14 research outputs found

    The Effect of Detraining after a Period of Training on Cardiometabolic Health in Previously Sedentary Individuals

    Get PDF
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).The purpose of this study was to quantify the time-magnitude changes in cardiometabolic health outcomes that occur with cessation of regular exercise training. All participants (n = 22) performed baseline testing, completed a 13-week exercise program, and completed post-program testing. Upon completion of the 13-week exercise program, participants were randomized to one of the following two treatment groups: (1) the treatment group that continued their exercise for 4 weeks (TRAIN); or (2) the treatment group that discontinued exercise (DETRAIN). Changes from baseline to 13 weeks in both the TRAIN and DETRAIN treatment groups for maximal oxygen consumption (VO2max), body fat percentage, mean arterial pressure, high-density lipoprotein (HDL) cholesterol, and triglycerides were significantly favourable (p < 0.05). VO2max, body fat percentage, and favourable cardiometabolic health adaptations continued to improve (p < 0.05) with an additional one month of exercise training. Upon cessation of exercise, all measures of VO2max and body fat percentage, along with mean arterial pressure, HDL cholesterol, and triglycerides significantly worsened (p < 0.05) in the DETRAIN treatment group. Favourable training adaptations were further enhanced with an additional month of continued exercise training, and cessation of regular exercise rapidly abolished all training adaptations within one month. These novel findings underscore the importance of sustained and uninterrupted exercise training. View Full-Tex

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≄ II, EF ≀35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure &lt; 100 mmHg (n = 1127), estimated glomerular filtration rate &lt; 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    Personalized moderate-intensity exercise training combined with high-intensity interval training enhances training responsiveness

    No full text
    This study sought to determine if personalized moderate-intensity continuous exercise training (MICT) combined with high-intensity interval training (HIIT) was more effective at improving comprehensive training responsiveness than MICT alone. Apparently healthy, but physically inactive men and women (n = 54) were randomized to a non-exercise control group or one of two 13-week exercise training groups: (1) a personalized MICT + HIIT aerobic and resistance training program based on the American Council on Exercise guidelines, or (2) a standardized MICT aerobic and resistance training program designed according to current American College of Sports Medicine guidelines. Mean changes in maximal oxygen uptake (VO ) and Metabolic (MetS) z-score in the personalized MICT + HIIT group were more favorable (p 4.9%) and MetS z-score (∆ ≀ −0.48) in 100% (16/16) of participants in the personalized MICT + HIIT group. In the present study, a personalized exercise prescription combining MICT + HIIT in conjunction with resistance training elicited greater improvements in VO, MetS z-score reductions, and diminished inter-individual variation in VO and cardiometabolic training responses when compared to standardized MICT

    Connectivity of the American agricultural landscape: Assessing the national risk of crop pest and disease spread

    Get PDF
    Citation: Margosian, M., . . . With, K. (2009). Connectivity of the American Agricultural Landscape: Assessing the National Risk of Crop Pest and Disease Spread. Bioscience, 51, 141-151. https://doi.org/10.1525/bio.2009.59.2.7More than two-thirds of cropland in the United States is devoted to the production of just four crop species—maize, wheat, soybeans, and cotton—raising concerns that homogenization of the American agricultural landscape could facilitate widespread disease and pest outbreaks, compromising the national food supply. As a new component in national agricultural risk assessment, we employed a graph-theoretic approach to examine the connectivity of these crops across the United States. We used county crop acreage to evaluate the landscape resistance to transmission—the degree to which host availability limits spread in any given region—for pests or pathogens dependent on each crop. For organisms that can disperse under conditions of lower host availability, maize and soybean are highly connected at a national scale, compared with the more discrete regions of wheat and cotton production. Determining the scales at which connectivity becomes disrupted for organisms with different dispersal abilities may help target rapid-response regions and the development of strategic policies to enhance agricultural landscape heterogeneity

    Exoplanet Biosignatures: Future Directions

    Get PDF
    Abstract We introduce a Bayesian method for guiding future directions for detection of life on exoplanets. We describe empirical and theoretical work necessary to place constraints on the relevant likelihoods, including those emerging from better understanding stellar environment, planetary climate and geophysics, geochemical cycling, the universalities of physics and chemistry, the contingencies of evolutionary history, the properties of life as an emergent complex system, and the mechanisms driving the emergence of life. We provide examples for how the Bayesian formalism could guide future search strategies, including determining observations to prioritize or deciding between targeted searches or larger lower resolution surveys to generate ensemble statistics and address how a Bayesian methodology could constrain the prior probability of life with or without a positive detection. Key Words: Exoplanets—Biosignatures—Life detection—Bayesian analysis. Astrobiology 18, 779–824

    The O2/N2 Ratio and CO2 Airborne Southern Ocean (ORCAS) Study

    No full text
    The Southern Ocean plays a critical role in the global climate system by mediating atmosphere–ocean partitioning of heat and carbon dioxide. However, Earth system models are demonstrably deficient in the Southern Ocean, leading to large uncertainties in future air–sea CO2 flux projections under climate warming and incomplete interpretations of natural variability on interannual to geologic time scales. Here, we describe a recent aircraft observational campaign, the O2/N2 Ratio and CO2 Airborne Southern Ocean (ORCAS) study, which collected measurements over the Southern Ocean during January and February 2016. The primary research objective of the ORCAS campaign was to improve observational constraints on the seasonal exchange of atmospheric carbon dioxide and oxygen with the Southern Ocean. The campaign also included measurements of anthropogenic and marine biogenic reactive gases; high-resolution, hyperspectral ocean color imaging of the ocean surface; and microphysical data relevant for understanding and modeling cloud processes. In each of these components of the ORCAS project, the campaign has significantly expanded the amount of observational data available for this remote region. Ongoing research based on these observations will contribute to advancing our understanding of this climatically important system across a range of topics including carbon cycling, atmospheric chemistry and transport, and cloud physics. This article presents an overview of the scientific and methodological aspects of the ORCAS project and highlights early findings
    corecore