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PENUMBUHAN DAN PENCIRIAN FILEM NIPIS DIELEKTRIK K-
RENDAH MENGUNAKAN PROSES PUTARAN 

 

Abstrak 
 

Dimensi didalam peranti mickro VLSI semakin berkurangan dengan satu objektif, iaitu 

untuk meningkatkan laju pengendalian. Tetapi terdapat komponen parasitik yang 

terkandung didalam peranti-mikro yang boleh membawa kesan terhadap laju 

pengendalian.  Jika ketelusan relatif (k) dielektrik lapisan antara boleh dikurangkan, laju 

pengendalian akan ditingkatkan. Dengan ini filem nipis dielektrik k-rendah 

diperkenalkan.  Filem nipis dielektrik k-rendah ialah bahan yang mempunyai ketelusan 

relatif, k kurang daripada 3.0.  Kajian ini mengunakan filem nipis dielektrik k-rendah 

jenis Methylsilsesquioxane (MSQ).  Pemendapan MSQ mengunakan proses putaran 

yang berkos rendah.  Pencirian kapasitor MOS yang difabrikasikan telah dilakukan 

untuk menentukan mekanisma yang terkandung bila diintegrasikan dengan logam Al 

dan Cu yang diendapkan dengan kaedah sejatan atau percikan.  Kajian ini membawa 

kesimpulan yang kaedah pememendapan logam membawa kesan yang buruk terhadap 

MSQ berbanding dengan kaedah percikan.  Manakala, kaedah percikan menyebabkan 

perbentukan “trap sites” di dalam MSQ yang akan menjerat ion-ion logam yang 

terpecik. Kesan Cu+ dan Al+ terhadap MSQ dikaji dan dua model gambarajah jalur 

tenaga diperkenalkan di dalam tesis ini untuk menerangkan mekanisma yang 

diperhatikan.  Kajian ini juga menunjukan yang peresapan terma boleh disekat oleh 

lapisan SiO2 tetapi tidak dapat menyekat suntikan ion-ion logam. Dengan yang 

sedemikian satu lapisan sawar yang berlainan diperlukan.  Tenaga pengaktifan yang 

menyebabkan peresapan terma juga dapat ditentukan dengan secara ringkas didalam 

kajian ini.    
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Pada keseluruhannya, MSQ ialah sesuatu bahan dielectrik k-rendah yang berpotensi 

tetapi memerlukan proses yang bersuhu rendah, iaitu 450ºC dan ke bawah supaya MSQ 

tidak akan terurai dan juga sifat-sifat dan ciri-cirinya perlu difahami dengan lebih 

mendalam sebelum ia dapat diintegrasikan di dalam peranti mikro VLSI untuk 

pengeluaran besar-besaran. 
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Abstract 
 

Device dimension in VLSI circuit constantly shrink with one main objective, i.e. 

increase in speed.  However, there are other parasitic components in the VLSI circuit 

other than device dimension that can affect the speed of VLSI circuits.  The reduction of 

dielectric constant of interlayer dielectric (ILD) material can improve the speed due to 

reduction in parasitic capacitance.  Therefore, low dielectric constant (k) materials are 

being introduced.  Low-k dielectric material is categorised as material having dielectric 

constant of less than 3.0.  In this research Methylsilsesquioxane (MSQ), which is a type 

of spin-on glass (SOG), is being used as it offers low fabrication cost.   MOS capacitor 

structures were fabricated and electrically characterise to understand the underlying 

mechanism when integrated with evaporated or sputtered aluminium and copper metal.  

