74 research outputs found

    Subgenual Cingulum Microstructure Supports Control of Emotional Conflict

    Get PDF
    This is the final version of the article. Available from Oxford University Press via the DOI in this record.Major depressive disorder (MDD) is associated with specific difficulties in attentional disengagement from negatively valenced material. Diffusion MRI studies have demonstrated altered white matter microstructure in the subgenual cingulum bundle (CB) in individuals with MDD, though the functional significance of these alterations has not been examined formally. This study explored whether individual differences in selective attention to negatively valenced stimuli are related to interindividual differences in subgenual CB microstructure. Forty-six individuals (21 with remitted MDD, 25 never depressed) completed an emotional Stroop task, using happy and angry distractor faces overlaid by pleasant or unpleasant target words and a control gender-based Stroop task. CBs were reconstructed in 38 individuals using diffusion-weighted imaging and tractography, and mean fractional anisotropy (FA) computed for the subgenual, retrosplenial, and parahippocampal subdivisions. No significant correlations were found between FA and performance in the control gender-based Stroop task in any CB region. However, the degree of interference produced by angry face distractors on time to identify pleasant words (emotional conflict) correlated selectively with FA in the subgenual CB (r= -0.53;P= 0.01). Higher FA was associated with reduced interference, irrespective of a diagnosis of MDD, suggesting that subgenual CB microstructure is functionally relevant for regulating attentional bias toward negative interpersonal stimuli.P.A.K. was funded by the Higher Education Funding Council for Wales (HEFCW) and an Academy of Medical Sciences and Wellcome Trust Starter Grant (AJ17102004). M.M. received an EPSRC Doctoral Training Grant. This work was also supported by a Marie Curie fellowship to Marcel Meyer and received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 267171. D.K.J. was funded by HEFCW and received grants from the MS Society, a Wellcome Trust New Investigator Award, a Wellcome Trust Multi User Equipment Grant and Medical Research Council, and Wellcome Trust project grants. A.N.D. was supported by the Wellcome Trust PhD schemes. N.L. was funded by HEFCW. A.D.L. was funded by HEFCW. He also received grants from the ESRC, Wellcome Trust, and NISCHR. Funding to pay the Open Access publication charges for this article was provided by The Wellcome Trust

    The ventro-medial prefrontal cortex: a major link between the autonomic nervous system, regulation of emotion, and stress reactivity?

    Get PDF
    Recent progress in neuroscience revealed diverse regions of the CNS which moderate autonomic and affective responses. The ventro-medial prefrontal cortex (vmPFC) plays a key role in these regulations. There is evidence that vmPFC activity is associated with cardiovascular changes during a motor task that are mediated by parasympathetic activity. Moreover, vmPFC activity makes important contributions to regulations of affective and stressful situations

    Amygdala Atrophy and Its Functional Disconnection with the Cortico-Striatal-Pallidal-Thalamic Circuit in Major Depressive Disorder in Females

    Get PDF
    Background Major depressive disorder (MDD) is approximately twice as common in females than males. Furthermore, female patients with MDD tend to manifest comorbid anxiety. Few studies have explored the potential anatomical and functional brain changes associated with MDD in females. Therefore, the purpose of the present study was to investigate the anatomical and functional changes underlying MDD in females, especially within the context of comorbid anxiety. Methods In this study, we recruited antidepressant-free females with MDD (N = 35) and healthy female controls (HC; N = 23). The severity of depression and anxiety were evaluated by the Hamilton Depression Rating Scale (HAM-D) and the Hamilton Anxiety Rating Scale (HAM-A), respectively. Structural and resting-state functional images were acquired on a Siemens 3.0 Tesla scanner. We compared the structural volumetric differences between patients and HC with voxel-based morphometry (VBM) analyses. Seed-based voxel-wise correlative analyses were used to identify abnormal functional connectivity. Regions with structural deficits showed a significant correlation between gray matter (GM) volume and clinical variables that were selected as seeds. Furthermore, voxel-wise functional connectivity analyses were applied to identify the abnormal connectivity relevant to seed in the MDD group. Results Decreased GM volume in patients was observed in the insula, putamen, amygdala, lingual gyrus, and cerebellum. The right amygdala was selected as a seed to perform connectivity analyses, since its GM volume exhibited a significant correlation with the clinical anxiety scores. We detected regions with disrupted connectivity relevant to seed primarily within the cortico-striatal-pallidal-thalamic circuit. Conclusions Amygdaloid atrophy, as well as decreased functional connectivity between the amygdala and the cortico-striatal-pallidal-thalamic circuit, appears to play a role in female MDD, especially in relation to comorbid anxiety

    Changes in Prefrontal-Limbic Function in Major Depression after 15 Months of Long-Term Psychotherapy

    Get PDF
    Neuroimaging studies of depression have demonstrated treatment-specific changes involving the limbic system and regulatory regions in the prefrontal cortex. While these studies have examined the effect of short-term, interpersonal or cognitive-behavioural psychotherapy, the effect of long-term, psychodynamic intervention has never been assessed. Here, we investigated recurrently depressed (DSM-IV) unmedicated outpatients (N = 16) and control participants matched for sex, age, and education (N = 17) before and after 15 months of psychodynamic psychotherapy. Participants were scanned at two time points, during which presentations of attachment-related scenes with neutral descriptions alternated with descriptions containing personal core sentences previously extracted from an attachment interview. Outcome measure was the interaction of the signal difference between personal and neutral presentations with group and time, and its association with symptom improvement during therapy. Signal associated with processing personalized attachment material varied in patients from baseline to endpoint, but not in healthy controls. Patients showed a higher activation in the left anterior hippocampus/amygdala, subgenual cingulate, and medial prefrontal cortex before treatment and a reduction in these areas after 15 months. This reduction was associated with improvement in depressiveness specifically, and in the medial prefrontal cortex with symptom improvement more generally. This is the first study documenting neurobiological changes in circuits implicated in emotional reactivity and control after long-term psychodynamic psychotherapy

