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Enhanced, fast-running scaling law model of 
thermal blooming and turbulence effects on high 

energy laser propagation 
Noah R. Van Zandt, Steven T. Fiorino,* and Kevin J. Keefer 

Department of Engineering Physics – Center for Directed Energy, Air Force Institute of Technology, 2950 Hobson 
Way, Wright-Patterson AFB, OH 45433-7756, USA 

*Steven.Fiorino@afit.edu 

Abstract: A new scaling law model is presented to rapidly simulate thermal 
blooming and turbulence effects on high energy laser propagation, 
producing results approaching the quality normally only available using 
wave-optics code, but at much faster speed. The model convolves irradiance 
patterns originating from two distinct scaling law models, one with a 
proficiency in thermal blooming effects and the other in turbulence. To 
underscore the power of the new model, results are verified for typical, 
realistic scenarios by direct comparison with wave optics simulation. 

©2013 Optical Society of America 

OCIS codes: (010.0010) Atmospheric and oceanic optics; (010.1300) Atmospheric 
propagation; (010.1330) Atmospheric turbulence; (010.7060) Turbulence. 
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1. Introduction 

The Directed Energy (DE) community has come to rely on fast-running scaling law codes to 
efficiently model high energy laser (HEL) propagation and beam control performance and to 
provide a first-order, broad-ranging assessment of a laser system and its concept of 
employment [1–4]. Furthermore, simulations using scaling laws are computationally fast 
enough to allow the inclusion of complex, but physically realistic, environmental effects 
which are often not part of wave optics studies. Thus, HEL scaling law codes are well-suited 
for size, weight, and power optimization or input to simulations of force-on-force 
engagements. Nevertheless, though often anchored in rigorous, first-principles wave optics 
code, scaling law algorithms have yet to exhibit the fidelity of the former, especially when 
simulating non-linear propagation effects such as those that arise through the interaction of 
thermal blooming and optical turbulence. Additionally, simple thermal blooming metrics such 
as distortion number and critical power have not shown direct correlation with wave optics 
irradiance patterns [5,6]. For these reasons and to enhance their utility, we explored the 
possibility of convolving the far-field irradiance patterns from optimized scaling-law 
models—each delivering outcomes comparable to wave optics simulation in certain 
regimes—retaining the advantage of speed while providing higher quality laser performance 
simulation. 

In this paper we describe our new, fast-calculating HEL scaling law model and its ability 
to capture the shape and displacement of a thermally-bloomed far-field irradiance pattern in 
the presence of turbulence. To verify improvements, we compare parametrics such as far-field 
irradiance and its centroid tilt produced by the new model with those parameters derived 
through implementation of traditional wave optics code for scenarios conducive to optical 
turbulence and thermal blooming effects. Further strengthening our conclusions, we applied 
the model to multiple scenarios, simulating both horizontal and oblique realistic engagement 
geometries. 

2. Approach: update existing end-to-end scaling law simulation using convolution 

The new HEL scaling law model described herein benefits from its simplicity and strengths of 
constituent parts. We convolve the far-field irradiance pattern calculated by the High Energy 
Laser End to End Operational Simulation (HELEEOS) with that of the recently released 
Adaptive Optical Compensation of Thermal Blooming (AOTB) model. HELEEOS, developed 
by the United States Air Force Institute of Technology (AFIT), is the beneficiary of AFIT’s 
Laser Environmental Effects Definition and Reference (LEEDR) model [7]. As such, 
HELEEOS is the first end-to-end directed energy propagation model to incorporate 
probabilistic, climatological data so as to develop temporally and spatially variable 
meteorological, aerosol, and turbulence profiles and in turn enable realistic evaluation of laser 
propagation, imaging, and adaptive-optics systems [8,9]. HELEEOS also uses an embedded 
toolbox, Scaling for High Energy Laser and Relay Engagement (SHARE), developed by 
MZA Associates [10]. The SHARE toolbox supports HELEEOS’ beam metrics and irradiance 
calculations through scaling law treatments of propagation and atmospheric beam control 
anchored and optimized through extensive empirical analysis using wave optics simulations. 
Though HELEEOS, via SHARE scaling laws, is capable of producing far-field irradiance 
patterns indicative of both optical turbulence and thermal blooming effects [11], comparison 
with standard wave optics output suggests strongest correlation when one selects HELEEOS 
to calculate only the turbulence effect. The simplified Gaussian form, g, of HELEEOS’ 
embedded SHARE scaling law for turbulence effects on the far-field irradiance is 