It was observed that evaporated metal in direct contact with MSQ is disastrous 

compared to sputtering technique due to high evaporation temperature.  On the other 

hand, sputtered metal in direct contact with MSQ create trap sites close to the silicon 

interface, which can trap injected metal ions.  Effect of Cu+ and Al+ were also studied 

and two band-diagram models were used to explain the observed mechanisms of 

evaporated and sputtered metal have been proposed as an outcome of these 

observations.  It was also found that SiO2 is not capable to prevent charge injection into 

MSQ layer to achieve a reliable VLSI circuit but is capable of preventing thermal 

diffusion through MSQ.  The activation energy of diffusivity through MSQ was also 

approximately determined in this research using simple technique.  
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Therefore, a different barrier layer other than SiO2 is still necessary.  In addition, “low 

thermal budget” fabrication technique (450ºC and below) is necessary to ensure that 

MSQ do not degrade or decompose which affects the quality and reliability of the 

fabricated VLSI circuit.  In summary, MSQ SOG has proven to be a promising low-k 

dielectric, although there are still a lot of researches that need to continue to fully 

understand the properties and characteristics of this material before it can be integrated 

for mass production. 
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Chapter 2. Introduction 

Low dielectric constant material is necessary in view of the quest to achieve higher 

speed.  With the spacing between two metal lines becoming closer, the coupling 

capacitance of the metal wiring will become larger assuming that dielectric is still 

maintained as SiO2 (k = 4.0).  As device dimensions shrink to less that 0.25µm, 

propagation delay, cross-talk noise and power dissipation due to resistance-capacitance 

(RC) coupling become significant due to increased wiring capacitance, especially 

interline capacitance between the metal lines on the same level. These factors all depend 

critically on the dielectric constant of the separating insulator.   Figure 1-1 (Materials 

Research Society, Oct 1997) shows the capacitance versus the spacing for different 

values of dielectric constant and it is clear that the capacitance increases tremendously 

when the spacing is 0.25µm and below. 

 

 

 

Figure 1-1:  Total Interconnect Wiring Capacitance 
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To illustrate the point, refer to Figure 1-1 with k = 4, the wiring capacitance is 

approximately 2.2pF/cm with 0.5µm spacing.  In order to reduce the spacing to 0.25µm 

and keep the wiring capacitance constant, the k has to be reduced to 3.  If the spacing is 

to be reduced further to 0.15µm and maintaining the capacitance at 2.2pF/cm, the k has 

to be reduced to 2.  Reducing only the capacitance is not sufficient as the spacing will 

continue to become smaller and therefore the resistance of the wiring has to be reduced 

in order to reduce or maintain the RC constant. 

2.1. RC Constant 

Since coupling capacitance is affected by the dielectric constant (k) of the material in 

between the two metal lines, low-k dielectric material will reduce this coupling 

capacitance.  Reducing this capacitance will therefore reduces the RC constant and in 

turn increases the switching speed of the VLSI circuits.  However, as discussed earlier 

there is a limit where the capacitance can be reduced.  The other parameter then need to 

be considered is the metal wiring resistance as both capacitance and resistance form the 

RC constant which affect the switching speed.  Figure 1-2 illustrates the effect of 

parasitic RC due to the inter-metal lines coupling capacitance (C1 and C2) and wiring 

resistance (Rmetal). 
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Figure 1-2:  Illustration on the effects of parasitic RC 

 

From Figure 1-2, the rise and fall time of the square wave will be longer due to the 

parasitic RC constant and this limits the maximum frequency.  Therefore, it is necessary 

to reduce the dielectric constant (k) and wiring resistance to reduce the RC constant as 

the spacing dimension and the metal wiring cross sectional area become smaller.  The 

solution is to use low-k dielectric material to replace SiO2 and Cu to replace Al. 

2.2. Why Low-k Dielectric? 

There are three categories of low-k dielectric, i.e. low-k dielectric (k < 3), extra low-k 

dielectric ( k < 2.5)  and ultra low-k dielectric (< 2.0).  In addition, these low-k materials 

are also categorised according to the deposition method, i.e. chemical vapour deposition 

(CVD) and spin on dielectric or spin-on glass (SOD or SOG).   
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In this research, SOD is use as it does not require expensive equipment and easy to use 

and it is a low cost application compare to CVD type.  Table 1-1 shows the comparison 

of various SOD/SOG and CVD process in terms of cost and output rate. 

