13 research outputs found

    Evidence for Major Contributions of Unintentionally Produced PCBs in the Air of China:Implications for the National Source Inventory

    Get PDF
    Polychlorinated biphenyls (PCBs) were not widely manufactured or used in China before they became the subject of international bans on production. Recent work has shown that they have reached China associated with imported wastes and that there are considerable unintentional sources of PCBs that have only recently been identified. As such, it was hypothesized that the source inventory and profile of PCBs may be different or unique in China, compared to countries where they were widely used and which have been widely studied. For the first time in this study, we undertook a complete analysis of 209 PCB congeners and assessed the contribution of unintentionally produced PCBs (UP-PCBs) in the atmosphere of China, using polyurethane foam passive air samplers (PUF-PAS) deployed across a wide range of Chinese locations. ∑209 PCBs ranged from 9 to 6856 pg/m3 (median: 95 pg/m3) during three deployments in 2016-2017. PCB 11 was one of the most detected congeners, contributing 33 ± 19% to ∑209 PCBs. The main sources to airborne PCBs in China were estimated and ranked as pigment/painting (34%), metallurgical industry/combustion (31%), e-waste (23%), and petrochemical/plastic industry (6%). For typical Aroclor-PCBs, e-waste sources were dominated (>50%). Results from our study indicate that UP-PCBs have become the controlling source in the atmosphere of China, and an effective control strategy is urgently needed to mitigate emissions from multiple industrial sources

    Relationship between Reproductive Allocation and Relative Abundance among 32 Species of a Tibetan Alpine Meadow: Effects of Fertilization and Grazing

    Get PDF
    Background: Understanding the relationship between species traits and species abundance is an important goal in ecology and biodiversity science. Although theoretical studies predict that traits related to performance (e.g. reproductive allocation) are most directly linked to species abundance within a community, empirical investigations have rarely been done. It also remains unclear how environmental factors such as grazing or fertilizer application affect the predicted relationship. Methodology: We conducted a 3-year field experiment in a Tibetan alpine meadow to assess the relationship between plant reproductive allocation (RA) and species relative abundance (SRA) on control, grazed and fertilized plots. Overall, the studied plant community contained 32 common species. Principal Findings: At the treatment level, (i) RA was negatively correlated with SRA on control plots and during the first year on fertilized plots. (ii) No negative RA–SRA correlations were observed on grazed plots and during the second and third year on fertilized plots. (iii) Seed size was positively correlated with SRA on control plots. At the plot level, the correlation between SRA and RA were not affected by treatment, year or species composition. Conclusions/Significance: Our study shows that the performance-related trait RA can negatively affect SRA within communities, which is possibly due to the tradeoffs between clonal growth (for space occupancy) and sexual reproduction. We propose that if different species occupy different positions along these tradeoffs it will contribute to biodiversity maintenance in local communities or even at lager scale

    A Kinetic Study of Marginal Soil Energy Plant Helianthus annuus Stalk Pyrolysis

    No full text
    The pyrolytic characteristics and kinetics of new marginal soil energy plant Helianthus annuus stalk were investigated using thermogravimetric (TG) method from 50 to 800 ∘ C in an inert argon atmosphere at different heating rates of 5, 10, 20 and 30 ∘ C min −1 . The kinetic parameters of activation energy and pre-exponential factor were deduced by Popescu, Flynn-Wall-Ozawa (FWO), and Kissinger-Akahira-Sunose (KAS) methods, respectively. The results showed that three stages appeared in the thermal degradation process. The primary devolatilization stage of H. annuus stalk can be described by the Avrami-Erofeev function ( = 4). The average activation energy of H. annuus stalk was only 142.9 kJ mol −1 . There were minor kinetic compensation effects between the preexponential factor and the activation energy. The results suggest that H. annuus stalk is suitable for pyrolysis, and more importantly, the experimental results and kinetic parameters provided useful information for the design of pyrolytic processing system using H. annuus stalk as feedstock

    A Kinetic Study of Marginal Soil Energy Plant Helianthus annuus Stalk Pyrolysis

    No full text
    The pyrolytic characteristics and kinetics of new marginal soil energy plant Helianthus annuus stalk were investigated using thermogravimetric (TG) method from 50 to 800°C in an inert argon atmosphere at different heating rates of 5, 10, 20, and 30°C min−1. The kinetic parameters of activation energy and pre-exponential factor were deduced by Popescu, Flynn-Wall-Ozawa (FWO), and Kissinger-Akahira-Sunose (KAS) methods, respectively. The results showed that three stages appeared in the thermal degradation process. The primary devolatilization stage of H. annuus stalk can be described by the Avrami-Erofeev function (n=4). The average activation energy of H. annuus stalk was only 142.9 kJ mol−1. There were minor kinetic compensation effects between the pre-exponential factor and the activation energy. The results suggest that H. annuus stalk is suitable for pyrolysis, and more importantly, the experimental results and kinetic parameters provided useful information for the design of pyrolytic processing system using H. annuus stalk as feedstock
    corecore