 ( ) ( )2 2 2 2, exp 0.5peak x yg x y E x yσ σ = − +   (1) 

where Epeak is the peak irradiance, x and y are the spatial dimensions, and σx and σy are the 
beam widths in their respective dimensions. When turbulence is the only distortion effect, σx 
and σy are equal in Eq. (1). Figure 1 compares a HELEEOS far-field irradiance pattern with 
that of the analytic output of wave optics code for a typical near-surface, oblique path laser 
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engagement capturing optical turbulence, but excluding thermal blooming effects. For 
reference, we used MZA Associates’ WaveTrainTM for our wave optics simulations presented 
throughout this paper [12]. The comparison is quite good by scaling law standards, albeit the 
HELEEOS pattern is perfectly gaussian, while that from wave optics is a bit more complex, 
showing irradiance beyond the 1/e2 point and slight inhomogeneities inherent in its Monte 
Carlo analysis. 

 

Fig. 1. Wave optics (a) and HELEEOS (b) far-field irradiance patterns for a 7.5 km slant path, 
air to surface engagement exclusive of thermal blooming effects. The center- to outer-most 
calibration rings about the central propagation axis in this and subsequent figures have 
arbitrarily sized diameters to represent the diffraction-limit, 5-cm and 10-cm, respectively. 
Note: HELEEOS’ Gaussian scaling law approximation matches wave optics very well. 

As its name implies, the AOTB model is an outgrowth of recent research tied to analytical 
evaluation of the stability of optical turbulence compensation in the presence of thermal 
blooming [13]. Like HELEEOS, this new scaling law model is also a fast-running semi-
analytical code, but does not rely on empirically-derived solutions or lookup tables derived 
from wave optics calculations. Rather, AOTB was developed solely from first-principles. 
Using the Rytov approximation to linearize the thermal blooming compensation equations 
[14], an AOTB strength lies in its speedy calculation of whole-beam thermal blooming 
merged with turbulence-induced fine-scale blooming effects in an effort to properly evaluate 
instabilities otherwise due to one’s compensation for such turbulence. With this objective in 
mind, the whole-beam thermal blooming solution is a direct output of the currently configured 
simulation, whereas “blurring” of such output due to interaction with turbulence has been 
reserved to future work. Nonetheless, Fig. 2 captures the superior correlation of the AOTB 
and wave optics codes’ whole-beam thermal blooming far-field patterns for our near-surface, 
oblique laser engagement. Of interest, both codes produce an irradiance pattern with a classic 
crescent-shape and displacement into the cooler, effective cross-beam airflow. Each was 
initialized with a realistic, LEEDR-generated atmosphere, which as we noted earlier, is also 
typically done when executing HELEEOS. Also note AOTB and the wave optics simulations 
were run with a zero random wind component along the path to give deterministic results. 
This approach avoids Monte Carlo analysis while remaining statistically identical to the more 
realistic case of a non-zero random wind component when stagnation zones are not present, as 
is always the case in this work. 
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Fig. 2. A comparison of wave optics (a) and AOTB (b) far-field irradiance patterns for the 7.5 
km slant path, air-to-surface engagement. Since the two methods model thermal blooming 
differently, the minor differences in the irradiance patterns are expected. 

Given each model’s current status of evolution and verification with wave-optics 
simulations (HELEEOS specializing in representative far-field irradiance patterns due to 
turbulence and AOTB configured to output advanced whole-beam thermal blooming 
solutions), we decided to convolve their respective irradiance patterns and compare with a 
wave-optics simulation of both thermal blooming and turbulence. By making use of the well-
known convolution theorem in Eq. (2) below, this operation can be performed in Fourier 
space, reducing computation time to an insignificant fraction of a second when run on a 
modern personal computer. 

