1,212 research outputs found

    Combining remotely sensed and other measurements for hydrologic areal averages

    Get PDF
    A method is described for combining measurements of hydrologic variables of various sampling geometries and measurement accuracies to produce an estimated mean areal value over a watershed and a measure of the accuracy of the mean areal value. The method provides a means to integrate measurements from conventional hydrological networks and remote sensing. The resulting areal averages can be used to enhance a wide variety of hydrological applications including basin modeling. The correlation area method assigns weights to each available measurement (point, line, or areal) based on the area of the basin most accurately represented by the measurement. The statistical characteristics of the accuracy of the various measurement technologies and of the random fields of the hydrologic variables used in the study (water equivalent of the snow cover and soil moisture) required to implement the method are discussed

    Strategies for using remotely sensed data in hydrologic models

    Get PDF
    Present and planned remote sensing capabilities were evaluated. The usefulness of six remote sensing capabilities (soil moisture, land cover, impervious area, areal extent of snow cover, areal extent of frozen ground, and water equivalent of the snow cover) with seven hydrologic models (API, CREAMS, NWSRFS, STORM, STANFORD, SSARR, and NWSRFS Snowmelt) were reviewed. The results indicate remote sensing information has only limited value for use with the hydrologic models in their present form. With minor modifications to the models the usefulness would be enhanced. Specific recommendations are made for incorporating snow covered area measurements in the NWSRFS Snowmelt model. Recommendations are also made for incorporating soil moisture measurements in NWSRFS. Suggestions are made for incorporating snow covered area, soil moisture, and others in STORM and SSARR. General characteristics of a hydrologic model needed to make maximum use of remotely sensed data are discussed. Suggested goals for improvements in remote sensing for use in models are also established

    May - Day Schottische

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-ps/1754/thumbnail.jp

    Diffusion Coefficients over Rough and Smooth Boundaries, obtained by Measuring the Concentration-Velocity Covariance

    Get PDF
    A preliminary investigation of the coefficients of turbulent diffusion in an open channel was conducted by employing: 1) hot-film anemometry to detect the velocity fluctuation, 2) a platinized single-electrode conductivity probe to detect the concentration fluctuations, and 3) a digital computing system to evaluate the covariance and other statistical properties of the two output signals. Data were collected downstream of a constant-discharge point source of neutrally-bouyant salt solution at stream temperature and velocity. Using current semi-empirical methods diffusion coefficients were obtained in the vertical and lateral directions as well as dispersion coefficients due to convection

    Massa\u27s Sleeping In The Churchyard

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/6056/thumbnail.jp

    Performance of Altriset (TM) (Chlorantraniliprole) Termiticide Against Formosan Subterranean Termites, Coptotermes formosanus Shiraki, in Laboratory Feeding Cessation and Collateral Transfer Trials, and Field Applications

    Get PDF
    Chlorantraniliprole represents the first compound to be registered as a termiticide by the Environmental Protection Agency (EPA) in over a decade. This novel termiticide is currently registered as a 'reduced-risk pesticide' by the EPA. Laboratory and field trials were conducted to quantify mortality of Formosan subterranean termites (FST), Coptotermes formosanus Shiraki resulting from chlorantraniliprole treated soil, the degree to which the termites curtail feeding intensity post-exposure to chlorantraniliprole treated soil, collateral transfer of chlorantraniliprole among nest mates, and the effectiveness of chlorantraniliprole as a remedial treatment against structural infestations of HT. Termites which were exposed to chlorantraniliprole treated soil consumed significantly less paper than unexposed FST. The mean percent mortality of those termites exposed to chlorantraniliprole treated soil was significantly greater than that of unexposed FST. Depending on donor:recipient ratios, the mean mortality of recipients ranged from 14.65 - 90.00 % in the collateral transfer trials. There was a positive correlation between increased donor density and recipient mortality. Through 24 mo post-treatment, 27.3% of the structures which were treated in field trials were observed to have infestations of termites that required re-treatment; however, no FST were observed during the 30 and 36 month post-treatment inspections. Additionally, a novel scoring rubric was developed that will allow standardization of field study sites with respect to dissimilarity in site variables, and will allow for more consistent comparison of results across disparate field experiments. An explanation for the lack of successful remediation of many of the structures involved in the field trial is proposed and is based on our novel scoring system

    Enhanced, Fast-running Scaling Law Model of Thermal Blooming and Turbulence Effects on High Energy Laser Propagation

    Get PDF
    A new scaling law model is presented to rapidly simulate thermal blooming and turbulence effects on high energy laser propagation, producing results approaching the quality normally only available using wave-optics code, but at much faster speed. The model convolves irradiance patterns originating from two distinct scaling law models, one with a proficiency in thermal blooming effects and the other in turbulence. To underscore the power of the new model, results are verified for typical, realistic scenarios by direct comparison with wave optics simulation

    Estimating Turbulence Distribution over a Heterogeneous Path Using Time‐lapse Imagery from Dual Cameras

    Get PDF
    Knowledge of turbulence distribution along an experimental path can help in effective turbulence compensation and mitigation. Although scintillometers are traditionally used to measure the strength of turbulence, they provide a path-integrated measurement and have limited operational ranges. A technique to profile turbulence using time-lapse imagery of a distant target from spatially separated cameras is presented here. The method uses the turbulence induced differential motion between pairs of point features on a target, sensed at a single camera and between cameras to extract turbulence distribution along the path. The method is successfully demonstrated on a 511 m almost horizontal path going over half concrete and half grass. An array of Light-Emitting Diodes (LEDs) of non-uniform separation is imaged by a pair of cameras, and the extracted turbulence profiles are validated against measurements from 3D sonic anemometers placed along the path. A short-range experiment with a heat source to create local turbulence spike gives good results as well. Because the method is phase-based, it does not suffer from saturation issues and can potentially be applied over long ranges. Although in the present work, a cooperative target has been used, the technique can be used with non-cooperative targets. Application of the technique to images collected over slant paths with elevated targets can aid in understanding the altitude dependence of turbulence in the surface layer
    corecore