173 research outputs found

    Variations of China's emission estimates:Response to uncertainties in energy statistics

    Get PDF
    The accuracy of China's energy statistics is of great concern because it contributes greatly to the uncertainties in estimates of global emissions. This study attempts to improve the understanding of uncertainties in China's energy statistics and evaluate their impacts on China's emissions during the period of 1990-2013. We employed the Multi-resolution Emission Inventory for China (MEIC) model to calculate China's emissions based on different official data sets of energy statistics using the same emission factors. We found that the apparent uncertainties (maximum discrepancy) in China's energy consumption increased from 2004 to 2012, reaching a maximum of 646Mtce (million tons of coal equivalent) in 2011 and that coal dominated these uncertainties. The discrepancies between the national and provincial energy statistics were reduced after the three economic censuses conducted during this period, and converging uncertainties were found in 2013. The emissions calculated from the provincial energy statistics are generally higher than those calculated from the national energy statistics, and the apparent uncertainty ratio (the ratio of the maximum discrepancy to the mean value) owing to energy uncertainties in 2012 took values of 30.0, 16.4, 7.7, 9.2 and 15.6%, for SO2, NOx, VOC, PM2.5 and CO2 emissions, respectively. SO2 emissions are most sensitive to energy uncertainties because of the high contributions from industrial coal combustion. The calculated emission trends are also greatly affected by energy uncertainties - from 1996 to 2012, CO2 and NOx emissions, respectively, increased by 191 and 197% according to the provincial energy statistics but by only 145 and 139% as determined from the original national energy statistics. The energy-induced emission uncertainties for some species such as SO2 and NOx are comparable to total uncertainties of emissions as estimated by previous studies, indicating variations in energy consumption could be an important source of China's emission uncertainties

    Characteristics and sources of water-soluble organic aerosol in a heavily polluted environment in Northern China

    Get PDF
    Water-soluble organic aerosol (WSOA) in fine particles (PM2.5) collected during wintertime in a polluted city (Handan) in Northern China was characterized using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (AMS). Through comparing with real-time measurements from a collocated Aerosol Chemical Speciation Monitor (ACSM), we determined that WSOA on average accounts for 29% of total organic aerosol (OA) mass and correlates tightly with secondary organic aerosol (SOA; Pearson's r = 0.95). The mass spectra of WSOA closely resemble those of ambient SOA, but also show obvious influences from coal combustion and biomass burning. Positive matrix factorization (PMF) analysis of the WSOA mass spectra resolved a water-soluble coal combustion OA (WS-CCOA; O/C = 0.17), a water-soluble biomass burning OA (WS-BBOA; O/C = 0.32), and a water-soluble oxygenated OA (WS-OOA; O/C = 0.89), which account for 10.3%, 29.3% and 60.4% of the total WSOA mass, respectively. The water-solubility of the OA factors was estimated by comparing the offline AMS analysis results with the ambient ACSM measurements. OOA has the highest water-solubility of 49%, consistent with increased hygroscopicity of oxidized organics induced by atmospheric aging processes. In contrast, CCOA is the leastwater soluble, containing 17% WS-CCOA. The distinct characteristics of WSOA from different sources extend our knowledge of the complex aerosol chemistry in the polluted atmosphere of Northern China and the water-solubility analysis may help us to understand better aerosol hygroscopicity and its effects on radiative forcing in this region. (C) 2020 Published by Elsevier B.V.Peer reviewe

    The Histone H3 Lysine 4 Presenter WDR5 as an Oncogenic Protein and Novel Epigenetic Target in Cancer

    Get PDF
    The histone H3 lysine 4 (H3K4) presenter WDR5 forms protein complexes with H3K4 methyltransferases MLL1-MLL4 and binding partner proteins including RBBP5, ASH2L, and DPY30, and plays a key role in histone H3K4 trimethylation, chromatin remodeling, transcriptional activation of target genes, normal biology, and diseases such as MLL-rearranged leukemia. By forming protein complexes with other proteins such as Myc, WDR5 induces transcriptional activation of key oncogenes, tumor cell cycle progression, DNA replication, cell proliferation, survival, tumor initiation, progression, invasion, and metastasis of cancer of a variety of organ origins. Several small molecule MLL/WDR5 protein-protein interaction inhibitors, such as MM-401, MM-589, WDR5-0103, Piribedil, and OICR-9429, have been confirmed to reduce H3K4 trimethylation, oncogenic gene expression, cell cycle progression, cancer cell proliferation, survival and resistance to chemotherapy without general toxicity to normal cells. Derivatives of the MLL/WDR5 interaction inhibitors with improved pharmacokinetic properties and in vivo bioavailability are expected to have the potential to be trialed in cancer patients

    NOx Emission Trends over Chinese Cities Estimated from OMI Observations During 2005 to 2015

    Get PDF
    Satellite NO2 observations have been widely used to evaluate emission changes. To determine trends in NOx emission over China, we used a method independent of chemical transport models to quantify the NOx emissions from 48 cities and 7 power plants over China, on the basis of Ozone Monitoring Instrument (OMI) NO2 observations during 2005 to 2015. We found that NOx emissions over 48 Chinese cities increased by 52 from 2005 to 2011 and decreased by 21 from 2011 to 2015. The decrease since 2011 could be mainly attributed to emission control measures in power sector; while cities with different dominant emission sources (i.e. power, industrial and transportation sectors) showed variable emission decline timelines that corresponded to the schedules for emission control in different sectors. The time series of the derived NOx emissions was consistent with the bottom-up emission inventories for all power plants (r = 0.8 on average), but not for some cities (r = 0.4 on average). The lack of consistency observed for cities was most probably due to the high uncertainty of bottom-up urban emissions used in this study, which were derived from downscaling the regional-based emission data to cities by using spatial distribution proxies

    Atmospheric impacts and regulation framework of shipping emissions:achievements, challenges and frontiers

    Get PDF
    Currently, over 80% of the international trade volume is carried by sea. Marked by persistent growth, evident atmospheric impacts, intricate mitigation challenges, international shipping has been recognized as one of the most “hard-to-abate” sectors gathering increasing attention from both academic community and governmental sectors in recent years. Against the backdrop of the ambitious climate and clean air objectives, the quantitative shipping emission characterization, impact assessment and policy effectiveness research are not only fundamental to understand the status quo and ramifications of shipping emissions but also beneficial for future emission regulations. Here, we summarized the achievements in shipping emission modelling and impact research in the past two decades, and identified the challenges lying in the transition pathway towards a clean and carbon-neutral shipping. To address the pressing demand for this, we proposed an innovative framework which aims to facilitate emission abatement. Finally, promising directions for future work were delineated, including the indirect effects of shipping emitted aerosols on the climate, the emissions and impacts of novel contaminants, synergies and conflicts among different emission reduction measures, projections on future shipping emission inventories, Arctic shipping emissions, etc
    corecore