 

Table 1-1: Cost model for SOD and CVD process to deposit low-k dielectric 
(Korczynski Ed, May 1999) 

Process Throughput 
(wafer/hour) 

Precursor + 
clean 

($/wafer) 

System cost 
($ millions) 

Zero defect 
cost 

($/wafer) 
SOD standard 80 3.0 1.0 5.0 
SOD porous 60 3.0 1.2 5.5 
PECVD SiOC 50 0.75 2.2 3.3 
PECVD α-CF 25 0.75 2.2 5.2 
PECVD cap 85 0.10 2.2 1.8 
 

SOD has higher wafer throughput and lower equipment cost.  However, it has higher 

defect and also requires higher wafer cleaning and precursor cost. 

There are several properties similar to the SiO2 that is required to enable low-k 

dielectric material to be consider for integration into VLSI circuit fabrication and is 

listed as follows: - 

• High mechanical strength  

• Good dimensional stability  

• High thermal stability  

• Ease of pattern and etch for sub-micron features  

• Low moisture absorption and permeation  

• Good adhesion  

• Low stress  

• Good etch selectivity to metal  

• High thermal conductivity  
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• High dielectric strength  

• Low leakage current  

• Good gap filling and planarisation capability 

 

This research concentrates on the study of MSQ produced by Filmtronics.  Filmtronics 

400F Methylsilsesquioxane spin-on glass is based on a unique chemistry that yields a 

polymer with Si-CH3 and Si-O bonds and has a low dielectric (k) of 2.6. 

The several advantages of using spin-on dielectric (SOD) that has contributed to its 

selection for this research are summarised as follows: - 

• Economical processing, 

• Fast processing and higher throughput, 

• No handling of toxic gases 

2.3. Why Copper? 

Metal-Oxide-Semiconductor (MOS) capacitors were used in this research, as it is easy 

to fabricate. Metal gate used were aluminium (Al) and copper (Cu) and the 

semiconductor material is p-type <100> silicon in the form of 2” wafer.  Al or Cu 

together with MSQ were being research, as these are the commonly used metals in 

VLSI circuits with copper becoming more popular due to its lower resistivity compared 

to aluminium.  Comparisons of microprocessor clock frequency versus interconnect 

metal and ILD choices are shown in Figure 1-3 (Sematech, Nov 1999). 
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Figure 1-3:  Microprocessor Clock Frequency versus Interconnect Metal and ILD 
choices  
 

Assuming a100nm (0.1µm) minimum feature size (which will be available for mass 

production in year 2003) in Figure 1-3, Al/low-k and Cu/low-k integration provides a 

speed performance increase of 28% and 42% over Al/SiO2 respectively. However, Cu 

has been increasing popular over Al because in comparison to Al it has lower resistance 

(2Ω-cm for Cu versus 3Ω-cm for Al) and better resistance to electro-migration that has 

led it to be the main material for the semiconductor industries’ interconnect. Such a low 

resistant is vital for high-performance microprocessor and fast static RAMS, since this 

results in lower RC time delay, implying faster flow of signals.   The advantages of 

using Cu are as follows: - 

 

1. Copper enables the reduction of capacitance by making the metal lines thinner 

Cu (or Cu/low-k combination) makes it possible to reduce the number of levels of metal 

because copper is more conductive than Al. This make it possible to make interconnect 

lines smaller yet still provides the same current- carrying capability.  The positive 

implication is reduction of power consumption by at least 30% since copper resistance 
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is 30% lower than aluminium. This means improved performance in battery-powered 

applications, such as notebook computers and other mobile applications.   

 

2. Copper enables a significant improvement in chip speed 

The improvement will even be greater when copper is combined with low-k dielectrics 

shows a reduction in time delays with the copper/low-k approach compared to 

traditional Al/SiO2 interconnects. At 0.13µm size, the delay for copper is half of Al, 

which implies speed enhancement with no sacrifice of device reliability 

 

3. Superior resistance to electro-migration, a common problem faced in the Al 

interconnects. 

Because copper can handle higher power densities, such as those in high-powered 

transistors, widens the application to a whole new range of analogue devices.  

 

4. Copper helps in cost reduction 

Because it is difficult to etch Cu, early Cu developers were forced into what has become 

known as damascene or in-laid integration to interconnect formation. In interconnect 

lines are created by first etching a trench or canal in a planar dielectric and then filling 

that trench with metal. The metal is then planarised with chemical-mechanical 

polishing.  

