4,704 research outputs found

    Movement of Crop Transgenes into Wild Plants

    Get PDF
    Despite the great potential and increasing importance of other weed control options (Turner et al. 1992) and unwanted environmental side effects of some herbicides, herbicides constitute a very important means of weed control. The escape of herbicide resistance genes to wild, weedy plants could cause more severe weed problems, and presents a very real threat to the efficacy of herbicides as a weed control option. Therefore, management strategies that prevent, or reduce the likelihood and frequency of HRG escape through containment methods are advisable, as are mitigation plans in the event of HRG escape to wild plants

    Explicitly solvable cases of one-dimensional quantum chaos

    Get PDF
    We identify a set of quantum graphs with unique and precisely defined spectral properties called {\it regular quantum graphs}. Although chaotic in their classical limit with positive topological entropy, regular quantum graphs are explicitly solvable. The proof is constructive: we present exact periodic orbit expansions for individual energy levels, thus obtaining an analytical solution for the spectrum of regular quantum graphs that is complete, explicit and exact

    Kinks Dynamics in One-Dimensional Coupled Map Lattices

    Full text link
    We examine the problem of the dynamics of interfaces in a one-dimensional space-time discrete dynamical system. Two different regimes are studied : the non-propagating and the propagating one. In the first case, after proving the existence of such solutions, we show how they can be described using Taylor expansions. The second situation deals with the assumption of a travelling wave to follow the kink propagation. Then a comparison with the corresponding continuous model is proposed. We find that these methods are useful in simple dynamical situations but their application to complex dynamical behaviour is not yet understood.Comment: 17pages, LaTex,3 fig available on cpt.univ-mrs.fr directory pub/preprints/94/dynamical-systems/94-P.307

    Angle-dependent normalization of neutron-proton differential cross sections

    Get PDF
    Systematic errors in the database of npnp differential cross sections below 350 MeV are studied. By applying angle-dependent normalizations with the help of the energy-dependent Nijmegen partial-wave analysis PWA93 the χ2\chi^2-values of some seriously flawed data sets can be reduced significantly at the expense of a few degrees of freedom. It turns out that in these special cases the renormalized data sets can be made statistically acceptable such that they do not have to be discarded any longer in partial-wave analyses of the two-nucleon scattering data.Comment: 11 pages, 1 figure; expanded versio

    D-Branes and Fluxes in Supersymmetric Quantum Mechanics

    Full text link
    Type 0A string theory in the (2,4k) superconformal minimal model backgrounds, with background ZZ D-branes or R-R fluxes can be formulated non-perturbatively. The branes and fluxes have a description as threshold bound states in an associated one-dimensional quantum mechanics which has a supersymmetric structure, familiar from studies of the generalized KdV system. The relevant bound state wavefunctions in this problem have unusual asymptotics (they are not normalizable in general, and break supersymmetry) which are consistent with the underlying description in terms of open and closed string sectors. The overall organization of the physics is very pleasing: The physics of the closed strings in the background of branes or fluxes is captured by the generalized KdV system and non-perturbative string equations obtained by reduction of that system (the hierarchy of equations found by Dalley, Johnson, Morris and Watterstam). Meanwhile, the bound states wavefunctions, which describe the physics of the ZZ D-brane (or flux) background in interaction with probe FZZT D-branes, are captured by the generalized mKdV system, and non-perturbative string equations obtained by reduction of that system (the Painleve II hierachy found by Periwal and Shevitz in this context).Comment: 41 pages, LaTe

    Spectra of regular quantum graphs

    Get PDF
    We consider a class of simple quasi one-dimensional classically non-integrable systems which capture the essence of the periodic orbit structure of general hyperbolic nonintegrable dynamical systems. Their behavior is simple enough to allow a detailed investigation of both classical and quantum regimes. Despite their classical chaoticity, these systems exhibit a ``nonintegrable analog'' of the Einstein-Brillouin-Keller quantization formula which provides their spectra explicitly, state by state, by means of convergent periodic orbit expansions.Comment: 32 pages, 10 figure