    Lithium and GSK3-β promoter gene variants influence white matter microstructure in bipolar disorder

    Get PDF
    Lithium is the mainstay for the treatment of bipolar disorder (BD) and inhibits glycogen synthase kinase 3-β (GSK3-β). The less active GSK3-β promoter gene variants have been associated with less detrimental clinical features of BD. GSK3-β gene variants and lithium can influence brain gray matter structure in psychiatric conditions. Diffusion tensor imaging (DTI) measures of white matter (WM) integrity showed widespred disruption of WM structure in BD. In a sample of 70 patients affected by a major depressive episode in course of BD, we investigated the effect of ongoing long-term lithium treatment and GSK3-β promoter rs334558 polymorphism on WM microstructure, using DTI and tract-based spatial statistics with threshold-free cluster enhancement. We report that the less active GSK3-β rs334558*C gene-promoter variants, and the long-term administration of the GSK3-β inhibitor lithium, were associated with increases of DTI measures of axial diffusivity (AD) in several WM fiber tracts, including corpus callosum, forceps major, anterior and posterior cingulum bundle (bilaterally including its hippocampal part), left superior and inferior longitudinal fasciculus, left inferior fronto-occipital fasciculus, left posterior thalamic radiation, bilateral superior and posterior corona radiata, and bilateral corticospinal tract. AD reflects the integrity of axons and myelin sheaths. We suggest that GSK3-β inhibition and lithium could counteract the detrimental influences of BD on WM structure, with specific benefits resulting from effects on specific WM tracts contributing to the functional integrity of the brain and involving interhemispheric, limbic, and large frontal, parietal, and fronto-occipital connections

    Microstructural Abnormalities in Subcortical Reward Circuitry of Subjects with Major Depressive Disorder

    Get PDF
    Previous studies of major depressive disorder (MDD) have focused on abnormalities in the prefrontal cortex and medial temporal regions. There has been little investigation in MDD of midbrain and subcortical regions central to reward/aversion function, such as the ventral tegmental area/substantia nigra (VTA/SN), and medial forebrain bundle (MFB).We investigated the microstructural integrity of this circuitry using diffusion tensor imaging (DTI) in 22 MDD subjects and compared them with 22 matched healthy control subjects. Fractional anisotropy (FA) values were increased in the right VT and reduced in dorsolateral prefrontal white matter in MDD subjects. Follow-up analysis suggested two distinct subgroups of MDD patients, which exhibited non-overlapping abnormalities in reward/aversion circuitry. The MDD subgroup with abnormal FA values in VT exhibited significantly greater trait anxiety than the subgroup with normal FA values in VT, but the subgroups did not differ in levels of anhedonia, sadness, or overall depression severity.These findings suggest that MDD may be associated with abnormal microstructure in brain reward/aversion regions, and that there may be at least two subtypes of microstructural abnormalities which each impact core symptoms of depression

    Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits

    Get PDF
    Background Over the last several years, it has become apparent that there are critical problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Hypotheses related to DA function are undergoing a substantial restructuring, such that the classic emphasis on hedonia and primary reward is giving way to diverse lines of research that focus on aspects of instrumental learning, reward prediction, incentive motivation, and behavioral activation. Objective The present review discusses dopaminergic involvement in behavioral activation and, in particular, emphasizes the effort-related functions of nucleus accumbens DA and associated forebrain circuitry. Results The effects of accumbens DA depletions on food-seeking behavior are critically dependent upon the work requirements of the task. Lever pressing schedules that have minimal work requirements are largely unaffected by accumbens DA depletions, whereas reinforcement schedules that have high work (e.g., ratio) requirements are substantially impaired by accumbens DA depletions. Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related decision making. Rats with accumbens DA depletions reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead, these rats select a less-effortful type of food-seeking behavior. Conclusions Along with prefrontal cortex and the amygdala, nucleus accumbens is a component of the brain circuitry regulating effort-related functions. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue, or anergia in depression

    Mourning and melancholia revisited: correspondences between principles of Freudian metapsychology and empirical findings in neuropsychiatry

    Get PDF
    Freud began his career as a neurologist studying the anatomy and physiology of the nervous system, but it was his later work in psychology that would secure his place in history. This paper draws attention to consistencies between physiological processes identified by modern clinical research and psychological processes described by Freud, with a special emphasis on his famous paper on depression entitled 'Mourning and melancholia'. Inspired by neuroimaging findings in depression and deep brain stimulation for treatment resistant depression, some preliminary physiological correlates are proposed for a number of key psychoanalytic processes. Specifically, activation of the subgenual cingulate is discussed in relation to repression and the default mode network is discussed in relation to the ego. If these correlates are found to be reliable, this may have implications for the manner in which psychoanalysis is viewed by the wider psychological and psychiatric communities
    • …
    corecore