 ( ) ( ){ } ( ){ } ( ){ }, , , ,g x y h x y g x y h x y⊗ =    (2) 

where g represents the turbulence blurred irradiance pattern (other blurring effects can also be 
included here) from HELEEOS and h the thermally bloomed irradiance pattern from AOTB. 
The output of the convolution is then given by 

 
( ) ( ) ( )

( ){ } ( )

2 2 2 2 2, , 2 exp 2

, exp 2

peak x y x x y y

x y x y

g x y h x y E f f

h x y j f x f y df df

π σ σ π σ σ

π

 ⊗ = − + 
 × + 




 (3) 

When we convolved HELEEOS turbulence-only [Fig. 1(b)] and AOTB thermal blooming-
only [Fig. 2(b)] irradiance patterns, it yielded a result [Fig. 3(b)] which correlates quite well 
with the output from first-principles wave optics simulation [Fig. 3(a)] of both thermal 
blooming and turbulence. Prior to development and implementation of this convolution step 
inside the HELEEOS update (hereafter referred to as HELEEOS – AOTB), legacy HELEEOS 
calculations for scenarios of thermal blooming and turbulence produced outcomes shown in 
Fig. 3(c). Clearly, HELEEOS – AOTB enables a better solution. The similarities between it 
and wave optics are dramatic, and the HELEEOS – AOTB output was generated in less than 
five seconds as compared to over two hours by way of wave-optics code. 
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Fig. 3. A comparison of wave optics (a), HELEEOS – AOTB (b), and pre-convolution, legacy 
HELEEOS (c) far-field patterns for 7.5 km slant path, air to surface laser engagement showing 
good correlation between HELEEOS – AOTB and wave optics. 

Additional run time comparisons are shown in Table 1. With a median reduction of 
99.9%, the HELEEOS – AOTB scaling law provides excellent time benefit over wave optics. 
Of note, our wave optics run times are based on a traditional split-step Fourier propagation 
approach running on a modern, high-end CPU. In recent years, faster wave optics approaches 
have been developed, such as Graphics Processing Unit (GPU) implementations and the 
harmonic-expansion technique [15,16]. These approaches offer about an order of magnitude 
reduction in run time but are still much slower than HELEEOS – AOTB. 

Table 1. Comparison of simulation run times using wave optics and HELEEOS – AOTB 
for realistic 5 km range scenarios. 

Scenario Turbulence 
(x HV 5/7) 

Wave Optics 
Run Time1 

(s)

HELEEOS –
AOTB Run Time 

(s)

Reduction2 (%) 

Air to 
Surface 0 3930 5.0 −99.87% 
Air to 

Surface 1 8500 4.8 −99.94% 
Surface to 

Surface 0 2490 5.2 −99.79% 
Surface to 

Surface 1 34800 5.3 −99.98% 
1Wave optics run times varied predominately due to changes in grid sizes to preserve accuracy as turbulence 
increased. 
2In all cases tested, HELEEOS – AOTB reduced run time by at least 99% with a median reduction of 99.9%. 

3. Verification using multiple laser engagement scenarios 

To verify fast and representative simulation of complex laser propagation phenomena and 
applicability to a broad range of realistic engagements, we applied the new HELEEOS – 
AOTB scaling law model to multiple high-power laser scenarios designed to encounter a 
variety of thermal blooming and turbulence combinations [5,17]. As such, the platform and 
target were located within or very close to the atmospheric boundary layer (generally the 
lowest 1500 m), while propagation paths were defined to be either horizontal or oblique, 
including surface to surface (S2S), surface to air (S2A), air to surface (A2S), and air to air 
(A2A). Using LEEDR, all cases implemented realistic atmospheric extinction profiles based 
on probabilistic climatology for a typical littoral site on a summer afternoon. Our laser was 
simulated to operate at approximately 1 μm and 60 kW. For a non-water absorbing 
wavelength, the primary absorption mechanism for inducing heating and thermal blooming is 
aerosol particulate absorption. We defined wind according to the Bufton profile from the 
north-east with surface velocity at 5 m/s. Furthermore, the optical turbulence profile for each 
engagement is scaled according to Hufnagel-Valley 5/7. Scenario specifics are presented in 
Table 2 below. 

As introduced in section 2, we chose to verify the strengths of HELEEOS – AOTB by 
benchmarking its calculated far-field irradiance pattern at the target relative to similar results 
obtained with wave-optics code. Prior to introducing these results we think it instructive to 
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show that the convolution step itself introduces little error. We convolved wave optics 
solutions for thermal blooming-only [Fig. 4(b)] and turbulence-only [Fig. 4(a)], which 
produced Fig. 4(c). 

Table 2. Scenarios1 used to verify convolved scaling law model technique. 

Scenario S2S S2A A2S A2A 

Platform altitude (m) 15 3 1524 1500 

Platform speed (m/s) 0 0 100 100 

Platform heading (deg) 0 0 0 45 

Target altitude (m) 15 1524 3 1500 

Target speed (m/s) 10 100 0 100 

Target heading (deg) 90 180 0 180 

Turbulence (x HV 5/7) 0.05 1 1 1 

Range (m) 5000 5000 7500 10000 
1Platform / target speeds and headings were selected to produce a variety of thermal blooming and optical turbulence 
combinations. The target starts due north of the platform. 

