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Abstract
Background Over the last several years, it has become
apparent that there are critical problems with the hypothesis
that brain dopamine (DA) systems, particularly in the
nucleus accumbens, directly mediate the rewarding or
primary motivational characteristics of natural stimuli such
as food. Hypotheses related to DA function are undergoing
a substantial restructuring, such that the classic emphasis on
hedonia and primary reward is giving way to diverse lines
of research that focus on aspects of instrumental learning,
reward prediction, incentive motivation, and behavioral
activation.
Objective The present review discusses dopaminergic in-
volvement in behavioral activation and, in particular,
emphasizes the effort-related functions of nucleus accum-
bens DA and associated forebrain circuitry.
Results The effects of accumbens DA depletions on food-
seeking behavior are critically dependent upon the work
requirements of the task. Lever pressing schedules that have
minimal work requirements are largely unaffected by
accumbens DA depletions, whereas reinforcement sched-
ules that have high work (e.g., ratio) requirements are sub-
stantially impaired by accumbens DA depletions. Moreover,
interference with accumbens DA transmission exerts a
powerful influence over effort-related decision making. Rats
with accumbens DA depletions reallocate their instrumental
behavior away from food-reinforced tasks that have high

response requirements, and instead, these rats select a less-
effortful type of food-seeking behavior.
Conclusions Along with prefrontal cortex and the amygda-
la, nucleus accumbens is a component of the brain circuitry
regulating effort-related functions. Studies of the brain
systems regulating effort-based processes may have impli-
cations for understanding drug abuse, as well as energy-
related disorders such as psychomotor slowing, fatigue, or
anergia in depression.
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Moving beyond the DA hypothesis of reward

Brain dopamine (DA) systems have been implicated in a
number of neurological and psychiatric disorders, including
Parkinson’s disease, schizophrenia, depression, and drug
addiction, and have been hypothesized to play an important
role in cognition, motivation, and movement control. But
among all the hypothesized functions of mesolimbic DA,
perhaps the most widely cited one is that DA mediates
“reward” processes. For the better part of three decades, it
has been suggested that DA systems in the brain,
particularly in nucleus accumbens, directly mediate the
rewarding or primary motivational characteristics of natural
stimuli such as food, water, and sex. In turn, it has been
argued that this so-called “natural reward system” is
activated by drugs of abuse, and that this activation is a
critical factor involved in the development of drug reward,
and ultimately, addiction. Within the last few years, it has
become evident that there are numerous problems with the
general form of the DA-reward hypothesis (Salamone et al.
1997, 2003, 2005, 2006; Kelley et al. 2005; Everitt and
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Robbins 2005; Robbins and Everitt 2007). Indeed, even the
proponents of this hypothesis have engaged in dramatic
revisions of its content. For example, although the original
hypothesis (e.g., Wise et al. 1978a,b; Wise 1982) empha-
sized the role that pleasure played in mediating the effects
of dopaminergic manipulations (hence the use of the term
“anhedonia”), it is becoming more common to place greater
emphasis on DA as regulating learning processes related to
reinforcement (e.g., Wise 2004). Nevertheless, the idea that
DA mediates pleasure has been seized upon by textbook
authors, the popular press, filmmakers, and the internet, all
of which has elevated DA from its hypothesized involve-
ment in reward to an almost mythological status as a
“pleasure chemical” mediating not only euphoria and
addiction, but also “love”. Yet despite the popular embrace
of DA as a pleasure chemical (e.g., Peterson 2005), the
actual science is far more complicated. In fact, it has been
argued that this area is currently undergoing something
reminiscent of a Kuhnian “paradigm shift” (Salamone
2007; see Kuhn 1962 for discussion of paradigm shifts in
science), such that the classic emphasis on hedonia and
primary reward is yielding to diverse lines of research that
focuses on aspects of instrumental learning, pavlovian/
instrumental interactions, reward prediction, incentive
salience, and behavioral activation.

The present paper will review some of the difficulties
with the DA hypothesis of reward, will briefly present some
of the alternative hypotheses, and will emphasize the
involvement of nucleus accumbens DA in behavioral
activation and effort-related processes. Of course, accum-
bens DA does not regulate effort-related functions in
isolation and the discussion below will include other
structures such as prefrontal cortex, amygdala, and ventral
pallidum. Studies of the brain systems regulating effort-
related processes have become more common in recent
years (e.g., Salamone et al. 2003; Rushworth et al. 2004;
Walton et al. 2006; Phillips et al. 2007), not only because of
the basic scientific importance of understanding activational
aspects of motivation, but also because of its potential
clinical relevance. This area of research may have implica-
tions for understanding phenomena related to natural
motivation, drug abuse, and energy-related disorders such
as psychomotor slowing, fatigue, or anergia in depression
(Salamone et al. 2006).

The DA hypothesis of reward: what is “reward”?

Although the terms “reinforcement” and “reward” are
sometimes used interchangeably, they also can convey
different meanings. The term reinforcement has been used
for years in many different contexts (e.g., engineering,
military) and generally refers to a process of “strengthen-

ing”. Although a Russian form of the word “reinforcement”
was used by Pavlov in reference to aspects of classical
conditioning, the origin of the modern behavioral term and
its widespread usage in relation to instrumental condition-
ing is more associated with Skinner (Dinsmoor 2004).
Reinforcement refers to behavioral contingencies that act to
strengthen a particular behavior. More specifically, positive
reinforcement refers to a process by which a response is
followed by the presentation of stimulus that typically is
contingent upon that response; these events are followed by
an increase in the probability of the occurrence of that
response in the future. When used in the Skinnerian sense,
the term reinforcement has no specific emotional or
motivational meaning. Rather, it refers to a set of conditions
that lead to changes in response probability or frequency.
Reinforcers also have been said to “stamp-in” the responses
with which they are associated, which is a fundamental
component of reinforcement that is related to learning.
Furthermore, reinforcers can act to maintain performance of
responses that have already been learned. Although Skinner
himself did not discuss the relation between reinforcement
and motivation in detail, researchers who have considered
the characteristics of stimuli that enable them to act as
reinforcers have generally come to emphasize that rein-
forcers have motivational properties (Salamone and Correa
2002). Thorndike, Hull, Spence, Premack, Timberlake, and
Dickinson, despite their different perspectives, all have
emphasized that there is a fundamental motivational com-
ponent to reinforcement processes (Dickinson and Balleine
1994; Salamone and Correa 2002). A positive reinforcer
can be described as a goal or, in economic terms, a com-
modity. Reinforcers are stimuli that are approached, self-
administered, attained, or preserved in some way; they are
activities that are relatively preferred or deprived compared
to baseline level. This fundamental motivational character-
istic of reinforcing stimuli is sometimes referred to as the
primary or “unconditioned” reinforcing property of those
stimuli (Nader et al. 1997; Stefurak and van der Kooy 1994).

Despite the fact that “reward” can be used as a synonym
for “positive reinforcer” when it refers to a stimulus, or
“positive reinforcement” when it refers to a process, the
term “reward” also has many additional connotations (see
Cannon and Bseikri 2004), the most common of which deal
with emotion and motivation (White 1989; Stellar 2001;
Everitt and Robbins 2005). Thus, the use of the term reward
can provide emphasis that positive reinforcers have emo-
tional effects (e.g., “subjective, attributional aspects”, Everitt
and Robbins 2005), such as feelings of pleasure. In
addition, reward can refer to the observation outlined above
that positive reinforcers also have appetitive motivational
characteristics (White 1989). Early papers describing the
DA hypothesis of reward emphasized these characteristics
in suggesting that interference with DA transmission
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produced “anhedonia” or appetitive motivational impair-
ments (Wise 1982, 1985; Wise et al. 1978a). Consistent
with this conceptualization of reward as based upon
primary or unconditioned motivation, researchers have
employed measures of consummatory behavior to study
the hypothesized effects of DA antagonists on “reward”,
including food intake (Wise and Colle 1984; Wise and
Raptis 1985) and sucrose intake (Xenakis and Sclafani
1982; Muscat and Willner 1989; Yu et al. 2000; see reviews
by Smith 1995, 2004). In discussing the hypothesized
reward functions of DA, many researchers have focused
upon emotional or hedonic aspects of motivation. Such
ideas have been particularly popular in the drug abuse and
self-administration literatures (e.g., Gardner 1992, 2005).

In summary, many researchers have emphasized the idea
that interference with DA transmission produces anhedonia
and impairs the primary motivational characteristics of
positive reinforcers. This perspective has been referred to as
the “General Anhedonia Model” (Salamone et al. 1997;
Salamone and Correa 2002). Moreover, terms such as
“reward” and “anhedonia” were used to convey a sense of
the hypothesized emotional and motivational impact of
interference with DA transmission. In view of these
observations, it is useful to review the literature related to
the concept that interference with DA transmission impairs
the pleasurable or primary motivational impact of natural
reinforcers such as food.