Using low-k dielectrics between the metal lines makes even tighter packing density 

possible per layer and, therefore, allows the use of fewer layers. This leads to lower 

manufacturing costs and higher yields. Switching from Al to Cu would enable those 14 

levels to be reduced to 12 levels; switching to both copper and low-k would enable a 

more realistic eight or nine or even maybe six levels of metals.  

 19



In dual damascene processing, a second level is involved where a series of holes (i.e., 

contacts or via holes) are etched and filled in addition to the trench. While experience is 

limited, researchers are now saying that the damascene approach, which eliminates 

metal etch and dielectric gap fill, will actually be 20% less expensive than traditional 

interconnect fabrication techniques.  

 

2.4. Research Objectives 

There are many researches that have been conducted and are still being conducted today 

to either search for a suitable low-k dielectric material or to improve their integration 

through understanding of the problems that arises.  MSQ as ILD do posses several 

concerns as reported by many researchers that need to be addressed and understood 

through detail characterisation and research.  However, there were many publications on 

the material and mechanical properties of MSQ, but, there are little work done on the 

electrical properties of MSQ. Therefore, this research main concentration is related to 

the electrical characterisation study of MSQ.  This research aims to achieve the 

following objectives: - 

(a) To understand the effect of fabrication processes such as post deposition-

annealing temperature towards the quality and reliability of MSQ. 

(b) To study the different properties and electrical characteristics of Aluminium and 

Copper gate deposited using evaporation and sputtering process. 

(c) To understand the quality and reliability problems of MSQ as ILD by subjecting 

to elevated stress conditions. 

(d) Finally, to propose model(s) that explain the observations made in this research 

based on the observations described above. 
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The outcome of this research is based on the availability of the facilities and equipment 

that were available for this research.  This research has established sufficient 

understanding and background theory for the further continuation of this material 

(MSQ) and also development of various methods of integration.  Some suggested future 

research is proposed in the Recommendation for Future Work section in the Conclusion 

chapter. 
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Chapter 3. Literature Review 

3.1. Overview 

There are many types of low-k dielectric and in general as presented in year 2001 by Dr 

Victor Ku of IBM at the J. Watson Research Centre that there are many problems with 

low-k dielectric materials.  The problems ranges from fabrication process, mechanical 

properties to the reliability of devices utilising these low-k material as interlayer 

dielectric (ILD) material.   However, the major problem of low-k dielectric material is 

due to the porosity.  It has been reported that a rough surface on the dielectric 

contributes to barrier film failure, making it critical to have the pore size as small as 

possible and uniform.  

The literature review conducted prior to this research is limited to the spin-on dielectric 

type as it offers great potential due to lower dielectric constant than its CVD counterpart 

and does not require expensive equipment and handling of toxic gases. However, due to 

the higher porosity, many problems arises that need to be understood.  In addition, little 

reference to spin-on dielectric in the area of semiconductor physics is available, in 

which this research aims to establish. 

The research on low-k dielectric material has started since the early 1990s.   There were 

several achievements since 1996 as reported by S.C. Sun et al, “Thermally Stable Spin-

on Low Dielectric Constant Films for ULSI Multilevel Interconnection” where he 

demonstrated the ability of spin-on dielectric for deep sub-micron CMOS process. 

The mechanical properties and fabrication process integration with Cu with low-k 

dielectric has been widely studied such as reported by B. Zhoa et al, “Dual Damascene 

Interconnect of Copper and Low Permittivity Dielectric for High Performance 

Integrated Circuits”, Electrochem and Solid States Letter, 1998 where he demonstrated 
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the possibility of integrating low-k dielectric material with Cu wiring.  However, this 

paper only concentrates on via resistances and leakage current as evidence of its 

suitability and reliability.  

In another paper by Abbe T. Kohl at all, “Low k, Porous Methyl Silsesquioxane and 

Spin-on Glass”, Electrochem and Solid States Letter, 1999 where his work only 

concentrates on the possibility of lowering the relative permittivity (k) by increasing the 

number of pores and only demonstrated that it’s material properties is stable.   