 

Fig. 4. Wave optics generated far-field irradiance patterns: turbulence-only effects (a); thermal 
blooming-only effects (b); their convolution (c); and turbulence and thermal blooming effects 
(d). The comparison of (c) and (d) shows the convolution step is able to reproduce total effects 
from constituent contributions quite well. 

Figure 4(d) represents the wave-optics solution for conditions of thermal blooming and 
turbulence. A comparison of Figs. 4(c) and 4(d) reveals the very small extent to which 
convolution itself introduces error. It is worthwhile to note in the limiting case when both 
aberrations are small and thus both input patterns are nearly Gaussian, the output of 
convolution will be exactly correct if diffraction effects are included in only one of the inputs, 
as the convolution of two Gaussians is easily shown to be another Gaussian with squared 
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beam width equal to the summed squares of the input beam widths: 2 2 2
1 2σ σ σ= + . Since 

diffraction effects are present in both inputs (i.e. the irradiance patterns shown in Figs. 4(a) 
and 4(b)) to the above convolution, the convolved spot shown here indicates additional 
blurring due to the double counting of diffraction. In practice, this double counting will not be 
present when scaling law outputs are used as inputs, one of which will artificially neglect 
diffraction. 

Now, we compare the far-field irradiance profiles for our extended set of scenarios 
presented in Fig. 5 below. In all cases and as anticipated, the far-field irradiance patterns—
spots—are bloomed into the effective wind, which blows from varying direction in each 
geometry due to the relative motion of the platform and target and the natural wind direction. 
The irradiance profiles generated by HELEEOS – AOTB and those by wave optics compare 
relatively well in all cases. The spots do not compare perfectly, as all scaling law methods are 
only an approximation of more detailed treatment of the underlying electro-magnetic and 
thermodynamic processes, which are more fully captured by wave optics. In general, we also 
observe HELEEOS – AOTB is a slightly more conservative estimate of performance than 
wave optics, a characteristic common to many scaling law models. 

Having presented our general, qualitative comparison of relative spot size and shape, we 
move now to a quantitative assessment of relative power-in-the-bucket (PIB), peak irradiance, 
and centroid tilt. The most common metric for analyzing high-energy laser system 
performance is PIB, which is simply the power hitting a circular bucket of arbitrary diameter, 
situated at the laser aimpoint on the target. A beam which is severely distorted and tilted off-
axis will likely result in reduced PIB. Another common metric is peak irradiance at the target, 
which obviously is diminished as turbulence and thermal blooming effects increase. Finally, 
we chose to compare the tilt of the far-field spot’s centroid from the optical axis, which is 
another measure of the impact of combined thermal blooming and turbulence effect. In each 
case, the ideal situation is comparable values for the far-field propagation pattern whether 
calculated by the HELEEOS – AOTB scaling law model or wave-optics. That said, we 
remind the reader that we are convolving the outputs from two scaling law models, and as 
such, one should not expect exact agreement with wave optics. 

A comparison of these three metrics, as derived by wave optics and HELEEOS – AOTB, 
for the four representative scenarios are shown in Tables 3 (PIB) and 4 (peak irradiance and 
tilt). First, looking at 10 cm PIB (less stringent than 5 cm PIB), the errors are within +/− 25% 
for all engagements except S2S, where HELEEOS – AOTB is pessimistic by over 30%. Even 
this error should be considered moderate for a scaling law, but an explanation will be given 
shortly. Moving to the 5 cm bucket size, errors are small except for the S2S case. Peak 
irradiance comparisons once again show considerable discrepancy for the S2S engagement, 
but the HELEEOS – AOTB outcomes are again generally pessimistic, which is desirable for 
such a model. Finally, looking at centroid tilt, results can be considered to compare quite well 
with errors always falling in the range of 0% to + 50%. 
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Fig. 5. The irradiance profiles for the wave optics (a-d) and HELEEOS – AOTB (e-h) results 
with S2S, S2A, A2S, and A2A scenario pairs presented top to bottom, respectively. The 
general shapes of the spots in each row match well. 
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Table 3. PIB values from wave optics and HELEEOS – AOTB for 5 and 10 cm diameter 
buckets and all four scenarios. The error column compares the scaling law to wave optics, 

which is considered truth. 

