76 research outputs found

    Growth and Characterisation of Low-k dielectric Spin on Glass [QC585. A963 2002 f rb] [Microfiche 7021]

    Get PDF
    Dimensi didalam peranti mickro VLSI semakin berkurangan dengan satu objektif, iaitu untuk meningkatkan laju pengendalian. Device dimension in VLSI circuit constantly shrink with one main objective, i.e. increase in speed

    The effect of barium titanate ceramic loading on the stress relaxation behavior of barium titanate-silicone elastomer composites

    Get PDF
    The stress relaxation behavior of barium titanate (BTO)-elastomer (Ecoflex) composites, as used in large strain sensors, is studied using the generalized Maxwell-Wiechert model. In this article, we examine the stress relaxation behavior of ceramic polymer composites by conducting stress relaxation tests on samples prepared with varying the particle loading by 0, 10, 20, 30, and 40 wt% of 100 and 200 nm BTO ceramic particles embedded in a Ecoflex silicone-based hyperelastic elastomer. The influence of BTO on the Maxwell-Wiechert model parameters was studied through the stress relaxation results. While a pristine Ecoflex silicone elastomer is predominantly a hyperelastic material, the addition of BTO made the composite behave as a visco-hyperelastic material. However, this behavior was shown to have a negligible effect on the electrical sensing performance of the large strain sensor.</p

    Advances in Smart Materials and Applications

    Get PDF
    This is one of a series of special issues published in Advances in Materials Science and Engineering, focusing on the latest advances of smart materials and their applications. Evolution of engineering materials is strongly depending on the growing transformation of complexity in engineering products. New materials being designed are required to provide specific properties and demonstrate certain functional characteristics by manipulating their dimension, chemistry, and structure through various advanced technologies.Therefore, “smartness” of a material has become the topic of interest. Properties of smart materials may change accordingly to the applied external stimuli. Under the direction of the editorial team, we showcase advances of organic and inorganic based smart materials and their applications in areas of specific interest such as energy, environment, and health. A total of 9 articles are published in this special issue. Six articles are focused on production, synthesis, and optimization of smart materials; and the remaining are dedicated to application of smart materials

    Experimental and numerical study of the effect of silica filler on the tensile strength of a 3D-printed particulate nanocomposite

    Get PDF
    Polymers are commonly found to have low mechanical properties, e.g., low stiffness and low strength. To improve the mechanical properties of polymers, various types of fillers have been added. These fillers can be either micro- or nano-sized; however; nano-sized fillers are found to be more efficient in improving the mechanical properties than micro-sized fillers. In this research, we have analysed the mechanical behaviour of silica reinforced nanocomposites printed by using a new 5-axis photopolymer extrusion 3D printing technique. The printer has 3 translational axes and 2 rotational axes, which enables it to print free-standing objects. Since this is a new technique and in order to characterise the mechanical properties of the nanocomposites manufactured using this new technique, we carried out experimental and numerical analyses. We added a nano-sized silica filler to enhance the properties of a 3D printed photopolymer. Different concentrations of the filler were added and their effects on mechanical properties were studied by conducting uniaxial tensile tests. We observed an improvement in mechanical properties following the addition of the nano-sized filler. In order to observe the tensile strength, dog-bone samples using a new photopolymer extrusion printing technique were prepared. A viscoelastic model was developed and stress relaxation tests were conducted on the photopolymer in order to calibrate the viscoelastic parameters. The developed computational model of nano reinforced polymer composite takes into account the nanostructure and the dispersion of the nanoparticles. Hyper and viscoelastic phenomena was considered to validate and analyse the stress–strain relationship in the cases of filler concentrations of 8%, 9%, and 10%. In order to represent the nanostructure, a 3D representative volume element (RVE) was utilized and subsequent simulations were run in the commercial finite element package ABAQUS. The results acquired in this study could lead to a better understanding of the mechanical characteristics of the nanoparticle reinforced composite, manufactured using a new photopolymer extrusion 5-axis 3D printing technique

    BKV Agnoprotein Interacts with α-Soluble N-Ethylmaleimide-Sensitive Fusion Attachment Protein, and Negatively Influences Transport of VSVG-EGFP

    Get PDF
    Background: The human polyomavirus BK (BKV) infects humans worldwide and establishes a persistent infection in the kidney. The BK virus genome encodes three regulatory proteins, large and small tumor-antigen and the agnoprotein, as well as the capsid proteins VP1 to VP3. Agnoprotein is conserved among BKV, JC virus (JCV) and SV40, and agnoprotein-deficient mutants reveal reduced viral propagation. Studies with JCV and SV40 indicate that their agnoproteins may be involved in transcription, replication and/or nuclear and cellular release of the virus. However, the exact function(s) of agnoprotein of BK virus remains elusive. Principal Findings: As a strategy of exploring the functions of BKV agnoprotein, we decided to look for cellular interaction partners for the viral protein. Several partners were identified by yeast two-hybrid assay, among them a-SNAP which is involved in disassembly of vesicles during secretion. BKV agnoprotein and a-SNAP were found to partially co-localize in cells, and a complex consisting of agnoprotein and a-SNAP could be co-immunoprecipitated from cells ectopically expressing the proteins as well as from BKV-transfected cells. The N-terminal part of the agnoprotein was sufficient for the interaction with a-SNAP. Finally, we could show that BKV agnoprotein negatively interferes with secretion of VSVG-EGFP reporter suggesting that agnoprotein may modulate exocytosis. Conclusions: We have identified the first cellular interaction partner for BKV agnoprotein. The most N-terminal part of BKV agnoprotein is involved in the interaction with a-SNAP. Presence of BKV agnoprotein negatively interferes with secretion of VSVG-EGFP reporter
    corecore