Empirical and conceptual problems with the DA
hypothesis of reward: reward as pleasure

Despite its popularity, the idea that interference with DA
systems causes “anhedonia” is highly controversial. For
example, studies of taste reactivity to food in animals have
been problematic for the general anhedonia model. Con-
siderable research with the taste reactivity paradigm has
demonstrated that interference with DA by systemic
administration of DA antagonists, whole forebrain DA
depletions, or local depletions of DA in nucleus accumbens
or neostriatum, failed to alter appetitive taste reactivity for
sucrose (Berridge et al. 1989; Berridge 2000; Berridge and
Robinson 1998; Treit and Berridge 1990). This has led
Berridge et al. to conclude that brain DA does not mediate
“liking” (i.e., the hedonic reaction to food). Nevertheless,
these authors have suggested that DA systems are involved in
“wanting” of natural and drug rewards (see Berridge 2007).

The involvement of DA systems in aspects of motivated
behavior is not limited to appetitive motivation or con-
ditions involving pleasure. Considerable evidence has
illustrated that DA systems also are involved in functions
related to aversive motivation (McCullough et al. 1993a,b;
Salamone 1994; Salamone et al. 1997; Killcross et al. 1997;

Di Chiara 2002; Huang and Hsiao 2002). Although it is
sometimes stated that increases in DA release are only
associated with appetitive stimuli but not aversive ones
(e.g., Burgdorf and Panksepp 2006), this contention is not
supported by the literature. Neurochemical measures of
accumbens DA transmission are elevated in response to
aversive conditions as diverse as footshock, tailshock,
tailpinch, restraint stress, instrumental avoidance, condi-
tioned aversive stimuli, anxiogenic drugs, and social stress
(Salamone 1994, 1996; McCullough et al. 1993a,b; Tidey
and Miczek 1996; Salamone et al. 1997; Datla et al. 2002;
Young 2004; Marinelli et al. 2005). Although the time
resolution of microdialysis methods makes it difficult to
establish specific relations between neurochemical changes
and transient environmental or behavioral events, several
investigators have used electrophysiological and voltam-
metric methods to obtain sub-second markers of phasic DA
activity. Researchers continue to debate the significance of
these phasic DA signals and how they are related to reward
prediction, novelty, reinforcer-seeking, or other functions
(Horvitz 2000; Schultz 2002; Ungless 2004; Roitman et al.
2004; Salamone et al. 2005; Lavin et al. 2005; Redgrave
and Gurney 2006; Lapish et al. 2007). Nevertheless,
electrophysiology studies in awake animals have shown
that putative ventral tegmental DA neurons show increased
activity in response to conditioned aversive stimuli
(Guarraci and Kapp 1999) and restraint stress (Anstrom
and Woodward 2005).

In humans, the role of DA as a mediator of pleasure
remains uncertain (Barrett 2006). Parkinson’s disease was
not found to be associated with alterations in the perceived
pleasantness of taste stimuli (Sienkiewicz-Jarosz et al.
2005). Although Gunne et al. (1972) reported that the
euphoric effects of amphetamine could be blocked by DA
antagonism, subsequent research has challenged this notion.
Gawin (1986) described cocaine users who received DA
antagonists; these patients actually reported continued
euphoria from cocaine and lengthened cocaine binges.
Brauer and De Wit (1997) reported that pimozide failed to
blunt amphetamine-stimulated euphoria. Wachtel et al.
(2002) observed that neither the typical antipsychotic
haloperidol nor the atypical antipsychotic risperidone sup-
pressed the positive subjective effects of methamphetamine.
The D1 antagonist ecopipam failed to blunt the self-
administration and subjective euphoria that were induced
by cocaine (Haney et al. 2001; Nann-Vernotica et al. 2001).
Thus, there is not a clear set of findings indicating that
antagonism of DA receptors blocks drug-induced euphoria
or “high” (Wachtel et al. 2002). Furthermore, a recent study
demonstrated that catecholamine depletion induced by
feeding people a phenylalanine/tyrosine-free diet did not
reduce cocaine-induced euphoria or self-administration
(Leyton et al. 2005). One also can question the importance
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of pleasure as a critical mediator of drug abuse (Wachtel et
al. 2002; Correa and Salamone 2006). Additional factors,
including strength of engagement, also appear to affect
reinforcement value (Higgins 2006).

Imaging methods have allowed for the in vivo assessment
of structure and activity in DA terminal areas in humans.
Several studies have focused upon emotional stimuli; as was
the case with the early animal literature, a common view has
become that accumbens activity as measured in imaging
studies is closely associated with pleasure (e.g., Peterson
2005; Keedwell et al. 2005; Sarchiapone et al. 2006).
However, within the last few years, it has become apparent
that nucleus accumbens in humans is related to a diverse
array of emotional and motivational stimuli (Barrett 2006).
Burgdorf and Panksepp (2006) suggested that ventral striatal
mechanisms are not related to “pleasure” or “consummatory
reward” in the traditional sense, but instead are related to
anticipatory or appetitive energizing effects of stimuli.
Knutson et al. (2001, 2003) reported that accumbens fMRI
activation was evident in people performing a gambling task,
but that the increased activity was associated with reward
prediction or anticipation rather than presentation of the
monetary reward per se. O’Doherty et al. (2002) observed
that anticipation of glucose delivery was associated with
increased fMRI activation in midbrain and striatal DA areas,
but that these areas did not respond to glucose delivery.
Anticipation of an aversive cutaneous stimulus also was
reported to be associated with fMRI activation of ventral
striatum (Jensen et al. 2003). Activation of accumbens fMRI
responses was related to emotional intensity for both positive
and aversive conditions (Phan et al. 2004). Vietnam veterans
with post-traumatic stress disorder showed increased blood
flow in the accumbens in response to the presentation of
aversive stimuli (i.e., combat sounds; Liberzon et al. 1999).
Aharon et al. (2006) observed that distinct subregions of the
accumbens undergo temporally dependent activation or
inhibition of fMRI signals in response to a painful thermal
stimulus, which could be related to the perception or
anticipation of the stressor. Although most imaging studies
do not deal directly with DA per se, a recent study used PET
measurements of in vivo raclopride displacement to assess
DA release in humans and observed that exposure to
psychosocial stress increased markers of extracellular DA
in the ventral striatum in a manner that was correlated with
increased cortisol release (Pruessner et al. 2004).

Empirical and conceptual problems with the DA
hypothesis of reward: reward as primary appetitive
motivation for natural stimuli

In addition to these problems with the hypothesis that DA
mediates the pleasurable impact of rewards, there also are

substantial difficulties with the notion that accumbens DA
mediates unconditioned reinforcement or primary motiva-
tion for natural stimuli such as food (Salamone et al. 1997;
Salamone and Correa 2002). Evidence indicating that
accumbens DA is important for drug self-administration
(e.g., Roberts et al. 1977; Caine and Koob 1994; Chevrette
et al. 2002) does not provide direct support for the
hypothesis that this system mediates the primary motiva-
tional effects of natural stimuli. The mesolimbic dopamine
system is thought to promote behavioral activation, arousal,
attention, conditioning, and other functions, and the drug-
related induction of these effects could lead to self-
administration but that does not necessarily mean that the
primary function of the system in relation to natural stimuli
is “reward” (Salamone et al. 2005; Everitt and Robbins
2005; Robbins and Everitt 2007). Indeed, activities such as
wheel running, exploration, and other forms of stimulation
can be reinforcing but involvement of DA in regulating
these activities, or others such as lever pressing, does not
demonstrate that DA mediates the rewarding impact of food
per se (Salamone et al. 1997). In fact, the hypothesized
involvement of accumbens DA in the primary motivating
effects of natural stimuli such as food (e.g., appetite for
food) is one of the keys to the general form of the DA
reward hypothesis (Salamone and Correa 2002) because it
is supposedly the DA-mediated natural “reward system”
that is being activated by drugs of abuse.