Alvin L.S. Loke et all, “Kinetics of Copper Drift in Low-k Polymer Interlevel 

Dielectric”, IEEE Trans on Electron Devices, 1999 proposed a model on the drift of 

copper ions to identify that copper barrier is required for reliable integration on non-

SOG low-k dielectric material.   

There is a recent paper by Kwang-Hua Kim et all, “Preparation and Characterisation of 

Low Dielectric Methyl Silsesquioxane (MSSQ) Thin Film”, Journal of the Korean 

Physical Society, 2001.  This paper only demonstrated the electrical characteristic by 

studying the dielectric electrical breakdown voltage and leakage current over time.   

Therefore, it is essential to conduct a research to fully characterise the low-k dielectric 

when integrated with Al and Cu deposited with different metal deposition method and 

to propose a comprehensive model to explain the mechanism, which is the main 

objective of this research.  However, in this research the metal deposition method used 

were limited to thermal evaporation and sputtering only. 

3.2. Typical SOG Low-k Dielectric 

This research only concentrates on the low-k dielectric material that is of spin-on 

dielectric or spin-on glass (SOD or SOG) type due to the various reasons discussed 

earlier. There are several types of SOG low-k dielectric material that is commercially 

 23



available such as Xerogel, Hydrogensislesquioxane (HSQ), Methysilsesquioxane 

(MSQ) and fluorinated and non-flourinated poly-arylene ether (PAE) as reported by Ed 

Korczynski in the Millennium Series in the Solid State Technology, May 1999. Despite 

the wide variety, they all use a similar process flow; spin, soft bake and then cure.  

Thus, though they have different microstructures and material properties, they can all be 

considered within the same process family. Xerogels and other SODs with overly 

porous structures require tightly controlled molecular cross-linking to produce two-

phase films.  This step occurs within the solvent evaporation soft-bake series, and 

chemical and thermal ambient control may necessitate more expensive tooling.  This, it 

is assumed that this hardware will be physically located inside the spin-on tool with 

only minimal additional expense.  Parylene, though a potentially useful material, will 

not be discussed here because it is still in the preliminary stage.  Below are the brief 

details of SOD/SOG type of low-k dielectric material: - 

3.2.1. Xerogel 

Xerogel (also termed nanogels and nanofoams) is a micro porous network of silica with 

high thermal stability and a low thermal expansion coefficient. Its porosity can be tuned 

in the deposition process to deliver a dielectric constant from near 1 to 3.  Significant 

lowering of the dielectric constant can be obtained with increased porosity in which a 

greater fraction of the bulk volume contains air. Porosity in solid can be achieved in a 

variety of ways but the preferred method would directly have uniform porosity and 

small spatial entities.  

The SiO2-based chemical nature is appealing in that it is familiar to the integrated circuit 

community and represents a logical extension of existing SiO2 and spin-on-glass 

materials. Xerogel precursor is TEOS. Recent Xerogel process improvements have 

produced an ILD (inter-layer dielectric) film with low-k value, low electrical leakage, 

 24



high breakdown strength, high thermal stability, good adhesion, low moisture 

absorption and high mechanical strength.  

However, there are some unanswered questions associated with Xerogel such as: -  

• Are all pores smaller than microelectronic features?  

• What are their mechanical properties?  

• What is their thermal stability?  

 

3.2.2. Hydrogensilsesquioxane (HSQ) 

Low dielectric inorganic polymers are usually based on siloxane chemistry and have an 

O-Si-O backbone. The appeal of the siloxane-based polymers is that they are more like 

silicon dioxide than carbon-based (organic) polymers. The inorganic materials have the 

advantages of high transition temperature (Tg) hardness and toughness as compared to 

organic polymers. However, they are too brittle to manufacture which is a challenging 

job. Hydrogensilsesquioxanes (HSQ) is a siloxane-based polymer in which the silicon 

atoms are directly attached to oxygen and hydrogen. In the ladder-structure HSQ, each 

silicon atom is attached to three oxygen atoms and a hydrogen atom as shown in Figure 

2-1.  

 

Figure 2-1: Ladder-structure HSQ 
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