We consider a class of simple quasi one-dimensional classically
non-integrable systems which capture the essence of the periodic orbit
structure of general hyperbolic nonintegrable dynamical systems. Their behavior
is simple enough to allow a detailed investigation of both classical and
quantum regimes. Despite their classical chaoticity, these systems exhibit a
``nonintegrable analog'' of the Einstein-Brillouin-Keller quantization formula
which provides their spectra explicitly, state by state, by means of convergent
periodic orbit expansions.Comment: 32 pages, 10 figure