If low doses of DA antagonists suppress lever pressing
for food because they produce a broad or general reduction
in food motivation, then it is reasonable to suggest that
behavioral markers of diminished appetite or alterations of
perceived reward magnitude should be evident in the same
dose range as the suppression of lever pressing. In fact, DA
antagonists generally impair lever pressing for food at
doses lower than those that suppress food intake or simple
approach responses for food (Fibiger et al. 1976; Rolls et al.
1974; Rusk and Cooper 1994; Salamone 1986). Similar
effects have been reported for water reinforcement as well
(Horvitz et al. 1993; Ljungberg 1987, 1988, 1990). Low
doses of D2 antagonists such as haloperidol, which
substantially decrease lever pressing, actually tend to
increase meal size (Clifton 2000). Furthermore, several
reports indicate that doses of DA antagonists that impaired
response rate measures of behavior did not alter response
choice measures (Bowers et al. 1985; Cousins et al. 1996;
Evenden and Robbins 1983; Salamone 1986; Salamone et
al. 1994). Systemic injections of haloperidol at doses that
altered response bias or effort-related choice did not impair
discrimination of reinforcement density (Salamone et al.
1994; Aparicio 2003a,b). Instrumental responses with very
low response requirements are extremely resistant to
moderate/high doses of DA antagonists (Ettenberg et al.
1981; Salamone 1986), which demonstrates that the
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capacity to reinforce some types of instrumental behavior is
left intact despite severe impairments in lever pressing at
these same doses. Martin-Iverson et al. (1987) measured
operant responses in a psychophysical procedure and
reported that haloperidol did not reduce perceived rein-
forcement magnitude. Together with the evidence indicat-
ing that fundamental aspects of food motivation are left
intact after interference with accumbens DA transmission
(e.g., Kelley et al. 2005; Salamone and Correa 2002), these
data indicate that it is difficult to attribute the suppression
of lever pressing induced by low doses of DA antagonists
or accumbens DA depletions to changes in primary food
motivation or appetite (Salamone and Correa 2002; Kelley
et al. 2005). Rather, these manipulations appear to
dissociate aspects of primary food motivation from features
of instrumental responding for food1, leaving appetite
basically intact but instead impairing aspects of instrumen-
tal behavior such as response rate or speed (Salamone and
Correa 2002; Kelley et al. 2005).

DA antagonists suppress sucrose intake, which has been
suggested to provide support for the DA hypothesis of
reward (Smith 1995, 2004). Nevertheless, there are several
problems with this idea (Salamone and Correa 2002).
Although the frequency of tongue movements is only
marginally affected by DA antagonists, neuroleptic-induced
deficits in sucrose intake are accompanied by several other
oral motor impairments (i.e., changes in lick duration, force
and efficiency, lap volume, and tongue extension; Fowler
and Mortell 1992; Das and Fowler 1996). Effects on
sucrose drinking produced by DA antagonists have been
viewed as indicating a reduced effort for obtaining the
sucrose (Hsiao and Chen 1995) and as a lack of sensori-
motor responsiveness (Muscat and Willner 1989). Although
feeding is impaired by higher doses of DA antagonists,
there is little evidence that this reflects a loss of appetite,
and considerable evidence indicates that these deficits are
related to motor dysfunctions (Salamone et al. 1990;
Salamone and Correa 2002). The suppression of food
intake induced by high doses of DA antagonists is accom-
panied by a substantial decrease in rate or efficiency of
feeding (Blundell 1987; Salamone et al. 1990; Clifton et al.
1991; Clifton 2000), whereas other drugs that are thought
to affect appetite or food aversion, such as CB1 antagonists,
suppressed food intake but did not reduce feeding rate
(McLaughlin et al. 2005).

Accumbens DA depletions induced by local injections of
6-hydroxydopamine (6-OHDA) have been shown not to
suppress 24-h food intake (Koob et al. 1978; Salamone et
al. 1993a; Ungerstedt 1971) and failed to affect parameters
such as food handling, rate of feeding, or total time spent
feeding (Salamone et al. 1993a). Because time allocation
has been viewed as a critical behavioral marker of
reinforcement value (Baum and Rachlin 1969), these results
suggest that accumbens DA depletions do not blunt food
reinforcement. Intra-accumbens injections of DA antago-
nists at doses that impair locomotion and run speed were
shown not to affect feeding or sucrose intake (Bakshi and
Kelley 1991; Ikemoto and Panksepp 1996; Baldo et al.
2002). Although forebrain DA depletion severely impairs
feeding (Salamone et al. 1990), considerable evidence
indicates that this effect is not dependent upon DA
depletions in nucleus accumbens (Koob et al. 1978;
Salamone et al. 1993a). Instead, suppression of feeding is
produced by interference with DA transmission in neo-
striatum (Dunnett and Iversen 1982; Jicha and Salamone
1991; Salamone et al. 1993a; Sotak et al. 2005) and, in
particular, the lateral or ventrolateral subregion of striatum
(Dunnett and Iversen 1982; Jicha and Salamone 1991;
Salamone et al. 1993a; see also Pisa and Schranz 1988).
These deficits in feeding are related to orofacial and
forepaw motor deficits and reductions in feeding rate that
result from DA depletions in this region (Jicha and
Salamone 1991; Salamone et al. 1993a).

Although it was originally suggested that the effects of
interference with DA transmission resembled those of
extinction, several studies have failed to support this
hypothesis (Salamone 1986, 1988; McCullough et al.
1993a; Salamone et al. 1995, 1997; Salamone and Correa
2002; Rick et al. 2006). Furthermore, the effects of DA
antagonists and DA depletions differ substantially from the
effects of motivational manipulations such as pre-feeding to
reduce food motivation and administration of appetite
suppressant drugs. Salamone et al. (1990) reported that
the interference with DA transmission produced effects on
feeding rate and time spent feeding that were distinct from
the effects of pre-feeding. Using a concurrent lever
pressing/chow-feeding choice task (see details below), DA
antagonists and accumbens DA depletions have generally
produced effects that were different from those produced by
appetite suppressants and pre-feeding to reduce food
motivation (Salamone et al. 1991, 1997; Salamone and
Correa 2002; Cousins et al. 1993; Sokolowski and
Salamone 1998; Koch et al. 2000; Nowend et al. 2001).
Although depletions of accumbens DA can interfere with
instrumental behavior under some conditions, considerable
evidence indicates a relative sparing of performance on
some schedules of food reinforcement, including variable
ratio 2.5 (Roberts et al. 1977), fixed-interval (FI) 30 s

1 Several authors have made distinctions between aspects of
motivated behavior that are dissociated by dopaminergic manipu-
lations (e.g., activational vs directional, Salamone 1988; preparatory
vs consummatory, Blackburn et al. 1989; instrumental vs consumma-
tory, Salamone 1991; anticipatory vs consummatory, Ikemoto and
Panksepp 1996; Burgdorf and Panksepp 2006; ethanol seeking vs
ethanol intake, Czakowski et al. 2002; anticipatory vs hedonic,
Barbano and Cador 2007).
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(Cousins et al. 1999), and variable-interval (VI) 30, 60 or
120 s schedules (Sokolowski and Salamone 1998; Correa et
al. 2002; Mingote et al. 2005). Food-reinforced FR1
performance is relatively insensitive to the effects of
accumbens DA depletions (McCullough et al. 1993b;
Salamone et al. 1995; Aberman and Salamone 1999;
Ishiwari et al. 2004). The fact that positively reinforced
behavior on some schedules is not impaired by accumbens
DA depletion, or is affected only slightly, suggests that
maintenance of positively reinforced responding per se is
not the key process that is impaired by these depletions.
The FR 1 schedule is highly sensitive to extinction and to
reinforcer devaluations such as pre-feeding (Aberman and
Salamone 1999; Salamone et al. 1995); yet, this schedule is
relatively insensitive to accumbens DA depletions. Thus,
fundamental aspects of primary food reward remain intact
after depletions of accumbens DA. Although the present
review is focused upon the role of DA in food motivation,
similar conclusions have been reached in studies involving
sexual behavior (Hull et al. 1991; Paredes and Agmo 2004)
and maternal behavior (Numan et al. 2005; Pereira et al.
2005).

Moving beyond the reward hypothesis: mesolimbic DA,
reinforcement-related processes, and instrumental
learning

It has become evident that there are numerous problems
with the general form of the DA-reward hypothesis
(Salamone et al. 1997, 2003, 2005, 2006; Kelley et al.
2005). In fact, one of the ironies in this area has been that
the aspects of reinforcement that are most directly conveyed
by the use of the term “reward” (i.e., pleasure or primary
appetitive motivation) are the very aspects of motivated
behavior that are most preserved after interference with DA
transmission. For these reasons, and many others, this area
is currently undergoing a conceptual restructuring. The
traditional emphasis on dopaminergic involvement in
hedonia and primary reward is diminishing, as researchers
consider the diverse array of functions regulated by nucleus
accumbens (Wise 2004; Everitt and Robbins 2005; Kelley
et al. 2005; Salamone et al. 2005; Berridge 2007). Although
the focus of the present review is on the involvement of DA
in behavioral activation and effort, it is useful to place these
functions of DA into a theoretical context by briefly
reviewing the broader literature on the involvement of DA
in other processes related to reinforcement, such as
instrumental learning. Some researchers have come to de-
emphasize the role of pleasure as a substrate for the action
of DA and have instead come to emphasize dopaminergic
involvement in instrumental learning processes related to
reinforcement (e.g., Wise 2004). This reflects a recent trend

in the literature, in which researchers focus upon the
involvement of DA in learning processes related to the
acquisition of positively reinforced behavior (e.g., Smith-
Roe and Kelley 2000; Kelley 2004; Kelley et al. 2005;
Wise 2004; Choi et al. 2005). A thorough review of this
area is beyond the scope of the present paper, and there
continue to be disagreements about the specific mecha-
nisms underlying the effects of dopaminergic manipulations
on learning processes (e.g., Kelley et al. 2005; Wise 2004;
Robinson et al. 2005; Cagniard et al. 2006; Ahn and
Phillips 2007; Phillips et al. 2007; Berridge 2007).
Nevertheless, a few points need to be emphasized in the
context of the present paper. First of all, it is important to
recognize the distinction between studies of the involvement
of DA in learning and the traditional DA hypothesis of
reward. The idea that DA is involved in aspects of
instrumental learning is quite distinct from the hypothesis
that DA mediates the pleasurable or the primary motivation-
al properties of natural stimuli such as food (Salamone and
Correa 2002; Salamone et al. 2005; Everitt and Robbins
2005). This point has been highlighted in the work of
Kelley (e.g., Smith-Roe and Kelley 2000, 2004; Kelley et
al. 2005). Thus, the general hypothesis that DA systems are
involved in learning, or even the more specific hypothesis
that they are involved in the “stamping-in” processes that
underlie reinforcement acquisition, is not a mere extensions
of the DA hypothesis of “reward”. These are different
hypotheses altogether and should be recognized as such.

