157 research outputs found

    Paper spray mass spectrometry for high-throughput quantification of nicotine and cotinine

    Get PDF
    The rapid release of new tobacco products requires high-throughput quantitative methods to support tobacco research. Sample preparation for LC-MS and GC-MS is time consuming and limits throughput. Paper spray tandem mass spectrometry (PS-MS/MS) is proposed and validated as a simple and rapid method for quantification of nicotine and cotinine in complex matrices to support tobacco-related research. Air liquid interface (ALI) human tracheobronchial epithelial cell (HTBEC) cultures were exposed to tobacco smoke using a Vitrocell VC-10 smoking machine. Apical culture washes (phosphate buffered saline, PBS) and basolateral media were analyzed with the PS-MS/MS method. GC-MS/MS was used as a comparative quantitative technique. The PS-MS/MS approach allowed for direct spotting of samples on the paper substrate, whereas the GC-MS/MS method required additional sample preparation in the form of solvent-solvent extraction. Limits of quantitation (LOQs) were higher with the PS-MS/MS approach than GC-MS/MS, but still below the relevant concentrations found in HTBEC smoke exposure experiments as well as most clinical applications. PS-MS/MS is readily achieved on mass spectrometers that include atmospheric pressure inlets, and allows for convenient quantification from complex matrices that would otherwise require additional sample preparation and chromatographic separation. © 2017 The Royal Society of Chemistry

    Establishing linkages between distributed survey responses and consumer wearable device datasets: A pilot protocol

    Get PDF
    Background: As technology increasingly becomes an integral part of everyday life, many individuals are choosing to use wearable technology such as activity trackers to monitor their daily physical activity and other health-related goals. Researchers would benefit from learning more about the health of these individuals remotely, without meeting face-to-face with participants and avoiding the high cost of providing consumer wearables to participants for the study duration. Objective: The present study seeks to develop the methods to collect data remotely and establish a linkage between self-reported survey responses and consumer wearable device biometric data, ultimately producing a de-identified and linked dataset. Establishing an effective protocol will allow for future studies of large-scale deployment and participant management. Methods: A total of 30 participants who use a Fitbit will be recruited on Mechanical Turk Prime and asked to complete a short online self-administered questionnaire. They will also be asked to connect their personal Fitbit activity tracker to an online third-party software system, called Fitabase, which will allow access to 1 month's retrospective data and 1 month's prospective data, both from the date of consent. Results: The protocol will be used to create and refine methods to establish linkages between remotely sourced and de-identified survey responses on health status and consumer wearable device data. Conclusions: The refinement of the protocol will inform collection and linkage of similar datasets at scale, enabling the integration of consumer wearable device data collection in cross-sectional and prospective cohort studies

    Flavored e-cigarette liquids and cinnamaldehyde impair respiratory innate immune cell function

    Get PDF
    Innate immune cells of the respiratory tract are the first line of defense against pathogenic and environmental insults. Failure of these cells to perform their immune functions leaves the host susceptible to infection and may contribute to impaired resolution of inflammation. While combustible tobacco cigarettes have been shown to suppress respiratory immune cell function, the effects of flavored electronic cigarette liquids (e-liquids) and individual flavoring agents on respiratory immune cell responses are unknown. We investigated the effects of seven flavored nicotine-free e-liquids on primary human alveolar macrophages, neutrophils, and natural killer (NK) cells. Cells were challenged with a range of e-liquid dilutions and assayed for their functional responses to pathogenic stimuli. End points included phagocytic capacity (neutrophils and macrophages), neutrophil extracellular trap formation, proinflammatory cytokine production, and cell-mediated cytotoxic response (NK cells). E-liquids were then analyzed via mass spectrometry to identify individual flavoring components. Three cinnamaldehyde-containing e-liquids exhibited dose-dependent broadly immunosup-pressive effects. Quantitative mass spectrometry was used to determine concentrations of cinnamaldehyde in each of the three e-liquids, and cells were subsequently challenged with a range of cinnamaldehyde concentrations. Cinnamaldehyde alone recapitulated the impaired function observed with e-liquid exposures, and cinnamalde-hyde-induced suppression of macrophage phagocytosis was reversed by addition of the small-molecule reducing agent 1,4-dithiothreitol. We conclude that cinnamaldehyde has the potential to impair respiratory immune cell function, illustrating an immediate need for further toxicological evaluation of chemical flavoring agents to inform regulation governing their use in e-liquid formulations

