiologists, both shedding light on the mechanisms underlying observed dynamics as well as making quantitative predictions on the effectiveness of different control measures. Here, we explain how substantial biases are introduced by two important, yet largely ignored, assumptions at the core of the vast majority of such models.
Methods and Findings First, we use analytical methods to show that (i) ignoring the latent period or (ii) making the common assumption of exponentially distributed latent and infectious periods (when including the latent period) always results in underestimating the basic reproductive ratio of an infection from outbreak data. We then proceed to illustrate these points by fitting epidemic models to data from an influenza outbreak. Finally, we document how such unrealistic a priori assumptions concerning model structure give rise to systematically overoptimistic predictions on the outcome of potential management options.
Conclusion This work aims to highlight that, when developing models for public health use, we need to pay careful attention to the intrinsic assumptions embedded within classical frameworks
Angular distribution of photoluminescence as a probe of Bose Condensation of trapped excitons
Recent experiments on two-dimensional exciton systems have shown the excitons
collect in shallow in-plane traps. We find that Bose condensation in a trap
results in a dramatic change of the exciton photoluminescence (PL) angular
distribution. The long-range coherence of the condensed state gives rise to a
sharply focussed peak of radiation in the direction normal to the plane. By
comparing the PL profile with and without Bose Condensation we provide a simple
diagnostic for the existence of a Bose condensate. The PL peak has strong
temperature dependence due to the thermal order parameter phase fluctuations
across the system. The angular PL distribution can also be used for imaging
vortices in the trapped condensate. Vortex phase spatial variation leads to
destructive interference of PL radiation in certain directions, creating nodes
in the PL distribution that imprint the vortex configuration.Comment: 4 pages, 3 figure
Bath induced coherence and the secular approximation
Finding efficient descriptions of how an environment affects a collection of discrete quantum systems would lead to new insights into many areas of modern physics. Markovian, or time-local, methods work well for individual systems, but for groups a question arises: does system-bath or inter-system coupling dominate the dissipative dynamics? The answer has profound consequences for the long-time quantum correlations within the system. We consider two bosonic modes coupled to a bath. By comparing an exact solution to different Markovian master equations, we find that a smooth crossover of the equations-of-motion between dominant inter-system and system-bath coupling exists - but requires a non-secular master equation. We predict a singular behaviour of the dynamics, and show that the ultimate failure of non-secular equations of motion is essentially a failure of the Markov approximation. Our findings justify the use of time-local theories throughout the crossover between system-bath dominated and inter-system-coupling dominated dynamics.PostprintPeer reviewe
Non-equilibrium quantum condensation in an incoherently pumped dissipative system
We study spontaneous quantum coherence in an out of equilibrium system,
coupled to multiple baths describing pumping and decay. For a range of
parameters describing coupling to, and occupation of the baths, a stable
steady-state condensed solution exists. The presence of pumping and decay
significantly modifies the spectra of phase fluctuations, leading to
correlation functions that differ both from an isolated condensate and from a
laser.Comment: 5 pages, 2 eps figure
- …