An additional line of research in this area has focused
upon the role of neostriatal mechanisms in learning. Striatal
neurons show long-term changes in activity that can be
correlated with changes in behavioral performance seen
during procedural learning (Barnes et al. 2005). Activity
patterns of striatal neurons were modified during the course
of stimulus–response learning, and it has been suggested
that the neostriatum acts to “chunk” the representations of
motor and cognitive processes so that they can be executed
as units (Graybiel 1998). Depletions of DA with MPTP
impaired the ability to initially learn sequences of move-
ments and implement them as single motor programs
(Matsumoto et al. 1999). Yet despite these studies demon-
strating the involvement of neostriatal mechanisms in
aspects of learning, it should be emphasized that they do
not provide support for the idea that these striatal
mechanisms are related specifically to the hedonic or
motivational impact of positive reinforcers on behavior.
For example, tonically active striatal neurons are activated
during aversive learning as well as reward-related learning
(Blazquez et al. 2002). In addition, studies involving
different types of memory procedures indicate that interfer-
ence with striatal function does not uniformly affect all
forms of reward-based learning. Inactivation of neostriatum
impaired acquisition on a response learning task but, unlike
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hippocampal inactivation, did not impair the acquisition of
the spatial working memory task (Packard and McGaugh
1996). Nevertheless, both forms of learning in this study
involved positive reinforcement. Thus, it seems clear that
the specific aspect of learning being disrupted by striatal
inactivation in these experiments was not the impact of a
positive reinforcer, per se.

Another important point is related to the selectivity
involved in the use of the term “reinforcement” in relation
to learning studies. The involvement of DA in instrumental
learning is not unique to procedures involving positive
reinforcement. An enormous literature, stretching back
several decades, details the involvement of DA systems in
the acquisition of tasks involving aversive motivation
(Salamone 1994; Santi and Parker 2001; Di Chiara 2002;
Huang and Hsiao 2002; Pezze and Feldon 2004; Li et al.
2004). This involvement relates not only to negatively
reinforced behavior, which is characterized by increases in
response probability, but also to procedures such as place
aversion, taste aversion, and passive avoidance, in which
behavior is suppressed by punishment. Moreover, nucleus
accumbens lesions have been shown to disrupt learning
about aversive outcomes (Schoenbaum and Setlow 2003).
Thus, the involvement of DA or striatal mechanisms in
learning processes is not strictly limited to situations
involving positive reinforcement. If researchers wish to
refer to the hypothesis that DA systems are involved in
aspects of learning, it seems as though the term “reinforce-
ment” only captures part of the story. The term “instru-
mental learning” may be preferable, partly because it
captures better the breadth of processes involved (that is,
it includes positive reinforcement, negative reinforcement,
and punishment), and also because it would do so without
evoking misleading notions about dopaminergic involve-
ment in “reward”.

Finally, it should be stressed that the hypothesized
involvement of mesolimbic DA in aspects of instrumental
learning is not incompatible with the literature demonstrat-
ing that this system is involved in behavioral activation and
effort-related processes (Kelley et al. 2005). It is doubtful
that accumbens DA performs only one function, and
evidence in favor of the hypothesis that DA is involved in
learning does not constitute evidence against the hypothesis
that DA is involved in behavioral activation.

Behavioral activation functions of nucleus accumbens
DA: an overview

Motivation is a term that refers to the behaviorally relevant
processes that enable organisms to regulate their external
and internal environment. Organisms behave in such a way
as to regulate the proximity or probability of wide array of

stimuli. Behavior is directed towards or away from
particular stimuli, as well as activities that involve interact-
ing with those stimuli; organisms seek some conditions and
avoid others, both in active and passive ways. In addition to
these “directional” aspects of motivation, it has been
recognized for many years that there are “activational”
aspects as well (Duffy 1963; Cofer and Appley 1964;
Salamone 1988). Motivated behavior is characterized by
vigor, persistence, and high levels of work output. The
concepts of “drive” and “incentive” offered by Hull et al.
(1991) and Spence (1956) emphasized that motivational
conditions can produce energizing effects on behavior.
Researchers who conducted early studies of the neural
basis of motivation and emotion emphasized the role that
arousal and “energy mobilization” played in these pro-
cesses (e.g., Lindsley 1951; Moruzzi and Magoun 1949;
Rubio-Chevannier et al. 1961). Cofer and Appley (1964)
posited the existence of an “anticipation–invigoration
mechanism,” which was activated by conditioned stimuli
and served to invigorate instrumental behavior. Collier and
Jennings (1969) emphasized how work requirements of a
task are an important determinant of instrumental behavior,
an idea that is consistent with “economic models” of
operant conditioning (Lea 1978; Hursh et al. 1988; Bickel
et al. 2000). Similar concepts also have been offered in the
ethnology literature. Animals foraging in the wild exert
considerable energy to obtain food or water, and optimal
foraging theory was proposed to account for the fact that
the amount of effort or time expended to obtain these
stimuli was an important determinant of behavioral choice
(Krebs 1977). Psychologists and psychiatrists also have
discussed the importance of behavioral activation processes
for various clinical syndromes. Psychomotor slowing,
anergia, and fatigue are important features of depression
and also can be associated with a variety of other psy-
chiatric or neurological conditions (Salamone et al. 2006).

For many years, the terms “arousal” and “activation”
were used to refer to a collection of processes that are now
viewed as distinct in terms of their mechanisms. Thus,
researchers in the 1950s–1960s generally grouped together
cortical activation as measured by the electroencephalo-
graph, sympathoadrenal activation, and the invigoration or
activation of motivated behavior, under umbrella terms
such as degree of excitation, energy mobilization, activa-
tion, and arousal (e.g., Bartoshuk 1971, p 831). As research
on each of these functions became more specialized, it
became evident that different physiological mechanisms
were involved in each distinct dimension of arousal, and
indeed the concept of “general arousal” began to slowly
disappear. Nevertheless, the concept of “behavioral arous-
al” or “behavioral activation”, and its neural basis, became
an important feature of behavioral neuroscience research in
the 1970s–1980s. Much of the attention in this era focused
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upon the role that forebrain DA systems played in
behavioral activation. Although several studies have impli-
cated neostriatal DA in behavioral activation (e.g., Neill
and Herndon 1978), the present review is focused upon the
role of nucleus accumbens DA in behavioral activation and
effort-related processes. One of the most frequently used
procedures for studying behavioral activation in rats is
locomotor activity. This response, readily measured in
rodents, has been used for decades to provide both an
index of a specific aspect of motor function as well as a
measure of behavioral activation that is related to motiva-
tion. Increased locomotor activity is one of the hallmarks of
psychomotor stimulants, and considerable attention has
focused upon the role that accumbens DA plays in
mediating the locomotor stimulant effects of such drugs.
The locomotion induced by low doses of amphetamine was
suppressed by intra-accumbens injections of haloperidol
(Pijnenburg et al. 1975) and by accumbens DA depletions
(Kelly et al. 1975). Microinjections of stimulants into the
nucleus accumbens increased locomotor activity (Delfs et
al. 1990). Nucleus accumbens DA also is involved in
sensorimotor gating functions related to behavioral activa-
tion (Swerdlow et al. 1990; Koob and Swerdlow 1988).