    Evaluation of e-liquid toxicity using an open-source high-throughput screening assay

    Get PDF
    The e-liquids used in electronic cigarettes (E-cigs) consist of propylene glycol (PG), vegetable glycerin (VG), nicotine, and chemical additives for flavoring. There are currently over 7,700 e-liquid flavors available, and while some have been tested for toxicity in the laboratory, most have not. Here, we developed a 3-phase, 384-well, plate-based, high-throughput screening (HTS) assay to rapidly triage and validate the toxicity of multiple e-liquids. Our data demonstrated that the PG/VG vehicle adversely affected cell viability and that a large number of e-liquids were more toxic than PG/VG. We also performed gas chromatography–mass spectrometry (GC-MS) analysis on all tested e-liquids. Subsequent nonmetric multidimensional scaling (NMDS) analysis revealed that e-liquids are an extremely heterogeneous group. Furthermore, these data indicated that (i) the more chemicals contained in an e-liquid, the more toxic it was likely to be and (ii) the presence of vanillin was associated with higher toxicity values. Further analysis of common constituents by electron ionization revealed that the concentration of cinnamaldehyde and vanillin, but not triacetin, correlated with toxicity. We have also developed a publicly available searchable website (www.eliquidinfo.org). Given the large numbers of available e-liquids, this website will serve as a resource to facilitate dissemination of this information. Our data suggest that an HTS approach to evaluate the toxicity of multiple e-liquids is feasible. Such an approach may serve as a roadmap to enable bodies such as the Food and Drug Administration (FDA) to better regulate e-liquid composition

    Status of CMB Polarization Measurements from DASI and Other Experiments

    Full text link
    We review the current status and future plans for polarization measurements of the cosmic microwave background radiation, as well as the cosmology these measurements will address. After a long period of increasingly sensitive upper limits, the DASI experiment has detected the E-mode polarization and both the DASI and WMAP experiments have detected the TE correlation. These detections provide confirmation of the standard model of adiabatic primordial density fluctuations consistent with inflationary models. The WMAP TE correlation on large angular scales provides direct evidence of significant reionization at higher redshifts than had previously been supposed. These detections mark the beginning of a new era in CMB measurements and the rich cosmology that can be gleaned from them.Comment: 22 pages, 9 figures; To be published in the proceedings of "The Cosmic Microwave Background and its Polarization", New Astronomy Reviews, (eds. S. Hanany and K.A. Olive

    The Influence of Foreign vs North American Emissions on Surface Ozone in the US

    Get PDF
    As part of the Hemispheric Transport of Air Pollution (HTAP; www.htap.org) project, we analyze results from 16 global and hemispheric chemical transport models and compare these to Clean Air Status and Trends Network (CASTNet) observations in the United States (US) for 2001. Using the policy-relevant maximum daily 8-h ozone (MDA8 O3) statistic, the multi-model ensemble represents the observations well (mean r2=0.57, ensemble bias=+4.1 ppbv for all regions and all seasons) despite a wide range in the individual model results. Correlations are strongest in the NorthEastern US during spring and fall (r2=0.68); and weakest in the Midwestern US in summer (r2=0.46). However, large positive mean biases exist during summer for all Eastern US regions, ranging from 10¿20 ppbv, and a smaller negative bias is present in the Western US during spring (3 ppbv). In most all other regions and seasons, the biases of the model ensemble simulations are 5 ppbv. Sensitivity simulations in which anthropogenic O3-precursor emissions (NOx+NMVOC+CO+aerosols) were decreased by 20% in each of four source regions: East Asia (EA), South Asia (SA), Europe (EU) and North America (NA) show that the greatest response of MDA8 O3 to the summed foreign emissions reductions occurs during spring in the West (0.9 ppbv reduction due to 20% reductions from EA+SA+EU). East Asia is the largest contributor to MDA8 O3 at all ranges of the O3 distribution for most regions (typically 0.45 ppbv). The exception is in the NorthEastern US where European emissions reductions had the greatest impact on MDA8 O3, particularly in the middle of the MDA8 O3 distribution (response of 0.35 ppbv between 35¿55 ppbv). In all regions and seasons, however, O3-precursor emissions reductions of 20% in the NA source region decrease MDA8 O3 the most by a factor of 2 to nearly 10 relative to foreign emissions reductions. The O3 response to anthropogenic NA emissions is greatest in the Eastern US during summer at the high end of the O3 distribution (5-6 ppbv for 20% reductions). While the impact of foreign emissions on surface O3 in the US is not negligible and is of increasing concern given the growth in emissions upwind of the US - domestic emissions reductions remain a farmore effective means of decreasing MDA8 O3 values, particularly those above 75 ppb(the current US standard).JRC.H.2-Air and Climat