    Effect of noise on coupled chaotic systems

    Get PDF
    Effect of noise in inducing order on various chaotically evolving systems is reviewed, with special emphasis on systems consisting of coupled chaotic elements. In many situations it is observed that the uncoupled elements when driven by identical noise, show synchronization phenomena where chaotic trajectories exponentially converge towards a single noisy trajectory, independent of the initial conditions. In a random neural network, with infinite range coupling, chaos is suppressed due to noise and the system evolves towards a fixed point. Spatiotemporal stochastic resonance phenomenon has been observed in a square array of coupled threshold devices where a temporal characteristic of the system resonates at a given noise strength. In a chaotically evolving coupled map lattice with logistic map as local dynamics and driven by identical noise at each site, we report that the number of structures (a structure is a group of neighbouring lattice sites for whom values of the variable follow certain predefined pattern) follow a power-law decay with the length of the structure. An interesting phenomenon, which we call stochastic coherence, is also reported in which the abundance and lifetimes of these structures show characteristic peaks at some intermediate noise strength.Comment: 21 page LaTeX file for text, 5 Postscript files for figure

    Epoxidation of Alkenes by Peracids:From Textbook Mechanisms to a Quantum Mechanically Derived Curly-Arrow Depiction

    Get PDF
    Using the intrinsic bond orbital (IBO) analysis based on accurate quantum mechanical calculations of the reaction path for the epoxidation of propene using peroxyacetic acid, we find that the four commonly used curly arrows for representing this reaction mechanism are insufficient and that seven curly arrows are required as a result of changes to sigma and pi bonding interactions, which are usually neglected in all textbook curly arrow representations. The IBO method provides a convenient quantitative method for deriving curly arrows in a rational manner rather than the normal ad hoc representations used ubiquitously in teaching organic chemistry

    A new derivation of Luscher F-term and fluctuations around the giant magnon

    Get PDF
    15 pages, no figures; v2: added assumption on diagonal scattering and a section on generalizations; v3: minor changes, version accepted for publication in JHEPIn this paper we give a new derivation of the generalized Luscher F-term formula from a summation over quadratic fluctuations around a given soliton. The result is very general providing that S-matrix is diagonal and is valid for arbitrary dispersion relation. We then apply this formalism to compute the leading finite size corrections to the giant magnon dispersion relation coming from quantum fluctuations.Peer reviewe

    Bridging from Intramuscular to Limb Perfusion Delivery of rAAV: Optimization in a Non-human Primate Study

    Get PDF
    Phase 1 and phase 2 gene therapy trials using intramuscular (IM) administration of a recombinant adeno-associated virus serotype 1 (rAAV1) for replacement of serum alpha-1 antitrypsin (AAT) deficiency have shown long-term (5-year) stable transgene expression at approximately 2% to 3% of therapeutic levels, arguing for the long-term viability of this approach to gene replacement of secreted serum protein deficiencies. However, achieving these levels required 100 IM injections to deliver 135 mL of vector, and further dose escalation is limited by the scalability of direct IM injection. To further advance the dose escalation, we sought to bridge the rAAV-AAT clinical development program to regional limb perfusion, comparing two methods previously established for gene therapy, peripheral venous limb perfusion (VLP) and an intra-arterial push and dwell (IAPD) using rAAV1 and rAAV8 in a non-human primate (rhesus macaque) study. The rhesus AAT transgene was used with a c-myc tag to enable quantification of transgene expression. 5 cohorts of animals were treated with rAAV1-IM, rAAV1-VLP, rAAV1-IAPD, rAAV8-VLP, and rAAV8-IAPD (n = 2-3), with a dose of 6 x 10(12) vg/kg. All methods were well tolerated clinically. Potency, as determined by serum levels of AAT, of rAAV1 by the VLP method was twice that observed with direct IM injection; 90 mug/mL with VLP versus 38 mug/mL with direct IM injection. There was an approximately 25-fold advantage in estimated vector genomes retained within the muscle tissue with VLP and a 5-fold improvement in the ratio of total vector genomes retained within muscle as compared with liver. The other methods were intermediate in the potency and retention of vector genomes. Examination of muscle enzyme (CK) levels indicated rAAV1-VLP to be equally safe as compared with IM injection, while the IAPD method showed significant CK elevation. Overall, rAAV1-VLP demonstrates higher potency per vector genome injected and a greater total vector retention within the muscle, as compared to IM injection, while enabling a much greater total dose to be delivered, with equivalent safety. These data provide the basis for continuation of the dose escalation of the rAAV1-AAT program in patients and bode well for rAAV-VLP as a platform for replacement of secreted proteins
    corecore