Exposing animals to scheduled non-contingent presen-
tation of reinforcers such as food can induce various
activities, including locomotion, drinking, licking, and
wheel-running (Falk 1971; Staddon and Simmelhag 1971;
Killeen 1975; Killeen et al. 1978; Lopez-Crespo et al.
2004). Considerable evidence indicates that mesolimbic
DA is involved in schedule-induced activity. Accumbens
DA depletions impair a variety of schedule-induced
activities, including drinking (Robbins and Koob 1980;
Wallace et al. 1983; Robbins et al. 1983; Mittleman et al.
1990) and wheel-running (Wallace et al. 1983). Schedule-
induced locomotion was blocked by haloperidol (Salamone
1988) and accumbens DA depletions (McCullough and
Salamone 1992). Schedule-induced behavior is accompa-
nied by increases in accumbens DA release as measured by
microdialysis (McCullough and Salamone 1992) and
voltammetry (Weissenborn et al. 1996). Together with
studies on dopaminergic involvement in stimulant-induced
and spontaneous locomotion, studies of schedule-induced
behavior provide critical support for the idea that accum-
bens DA is an important part of the brain circuitry involved
in behavioral activation. This is consistent with the idea that
the accumbens serves as an interface between limbic system
areas involved in emotion and motivation and components
of the motor system that regulate behavioral output
(Mogenson et al. 1980).

The notion that forebrain DA systems are involved in
behavioral activation has received widespread support from
a broad range of investigators (Robbins and Everitt 2007).
Moreover, several studies providing support for the

hypothesis that accumbens DA is involved in behavioral
activation also have yielded evidence against the hypothesis
that accumbens DA mediates primary food motivation.
Accumbens DA depletions that impaired spontaneous
locomotion failed to suppress food intake (Koob et al.
1978). Systemic haloperidol administration severely im-
paired schedule-induced locomotor activity, yet did not
disrupt the food-reinforced behavior of simply being in a
particular location on a FI schedule (Salamone 1986). D1
and D2 antagonists injected into either core or shell
subregions of accumbens suppressed locomotor activity
but did not impair food intake (Baldo et al. 2002). These
studies demonstrate that the effects of dopaminergic
manipulations on indices of behavioral activation in food-
related tasks are not simply dependent upon changes in
primary food motivation or appetite. Instead, the prepon-
derance of evidence suggests that these experiments serve
to dissociate dopaminergic involvement in behavioral
activation from processes mediating primary food motiva-
tion or appetite (Salamone 1988, 1992; Salamone et al.
1997, 2003; Kelley et al. 2005).

Nucleus accumbens DA and the exertion of effort

As noted above, interference with DA transmission can
have selective effects on motivated behavior, impairing
some processes, whereas sparing others. Consistent with
this, it has been suggested that interference with DA
transmission impairs activational aspects of food motivation
but leaves intact directional aspects (Salamone 1988, 1997,
1992; Barbano and Cador 2006). This idea is not only
related to locomotion or schedule-induced activity but is
also highly relevant for food-reinforced instrumental
behaviors. Instrumental behaviors can be characterized by
a high degree of vigor, persistence, or effort. This
characteristic of behavior has enormous adaptive signifi-
cance because it enables organisms to overcome obstacles
or work-related response costs that separate them from
significant stimuli. A substantial body of evidence indicates
that mesolimbic DA is involved in regulating work-related
functions. Food-motivated tasks that have minimal re-
sponse requirements tend to be relatively insensitive to the
interference with DA transmission, whereas tasks that
involve greater response costs, such as operant conditioning
schedules with high ratio requirements, tend to be more
sensitive to DA manipulations.

Early studies showed that doses of DA antagonists that
impaired lever pressing had little effect on reinforced
nose-poking behavior (Ettenberg et al. 1981) or on the
response of simply being in proximity to the food dish on
an interval schedule (Salamone 1986), which suggests
that the effects of DA antagonism interacts with the
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kinetic requirements of the instrumental response. Caul
and Brindle (2001) demonstrated that the effects of
haloperidol on food-reinforced behavior were dependent
upon which operant schedule was used (i.e., FR1 vs
progressive ratio). The effects of accumbens DA depletions
also depend greatly upon the ratio requirement of the
schedule being used. Ishiwari et al. (2004) reported that
accumbens DA depletions that substantially impaired lever
pressing on a fixed ratio of 5 (FR5) schedule had no
significant effect on FR1 performance. Aberman and
Salamone (1999) studied the effects of accumbens DA
depletions across a wide range of ratio schedules (FR1, 4,
16, and 64) and observed that ratio requirement was an
important determinant of the effects of DA depletions
(that is, responding on FR16 and FR64 schedules was
severely impaired; Fig. 1a). A similar pattern was observed
when rats were tested across a range of ratio schedules as
high as FR300 (i.e., FR5 to FR300), even when the
macroscopic density of food delivered per lever press was
kept constant (Salamone et al. 2001). Although it is
generally observed that there is recovery of behavioral
function after DA depletions (Zigmond et al. 1984;
Salamone et al. 1990; Correa et al. 2002), this effect also
appears to depend upon the ratio requirement; although
responding on FR4 or FR5 schedules exhibited rapid
recovery (i.e., 1–2 weeks) after DA depletions (Aberman
and Salamone 1999; Salamone et al. 1993a,b; Ishiwari et al.
2004), and responding on FR16 and FR64 schedules
showed a more persistent deficit (Aberman and Salamone
1999). Thus, the magnitude of the ratio requirement appears
to be a critical determinant of sensitivity to the effects of
accumbens DA depletions.

An important consideration in interpreting these studies
is that factors other than work requirements also could
contribute to the differential task sensitivity shown by
animals with DA depletions. Although baseline response
rate contributes to the response slowing shown by DA-
depleted animals responding on some schedules (Salamone
et al. 1999, 2003, 2006), this does not appear to be the
primary determinant of the ‘crashing’ or ‘ratio strain’
shown by DA-depleted rats when ratios are very high
(Salamone et al. 2001). Another possible factor is time
(Cardinal et al. 2000; Salamone et al. 2001). It takes more
time to complete a schedule with a higher ratio requirement
than one with a lower requirement, and thus, it is possible
that the intermittence of a schedule (i.e., long time periods
without reinforcement) could be a determinant of the
schedule dependency shown by animals with accumbens
DA depletions or DA antagonism. Some studies have
compared the effects of accumbens DA depletions on the
performance of regular VI schedules and VI schedules that
have additional ratio requirements attached (i.e., tandem VI/
FR schedules). In this way, one can assess the effects of DA

Fig. 1 a Effects of accumbens DA depletions on lever pressing
across schedules with different ratio requirements. Mean (±SEM)
number of lever presses across a 30-min session is shown (data are
from Aberman and Salamone 1999). Nucleus accumbens DA
depletions reduced the maximal rate of responding (thick broken line,
MAX) and also produced “ratio strain” (arrow); that is, they altered
the relation between ratio level and response output and made animals
much more sensitive to schedules with high ratio requirements.
Overall, nucleus accumbens DA depletions have been described as
having two major actions on ratio performance: they blunt the
response activating effects of low-to-moderate ratio requirements,
and they enhance the response suppressing effects of high ratio
requirements (Salamone and Correa 2002). As observed in the original
Aberman and Salamone (1999) paper, in economic terms, nucleus
accumbens DA depletions reduce the elasticity of demand for food.
b Although nucleus accumbens DA depletions slow responding,
induce ratio strain, and alter elasticity of demand for food, they do not
do so in a way that closely resembles the effects of reinforcer
devaluations such as pre-feeding to food motivation. This panel
compares the results of the DA depletion experiment shown in Fig. 2a
with the results of a parallel experiment in which rats were pre-fed to
reduce food motivation (data from Aberman and Salamone 1999). In
Fig. 2b, data from both experiments are expressed as percent of
control responding. It can be seen that the pattern of effects produced
by accumbens DA depletions differ markedly from the effects
produced by pre-feeding
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depletions on schedules with different ratio requirements
that nevertheless have the same time requirements. Accum-
bens DA depletions impaired responding on a VI 30-s
schedule that had a FR5 component attached (i.e., a tandem
VI 30-s/FR5 schedule) but did not affect lever pressing on a
comparable VI 30-s schedule (Correa et al. 2002). Mingote
et al. (2005) investigated a group of tandem VI/FR
schedules that had larger ratio requirements and spanned a
larger range of time intervals (i.e., VI 60 s vs VI 60 s/FR10,
and VI 120 s vs VI 120 s/FR10). Accumbens DA
depletions did not significantly affect VI 60 or 120 s
performance when no added ratio was attached but did
suppress response rate on the two tandem schedules that
had FR10 requirements added (Mingote et al. 2005). There
were signs of response slowing (i.e., reductions in short
inter-response times) and also response fragmentation (i.e.,
increases in the number of pauses) in DA-depleted rats.
Taken together, these studies demonstrate that ratio require-
ments, over and above any effect of time requirements,
make rats sensitive to the effects of accumbens DA
depletions. This observation is consistent with recent
reports showing that responding on a progressive interval
schedule was not impaired by intra-accumbens injections of
DA antagonists (Wakabayashi et al. 2004) and that delay
discounting was not affected by accumbens DA depletions
(Winstanley et al. 2005).