    BAs and boride III-V alloys

    Full text link
    Boron arsenide, the typically-ignored member of the III-V arsenide series BAs-AlAs-GaAs-InAs is found to resemble silicon electronically: its Gamma conduction band minimum is p-like (Gamma_15), not s-like (Gamma_1c), it has an X_1c-like indirect band gap, and its bond charge is distributed almost equally on the two atoms in the unit cell, exhibiting nearly perfect covalency. The reasons for these are tracked down to the anomalously low atomic p orbital energy in the boron and to the unusually strong s-s repulsion in BAs relative to most other III-V compounds. We find unexpected valence band offsets of BAs with respect to GaAs and AlAs. The valence band maximum (VBM) of BAs is significantly higher than that of AlAs, despite the much smaller bond length of BAs, and the VBM of GaAs is only slightly higher than in BAs. These effects result from the unusually strong mixing of the cation and anion states at the VBM. For the BAs-GaAs alloys, we find (i) a relatively small (~3.5 eV) and composition-independent band gap bowing. This means that while addition of small amounts of nitrogen to GaAs lowers the gap, addition of small amounts of boron to GaAs raises the gap (ii) boron ``semi-localized'' states in the conduction band (similar to those in GaN-GaAs alloys), and (iii) bulk mixing enthalpies which are smaller than in GaN-GaAs alloys. The unique features of boride III-V alloys offer new opportunities in band gap engineering.Comment: 18 pages, 14 figures, 6 tables, 61 references. Accepted for publication in Phys. Rev. B. Scheduled to appear Oct. 15 200

    The accuracy of prehospital triage decisions in English trauma networks – a case-cohort study

    Get PDF
    Background Care for injured patients in England is provided by inclusive regional trauma networks. Ambulance services use triage tools to identify patients with major trauma who would benefit from expedited Major Trauma Centre (MTC) care. However, there has been no investigation of triage performance, despite its role in ensuring effective and efficient MTC care. This study aimed to investigate the accuracy of prehospital major trauma triage in representative English trauma networks. Methods A diagnostic case-cohort study was performed between November 2019 and February 2020 in 4 English regional trauma networks as part of the Major Trauma Triage Study (MATTS). Consecutive patients with acute injury presenting to participating ambulance services were included, together with all reference standard positive cases, and matched to data from the English national major trauma database. The index test was prehospital provider triage decision making, with a positive result defined as patient transport with a pre-alert call to the MTC. The primary reference standard was a consensus definition of serious injury that would benefit from expedited major trauma centre care. Secondary analyses explored different reference standards and compared theoretical triage tool accuracy to real-life triage decisions. Results The complete-case case-cohort sample consisted of 2,757 patients, including 959 primary reference standard positive patients. The prevalence of major trauma meeting the primary reference standard definition was 3.1% (n=54/1,722, 95% CI 2.3 – 4.0). Observed prehospital provider triage decisions demonstrated overall sensitivity of 46.7% (n=446/959, 95% CI 43.5-49.9) and specificity of 94.5% (n=1,703/1,798, 95% CI 93.4-95.6) for the primary reference standard. There was a clear trend of decreasing sensitivity and increasing specificity from younger to older age groups. Prehospital provider triage decisions commonly differed from the theoretical triage tool result, with ambulance service clinician judgement resulting in higher specificity. Conclusions Prehospital decision making for injured patients in English trauma networks demonstrated high specificity and low sensitivity, consistent with the targets for cost-effective triage defined in previous economic evaluations. Actual triage decisions differed from theoretical triage tool results, with a decreasing sensitivity and increasing specificity from younger to older ages
    • …
    corecore