 5 cm PIB (W) 10 cm PIB* (W) 

 Wave Optics HELEEOS –
AOTB

Error Wave Optics HELEEOS – 
AOTB 

Error 

S2A 5.89E + 03 6.20E + 03 5.2% 1.28E + 04 1.56E + 04 21.8% 

A2S 2.15E + 03 2.08E + 03 −3.3% 7.64E + 03 7.55E + 03 −1.2% 

S2S 5.19E + 03 2.50E + 03 −51.9% 2.87E + 04 1.94E + 04 −32.6% 

A2A 1.99E + 03 2.10E + 03 5.6% 3.41E + 03 3.95E + 03 15.9% 

*This bucket size, often the most relevant in calculation of effect on tactical targets, shows low error. 

Table 4. A comparison of peak irradiance and centroid tilt values between wave optics 
and the proposed scaling law model. 

 Peak Irradiance (W/m2) Centroid Tilt (rad) 

 Wave Optics HELEEOS –
AOTB

Error Wave Optics HELEEOS – 
AOTB 

Error 

S2A 4.70E + 06 5.33E + 06 13.4% 2.53E-06 3.60E-06 42.4% 

A2S 2.73E + 06 2.71E + 06 −0.6% 2.79E-06 3.07E-06 10.0% 

S2S 1.80E + 07 9.47E + 06 −47.4% 5.56E-06 6.63E-06 19.2% 

A2A 1.67E + 06 1.62E + 06 −3.3% 7.31E-07 8.74E-07 19.6% 

We have noted HELEEOS – AOTB was relatively more pessimistic for S2S PIB 
calculations. Though this partly may be due to the HELEEOS – AOTB convolution step’s 
inherent inability to fully treat the concurrent interaction of turbulence-induced beam spread 
and heating effects giving rise to thermal blooming, we also attribute this to the underlying 
AOTB scaling law, which tends to become more conservative as thermal blooming increases 
[13]. The S2S scenario experienced the highest levels of blooming because the engagement’s 
propagation path fell outside of the mitigating influence of high levels of aerosol scatter, 
which dissipates beam irradiance and counters atmospheric heating. The propagation paths 
associated with the other geometries passed through the high scattering elevated aerosol layer, 
thus diminishing thermal blooming. Furthermore, the effective cross (clearing) winds were 
smaller for the S2S scenario as compared to the other scenarios, thus setting conditions for 
relatively high localized heating and thermal blooming. In fact for the S2S scenario, we found 
AOTB alone introduced approximately 80% of the peak irradiance error noted in Table 4 and 
90% of the 10 cm PIB error shown in Table 3. In summary, the HELEEOS – AOTB model 
generally errs on the conservative side, which is the preferred error end-state for scaling laws. 

4. Conclusion 

This paper presented a new HEL scaling law model for fast, enhanced modeling of combined 
thermal blooming and turbulence effects on high energy laser propagation. The new model 
utilizes two previously developed scaling laws for DE propagation, one providing the far-field 
results showing turbulence effects and the other for whole-beam thermal blooming. By 
convolving the outputs of the two scaling law codes, our results—comparable to those of 
high-fidelity wave optics simulation both in far-field irradiance displacement and (crescent-
shaped) distortion—can be achieved in a small fraction of the time. Such results are of 
immense utility for HEL evaluations requiring irradiance pattern information either quickly or 
for large sets of conditions, such as force-on-force engagements or broad-ranging HEL 
weapon effectiveness research. While the results presented here have been limited to the 
HELEEOS – AOTB pair, this convolution step should be generally applicable to any pair of 
scaling law models, with one component specializing in effects distinct from the other. For 
example, the method could be applied to the High Energy Laser Consolidated Modeling 
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Engagement Simulation (HELCOMES) – AOTB pair to mesh AOTB’s thermal blooming 
modeling with HELCOMES. 

Future research will expand upon HELEEOS – AOTB’s capabilities by accounting for the 
mitigation of thermal blooming by turbulence beam spread and by investigating and 
incorporating the effect of a random wind component on engagements in which stagnation 
zones are created along the path. Regarding mitigation of blooming by turbulence, additional 
AOTB capabilities beyond those demonstrated in this paper may serve toward that end, 
particularly AOTB’s modeling of adaptive optical compensation of thermal blooming in the 
presence of turbulence. Such an improvement would reduce the method’s pessimism in 
situations when such an effect is significant. 
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