To summarize, the imposition of a ratio requirement
presents a significant obstacle to animals with impaired DA
transmission in the accumbens. This clearly identifies at
least one dimension of work output and effort expenditure
that is highly dependent upon accumbens DA function.
Other aspects of work, such as overcoming weight or force
requirements, may involve less dependence upon DA
transmission (Ishiwari et al. 2004; Fowler et al. 1986).
Factors such as density of reinforcement and time require-
ments, although important determinants of instrumental
behavior, cannot easily explain why animals with accum-
bens DA depletions are so sensitive to schedules with high
ratio requirements. In addition, the effects of accumbens
DA depletions on ratio schedules do not appear to be
dependent upon changes in appetite or primary food
motivation. Although the FR1 schedule is sensitive to
extinction and reinforcer devaluations such as pre-feeding
to reduce food motivation, this schedule is relatively
insensitive to the effects of accumbens DA depletions
(Aberman and Salamone 1999; Ishiwari et al. 2004). More-
over, the effects of pre-feeding on operant performance
across a range of ratio schedules are distinct from the
effects of DA depletions on ratio performance (Aberman
and Salamone 1999; see Fig. 1b). Based upon these
findings and related studies, it has been suggested that a
major function of accumbens DA is to enable animals to
overcome work-related response costs that separate them

from significant stimuli (Salamone et al. 1991, 1993a,
1997, 2003, 2005; Sokolowski and Salamone 1998;
Aberman et al. 1998; Aberman and Salamone 1999).

Nucleus accumbens DA and effort-related decision
making

Organisms need to exert effort to overcome response
constraints that separate them from biologically relevant
stimuli and must constantly make effort-related decisions
involving cost/benefit assessments across a wide variety of
stimuli and responses (van den Bos et al. 2006). As well as
being involved in the exertion of effort, evidences indicate
that accumbens DA is part of the forebrain circuitry
involved in effort-related decision making and that inter-
ference with accumbens DA transmission alters the out-
come of cost/benefit analyses involving work-related
response costs. One of the procedures that has been used
to assess effort-related decision making is a task that offers
rats a choice between lever pressing to obtain a relatively
preferred food (e.g. Bioserve pellets) vs approaching and
consuming a less preferred food (lab chow), which is con-
currently available in the chamber. Untreated rats respond-
ing on a FR1 or FR5 schedule typically get most of their
food by lever pressing, and they consume only small
amounts of chow (Salamone et al. 1991). This procedure is
sensitive to the ratio requirement of the operant behavior
component of the task, as increases up to FR10 and FR20
lead to shifts in choice behavior away from lever pressing
and towards chow intake (Salamone et al. 1997). Most
studies have been conducted with the concurrent FR5/chow
intake version of this task, in which the animals get most of
their food from lever pressing. The DA antagonists cis-
flupenthixol, haloperidol, raclopride, SCH 23390, and
SKF83566 all decreased lever pressing for food but sub-
stantially increased intake of the concurrently available
chow (Salamone et al. 1991, 1996; Cousins et al. 1994;
Salamone and Correa 2002; Koch et al. 2000; see Fig. 2).
The low dose of haloperidol that produced this effect
(0.1 mg/kg) did not alter food intake or preference in free-
feeding choice tests (Salamone et al. 1991; Koch et al.
2000). Although DA D1 and D2 family antagonists reduced
FR 5 lever pressing and increased chow intake, the sero-
tonergic appetite suppressant fenfluramine suppressed both
lever pressing and chow intake (Salamone and Correa
2002), an effect similar to that produced by pre-feeding
(Salamone et al. 1991). These findings are consistent with
the hypothesis that low doses of DA antagonists do not
suppress lever pressing simply because they reduce appetite.

Depletions of DA in medial neostriatum had no effect on
the performance of the concurrent FR5/chow intake task
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(Cousins et al. 1993). Ventrolateral neostriatal DA deple-
tions impaired movement but did not shift behavior from
lever pressing to chow intake instead decreasing both
behaviors (Cousins et al. 1993). In fact, the accumbens is
the DA terminal region at which interference with DA
transmission mimics the effects of low doses of systemic
DA antagonists. Accumbens DA depletions and local intra-
accumbens injections of D1 or D2 antagonists decrease
lever pressing and increase chow intake (Salamone et al.
1991; Cousins et al. 1993; Cousins and Salamone 1994;
Sokolowski and Salamone 1998; Nowend et al. 2001; Koch
et al. 2000). The accumbens is divided into distinct
subregions (Meredith et al. 1992; Zahm and Brog 1992;
Zahm 2000), and the shift from lever pressing to chow
intake on the concurrent choice task has been shown to
occur if injections of a D1 or D2 family antagonist are
given into the medial core, lateral core, or dorsal shell
subregions of the accumbens (Nowend et al. 2001;
Salamone et al. 1991). In contrast to the effects shown
with rats that have impaired DA transmission, recent
evidence indicates that DA transporter knockout mice,
which have enhanced DA transmission, show increased
selection of lever pressing relative to chow intake with this
task (Cagniard et al. 2006).

A T-maze procedure also has been developed to assess
the effects of DA manipulations on effort-related choice
(Salamone et al. 1994). With this procedure, two arms of
the maze can have different reinforcement densities (e.g.,
four vs two food pellets or four vs zero), and under some
conditions, a 44-cm barrier can be placed in the arm with
the higher reward density to vary task difficulty. Under
conditions in which no barrier was present in the arm with
the high reinforcement density, untreated rats preferred that
arm, and neither haloperidol nor accumbens DA depletion
altered arm preference (Salamone et al. 1994). When the
arm with the barrier contained four pellets but the other arm
contained no pellets (that is, the only way to get food was
to climb the barrier), rats with accumbens DA depletions
were very slow but still chose the high density arm, climb
the barrier, and consume the pellets (Cousins et al. 1996).
Yet, accumbens DA depletions dramatically altered choice
behavior when the high-density arm (four pellets) had the
barrier in place and the arm without the barrier contained an
alternative food source (2 pellets). Under these conditions,
DA depleted rats showed decreased choice of the high-
density arm, and increased choice of the low-density arm
(Cousins et al. 1996; Salamone et al. 1994). Studies
employing the T-maze choice task support the hypothesis

Fig. 2 These panels depict the conditions seen during the concurrent
lever pressing/chow intake procedure used to assess effort-related
decisions based upon cost/benefit analyses (Salamone et al. 1991,
1996; Salamone and Correa 2002). Top left The operant chamber
allows for a high palatability food (high carbohydrate operant pellets)
to be accessible through lever pressing. A less preferred food
(laboratory chow) is concurrently available in the chamber. Top right

The animal has a choice between pressing the lever and feeding on the
concurrently available chow. Bottom left If the ratio requirement is low
enough (e.g., FR5), untreated rats get most of their food from lever
pressing and eat little of the chow. Bottom right Rats treated with low
doses of DA antagonists, or with accumbens DA depletions, shift their
choice behavior away from lever pressing and increase consumption
of the alternative food source (i.e., chow)
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that accumbens DA depletions cause animals to alter their
instrumental response selection based upon the work
requirements of the task (Salamone et al. 1997, 2003,
2005, 2006).

Taken together, these studies have demonstrated that rats
with impaired DA transmission remain directed towards the
acquisition and consumption of food despite their dimin-
ished tendency to emit responses with high rate or speed.
Faced with the challenge of work-related response costs,
these rats show a compensatory reallocation of behavior,
selecting a low-cost alternative path to a different food
source (i.e., the available chow or the arm with less food).
These findings, along with other empirical and computa-
tional approaches (Niv et al. 2007; Phillips et al. 2007),
indicate that mesolimbic DA is a critical component of the
forebrain circuitry regulating effort-related processes.

Forebrain circuitry involved in effort-related decision
making

The T-maze task described above has been employed to
investigate the functions of other brain areas in addition to
the accumbens. Several papers have examined the effects of
cortical lesions on effort-related processes. Walton et al.
(2002) studied the effects of medial frontal cortex lesions
that included prelimbic, infralimbic, and anterior cingulate
cortex (ACC). Medial frontal cortex lesions shifted the
behavior of the rats away from the arm that contained the
high density of reinforcement, which was obstructed by a
barrier. Instead, rats with lesions increased selection of the
arm with no barrier. However, medial frontal cortex lesions
did not alter choice behavior when the rats were tested
under conditions in which both arms had a barrier.
Moreover, rats with lesions did not shift away from the
arm with the barrier if the height of the barrier was reduced.
The effort-related effects of lesions of different frontal
cortical areas were studied further in a subsequent paper
(Walton et al. 2003). Lesions of prelimbic and infralimbic
cortex did not affect choice behavior, but lesions of ACC
produced the same changes in effort-related choice that had
been shown previously with the larger lesions. Several
recent studies have focused upon the role of the ACC in
effort-related choice. The effects of ACC lesions appear to
depend upon the specific task, as these lesions were shown
to alter effort-related choice in the T-maze task but not in
operant choice tasks (Schweimer and Hauber 2005).
Although ACC catecholamine depletions failed to affect
T-maze choice behavior in one study (Walton et al. 2005),
another paper did observe such deficits (Schweimer et al.
2005), which is possibly due to higher doses of 6-OHDA
being used in the Schweimer et al. (2005) study. Floresco
and Ghods-Sharifi (2006) recently investigated the inter-

action between the ACC and the basolateral amygdala in
the regulation of effort-based decision making using the
T-maze choice task. Bilateral injections of the local
anesthetic bupivacaine into the basolateral amygdala re-
duced preference for the high-barrier arm with the higher
reinforcement density. These effects were not due to
problems with spatial function or deficits in gross motor
function. Moreover, Floresco and Ghods-Sharifi (2006)
showed that unilateral activation of the basolateral amyg-
dala combined with a contralateral inactivation of ACC also
disrupted effort-based decision making. These findings
support the hypothesis that serial transfer of information
between basolateral amygdala and ACC is involved in
work-related decision making.

The results of these experiments involving neocortical
and limbic areas are consistent with the earlier studies that
focused upon accumbens DA. Lesions or inactivation of
ACC, as well as inactivation of the basolateral amygdala,
altered effort-related choice in the T-maze task and
produced effects similar to those previously shown for
low doses of haloperidol and nucleus accumbens DA
depletions. This research indicates that the accumbens is
part of the forebrain circuitry involved in the regulation of
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Fig. 3 Anatomical circuit diagram showing some of the connections
linking cortical/limbic/striatal structures that are involved in effort-
related processes (connections drawn are based upon Fallon and
Moore 1978; Nauta et al. 1978; McDonald 1991; Brog et al. 1993;
Groenewegen et al. 1996; Zahm 2000; Zahm and Heimer 1990).
Projection patterns of distinct accumbens subregions (Meredith et al.
1992; Zahm and Brog 1992; Zahm 2000) are not shown. Functional
distinctions between core and shell are important for many motivated
behaviors (Cardinal et al. 2002), but their importance for effort-related
processes is still unknown (Sokolowski and Salamone 1998; Nowend
et al. 2001). Parallel circuitry involving neostriatal areas has been
implicated facilitating and sustaining execution of “motor programs”
(Young and Penney 1993), which may be related to some of the
functions of DA discussed in the present review
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behavioral activation and effort-related decision-making
(Fig. 3). Nucleus accumbens receives inputs from frontal
cortex and limbic areas that are interconnected with each
other and also receives DA inputs from ventral tegmental
area. GABAergic neurons from the accumbens project to
pallidal regions (e.g. ventral pallidum), which in turn send
projections to thalamic nuclei that relay information to
neocortex. Nucleus accumbens, frontal cortex, and baso-
lateral amygdala appear to be critical components of this
circuitry (Rushworth et al. 2004; Salamone et al. 2006;
Floresco and Ghods-Sharifi 2006), and additional research
needs to be conducted to investigate the role played by
other anatomical structures and other transmitters.

Recent experiments have begun to focus upon the effort-
related functions of GABA in the ventral pallidum (VP),
which receives GABAergic input from the accumbens
(Groenewegen and Russchen 1984; Zahm and Brog
1992). VP neurons project to mediodorsal thalamus and
various brainstem motor areas (Zahm and Brog 1992;
Groenewegen et al. 1996), and it has been hypothesized
that VP acts as a relay station and also as an integrator of
information related to diverse limbic and striatal inputs
(Kretschmer 2000). VP injections of GABA suppressed
locomotion (Jones and Mogenson 1979), and novelty-
induced locomotion was reduced by VP injections of the
GABAA agonist muscimol (Austin and Kalivas 1990;
Hooks and Kalivas 1995). Based upon these studies, it
was hypothesized that stimulation of VP GABA receptors
should produce many of the same behavioral effects as DA
depletion in accumbens. Using the concurrent FR5 lever
pressing/chow intake procedure, it was recently demon-
strated that infusions of the GABAA agonist muscimol into
the lateral VP decreased lever pressing for the preferred
food but substantially increased consumption of the less
preferred chow (Farrar et al. 2005; Font-Hurtado et al.
2006). These results suggest that VP also is a component of
the brain circuitry regulating effort-related processes and,
perhaps, is a critical link in the transfer of effort-related
information from the accumbens to other brain areas.
Another possible component of the neural system regulat-
ing effort-related processes is adenosine A2A receptors.
There is an interaction between DA and adenosine A2A

receptors in striatal areas (Svenningsson et al. 1999; Wang
et al. 2001; Hettinger et al. 2001; Chen et al. 2001). This
interaction usually is studied using animal models of motor
function related to parkinsonism (Ferré et al. 1997, 2001;
Svenningsson et al. 1999; Jenner 2003, 2005; Hauber et al.
2001; Pinna et al. 2005), but less is known about the
motivational functions of adenosine A2A transmission (e.g.,
O’Neill and Brown 2006). Recent studies were undertaken
to determine if adenosine A2A antagonism would reverse
the effects of DA antagonism on tasks related to response
output and effort-related decision making. The adenosine

A2A antagonist MSX-3 (Hockemeyer et al. 2004) increased
FR5 lever pressing in rats treated with 0.1 mg/kg
haloperidol and also reversed the haloperidol-induced shift
from lever pressing to chow intake on the concurrent FR5/
chow intake task (Farrar et al. 2007). These results indicate
that there is a functional interaction between DA and
adenosine A2A receptors that is involved in the regulation
of effort-related processes.

In summary, it is evident that there has been a rapid
growth in our understanding of the brain circuitry involved
in effort-related functions (Salamone et al. 2003; Walton et
al. 2006; Phillips et al. 2007). Accumbens DA is an
important part of this circuitry, but it is only one part;
several transmitters across multiple brain regions are
involved in these functions, and researchers are only
beginning to sketch the outline of all the potential brain
systems that are involved. Presently, it is not clear which
brain areas are involved in the exertion of effort and which
ones are more selectively involved in the perception of
effort or the decision making process; future research will
be necessary to further distinguish those functions. Re-
search in this area is critical because it has helped to
identify brain mechanisms involved in important aspects of
motivation. Moreover, identification of the brain systems
involved in regulating behavioral activation and effort-
based choice in animals may provide important clues
regarding the brain systems that are involved in clinical
psychopathologies related to psychomotor retardation in
depression.

Clinical significance of effort-related functions:
importance for understanding psychomotor slowing,
anergia, and fatigue

In addition to playing an important role in non-pathological
aspects of motivation, behavioral activation functions also
have considerable clinical significance. Although depres-
sion is defined as an affective disorder, with cardinal
symptoms that include negative affect and mood alter-
ations, some of the most common symptoms of depression
are energy-related dysfunctions such as tiredness, listless-
ness, and fatigue (Tylee et al. 1999; Stahl 2002; Salamone
et al. 2006). This group of symptoms has been referred to in
various ways, including “psychomotor slowing”, “psycho-
motor retardation”, “fatigue” and “anergia”, and these
energy-related dysfunctions also are a critical aspect of
other disorders as well (Tylee et al. 1999; Swindle et al.
2001; Stahl 2002; Salamone et al. 2006). Although the
biological basis of the impaired psychomotor function seen
in depression and other disorders is uncertain, considerable
evidence implicates central DA systems (van Praag and
Korf 1971; Willner 1983; Rogers et al. 1987; Brown and
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Gershon 1993; Flint et al. 1993; Caligiuri and Ellwanger
2000; Volkow et al. 2001; Stahl 2002). There is reported to
be an association between parkinsonism and depression
with psychomotor slowing (Rogers et al. 1987), and despite
the fact that antiparkinsonian drugs such as L-dopa and
bromocriptine have mixed antidepressant characteristics
with regard to other symptoms of depression, they do tend
to improve anergia (Brown and Gershon 1993). Depressed
patients with psychomotor retardation have speech articu-
lation disorders that are very similar to those shown by
parkinsonian patients (Flint et al. 1993). Caligiuri and
Ellwanger (2000) studied motor performance in depressed
patients and observed that motor slowing in depression is
behaviorally very similar to parkinsonian bradykinesia.
They suggested that motor slowing in depression and
parkinsonism could result from common underlying mech-
anisms, and that reduced DA transmission could play an
important role in the expression of motor slowing in
depression. Schmidt et al. (2001) reported that reduced
DA transmission in psychiatric patients is not related to
anhedonia, but instead is related to psychomotor slowing
and decreased interaction with the environment. Psycho-
motor slowing was the psychiatric symptom most strongly
associated with reduced levels of DA transporter density in
a PET study of methamphetamine abusers (Volkow et al.
2001). The efficacy of several antidepressant drugs for
reversing psychomotor slowing in depressed patients was
related to the ability of these drugs to inhibit DA uptake
(Rampello et al. 1991). Stimulants that enhance DA
transmission also have been used to treat energy-related
symptoms in depressed people (Demyttenaere et al. 2005).
Several other psychiatric disorders in addition to depression
also are characterized by the presence of energy-related
dysfunctions. For example, there are people who have
severe motivational disturbance that has been labeled as
psychomotor slowing, anergia, or apathy, yet these individ-
uals do not meet the diagnostic criteria for depression
(Marin 1996; Campbell and Duffy 1997). Energy-related
symptoms in these people can be ameliorated with the DA
agonist bromocriptine, and it has been suggested that DA is
involved in this type of syndrome (Marin 1996; Campbell
and Duffy 1997). The DA uptake inhibitor buproprion
improved apathy symptoms in patients with depression and
organic brain disease (Corcoran et al. 2004).

A number of imaging studies implicate various compo-
nents of the striatal/limbic/cortical circuitry in clinical
aspects of energy-related functions in humans. Changes in
cerebral blood flow in dorsolateral prefrontal cortex were
shown to be associated with the presence of psychomotor
retardation (Bench et al. 1993). Reduced metabolic activity
in left prefrontal cortex was related to psychomotor
retardation in depressed patients (Brody et al. 2001a,b),
and PET measures of increased metabolic activity in

anterior cingulate cortex were associated with improve-
ments in psychomotor retardation in patients with major
depressive disorder (Brody et al. 2001b). Changes in
cerebral blood flow in left neostriatum were related to
reaction time in patients with major depression, with
patients having the greatest psychomotor slowing showed
the smallest increases in task-stimulated striatal blood flow
(Hickie et al. 1999). A recent MRI study demonstrated that
decreased nucleus accumbens volume was associated with
apathy but not with depression in patients with HIV
infections (Paul et al. 2005).

Together with the animal studies focused on effort-
related functions of DA, these clinical findings are
consistent with the hypothesis that DA systems are
involved in behavioral activation. Overall, there is a
striking similarity between the brain systems implicated in
effort-related processes in animals and those involved in
energy dysfunctions in humans. Studies of psychomotor
slowing and effort-related functions in animals could be
useful as model systems for investigating processes
involved in energy-related dysfunctions in humans. For
example, based upon the observation that adenosine A2A

antagonism can reverse the effort-related effects of impaired
DA transmission in rats, it has been suggested that
adenosine A2A antagonists could be useful as treatments
for psychomotor slowing in depression (Farrar et al. 2007).
Additional research in this area could lead to novel
treatments for energy-related dysfunctions in humans.

Summary and conclusions

For years, the behavioral functions of mesolimbic DA have
been the subject of intense investigation. There is a general
agreement that DA in nucleus accumbens participates in
many functions that are important for instrumental behav-
ior, but researchers are still grappling with the details of this
involvement. In drawing conclusions, it is useful to
consider some of the general lessons that several decades
of research in neuropsychopharmacology and neuropsy-
chology have provided. One clear lesson is that global
functions such as “reward”, “reinforcement”, “motivation”,
and “motor control” are actually composed of several
distinct processes, many of which can be dissociated from
each other. Manipulations of the brain with drugs or lesions
can dissociate processes from each other because these
treatments can severely impair one process while leaving
another largely or completely intact. This general observa-
tion, applied to the specific case of dopaminergic involve-
ment in instrumental behavior, leads one to the conclusion
that interference with DA transmission does not impair
“reward” in any general sense because too many funda-
mental aspects of reward are left intact by these manipu-
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lations. Interference with DA transmission impairs some
functions related to instrumental behavior while leaving
fundamental aspects of primary motivation for natural
reinforcers (e.g., appetite for food, primary food reward)
basically intact. Yet, despite the preservation of some
critical features of “reward” in DA-depleted animals,
accumbens DA does appear to be particularly important
for overcoming work-related requirements that separate
animals from significant stimuli. This represents one, but
certainly not the only function of mesolimbic DA.

Another lesson that can be drawn is that the traditional
functional terms typically used in psychology do not easily
map onto particular brain systems in a selective or
exclusive way (Luria 1969). A good example of this is
the ongoing discussion of the involvement of accumbens
DA in aspects of motivation and motor control (see also
Salamone 1992). Although one could attempt to establish a
strict dichotomy between the motivational functions of
nucleus accumbens and those functions that are generally
classed within the realm of motor or sensorimotor process-
es, this is not a necessary conceptual organization. As an
alternative to such a dichotomy, it can be argued that
“motor control” and “motivation”, although somewhat
distinct conceptually, overlap considerably in terms of
some of the specific characteristics of behavior being
described (Salamone 1987, 1992; Salamone and Correa
2002; Salamone et al. 2003, 2005, 2006). Consistent with
this line of thinking, it is reasonable to suggest that
accumbens DA performs functions that represent areas of
overlap between motor and motivational processes. Such
functions would include the types of behavioral activation
and effort-related functions discussed above. Nucleus
accumbens DA is important for enabling animals to
respond to the work-related challenges imposed by ratio
schedules (Aberman and Salamone 1999; Correa et al.
2002; Salamone and Correa 2002; Salamone et al. 2003,
2005, 2006; Mingote et al. 2005) and barriers in mazes
(Salamone et al. 1994; Cousins et al. 1996). In summarizing
their results in a recent PET study in humans, Knutson et al.
(2003) suggested that nucleus accumbens “may provide the
motivational ‘engine’ that fuels attainment of immediate
rewards” (p 271). Phasic DA release is thought to provide a
window of opportunistic drive during which the threshold
cost expenditure to obtain the reward is increased (Phillips
et al. 2007). Nucleus accumbens DA regulates response
speed and the exertion of effort in reinforcer-seeking
behavior, and participates with other brain areas in the
regulation of decisions based upon effort expenditure.
Thus, accumbens DA performs functions that can be
classed as “motor”, “sensorimotor”, or “limbic/motor” in a
very broad sense, but which nevertheless also represent
important aspects of motivation. The activational functions
of nucleus accumbens DA are not only critical for aspects

of motivation for natural stimuli, but they also are important
for drug-seeking behavior. Drug use and abuse not only
involve numerous psychological functions, including rein-
forcement, learning, motivation, emotion, habit formation,
and compulsiveness, but they also involve effort. Over the
last few years, there has been a growing emphasis placed
upon effort-related processes that are involved in drug
reinforcement (Marinelli et al. 1998; Nadal et al. 2002;
Vezina et al. 2002; Czachowski et al. 2002; Colby et al.
2003). In addition, activational aspects of motivation are
important for understanding various neuropsychiatric con-
ditions, and continuing research on the relation between
psychomotor slowing in depression and the symptoms of
parkinsonism only serves to highlight this consideration of
the relation between motivation and motor control process-
es (Salamone et al. 2006).

Of course, this emphasis on behavioral activation is not
intended to diminish the role that DA plays in other aspects
of incentive motivation and instrumental learning. As noted
above and emphasized in previous papers (Salamone et al.
2005), it is doubtful that accumbens DA performs only one
function, and evidence in favor of the hypothesis that DA is
involved in the exertion of effort or effort-related decision
making is not incompatible with the hypothesized involve-
ment of this system in instrumental learning (Wise 2004;
Beninger and Gerdjikov 2004; Kelley et al. 2005; Baldo
and Kelley 2007), aspects of incentive motivation (Wyvell
and Berridge 2001; Berridge 2007), or pavlovian-instru-
mental transfer (Everitt and Robbins 2005). Although the
incentive salience hypothesis (Berridge 2007) differs in
detail from many of the ideas presented in the present
paper, there are also some areas of potential agreement; it
has been suggested that accumbens DA depletions could be
thought of as affecting some aspects of “wanting” (e.g.,
energy to obtain reinforcers; effort in reinforcement-seeking
behavior; Salamone and Correa 2002; Salamone et al.
2003, 2006), while leaving other aspects (e.g., appetite for
food) basically intact. Moreover, the suggested involvement
of accumbens DA in behavioral activation and effort is
related to the hypothesis that nucleus accumbens is
important for facilitating responsiveness to the activating
properties of pavlovian conditioned stimuli (Everitt et al.
1999; Di Ciano et al. 2001; Parkinson et al. 2002; Everitt
and Robbins 2005; Day et al. 2006) because behavioral
responsiveness to discrete, temporal, and contextual pav-
lovian cues associated with reinforcer availability is a
critical aspect of behavioral activation (Salamone 1997;
Salamone et al. 1997, 2001, 2003, 2005; Everitt and
Robbins 2005; Robbins and Everitt 2007). In summary,
the decline of the traditional form of the DA hypothesis of
“reward” is leading to an era of novel experimental
approaches and rich conceptual restructuring. Studies of
the role of accumbens DA in behavioral activation, effort-
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related processes, and other behavioral functions are
leading to a deeper understanding of the brain mechanisms
regulating distinct aspects of motivation, and also are
serving to underscore the relation between motivational
processes and the regulation of action.
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