44 research outputs found

    Orexin Neurons Receive Glycinergic Innervations

    Get PDF
    Glycine, a nonessential amino-acid that acts as an inhibitory neurotransmitter in the central nervous system, is currently used as a dietary supplement to improve the quality of sleep, but its mechanism of action is poorly understood. We confirmed the effects of glycine on sleep/wakefulness behavior in mice when administered peripherally. Glycine administration increased non-rapid eye movement (NREM) sleep time and decreased the amount and mean episode duration of wakefulness when administered in the dark period. Since peripheral administration of glycine induced fragmentation of sleep/wakefulness states, which is a characteristic of orexin deficiency, we examined the effects of glycine on orexin neurons. The number of Fos-positive orexin neurons markedly decreased after intraperitoneal administration of glycine to mice. To examine whether glycine acts directly on orexin neurons, we examined the effects of glycine on orexin neurons by patch-clamp electrophysiology. Glycine directly induced hyperpolarization and cessation of firing of orexin neurons. These responses were inhibited by a specific glycine receptor antagonist, strychnine. Triple-labeling immunofluorescent analysis showed close apposition of glycine transporter 2 (GlyT2)-immunoreactive glycinergic fibers onto orexin-immunoreactive neurons. Immunoelectron microscopic analysis revealed that GlyT2-immunoreactive terminals made symmetrical synaptic contacts with somata and dendrites of orexin neurons. Double-labeling immunoelectron microscopy demonstrated that glycine receptor alpha subunits were localized in the postsynaptic membrane of symmetrical inhibitory synapses on orexin neurons. Considering the importance of glycinergic regulation during REM sleep, our observations suggest that glycine injection might affect the activity of orexin neurons, and that glycinergic inhibition of orexin neurons might play a role in physiological sleep regulation

    Iron–platinum–arsenide superconductors Ca<sub>10</sub>(Pt<sub>n</sub>As<sub>8</sub>)(Fe<sub>2−x</sub>Pt<sub>x</sub>As<sub>2</sub>)<sub>5</sub>

    Get PDF
    An overview of the crystal structures and physical properties of the recently discovered iron-platinum-arsenide superconductors, Ca-10(PtnAs8)(Fe2-xPtxAs2)(5) (n = 3 and 4), which have a superconducting transition temperature up to 38K, is provided. The crystal structure consists of superconducting Fe2As2 layers alternating with platinum-arsenic layers, PtnAs8. The upper critical field H-c2, hydrostatic pressure dependence of superconducting transition temperature T-c, and normal-state magnetic susceptibility are reported

    Detection of substrate binding of a collagen-specific molecular chaperone HSP47 in solution using fluorescence correlation spectroscopy

    Get PDF
    Heat shock protein 47 kDa (HSP47), an ER-resident and collagen-specific molecular chaperone, recognizes collagenous hydrophobic amino acid sequences (Gly-Pro-Hyp) and assists in secretion of correctly folded collagen. Elevated collagen production is correlated with HSP47 expression in various diseases, including fibrosis and keloid. HSP47 knockdown ameliorates liver fibrosis by inhibiting collagen secretion, and inhibition of the interaction of HSP47 with procollagen also prevents collagen secretion. Therefore, a high-throughput system for screening of drugs capable of inhibiting the interaction between HSP47 and collagen would aid the development of novel therapies for fibrotic diseases. In this study, we established a straightforward method for rapidly and quantitatively measuring the interaction between HSP47 and collagen in solution using fluorescence correlation spectroscopy (FCS). The diffusion rate of HSP47 labeled with Alexa Fluor 488 (HSP47-AF), a green fluorescent dye, decreased upon addition of type I or III collagen, whereas that of dye-labeled protein disulfide isomerase (PDI) or bovine serum albumin (BSA) did not, indicating that specific binding of HSP47 to collagen could be detected using FCS. Using this method, we calculated the dissociation constant of the interaction between HSP47 and collagen. The binding ratio between HSP47-AF and collagen did not change in the presence of sodium chloride, confirming that the interaction was hydrophobic in nature. In addition, we observed dissociation of collagen from HSP47 at low pH and re-association after recovery to neutral pH. These observations indicate that this system is appropriate for detecting the interaction between HSP47 and collagen, and could be applied to high-throughput screening for drugs capable of suppressing and/or curing fibrosis

    Conserved Residues Lys57 and Lys401 of Protein Disulfide Isomerase Maintain an Active Site Conformation for Optimal Activity: Implications for Post-Translational Regulation

    No full text
    Despite its study since the 1960's, very little is known about the post-translational regulation of the multiple catalytic activities performed by protein disulfide isomerase (PDI), the primary protein folding catalyst of the cell. This work identifies a functional role for the highly conserved CxxC-flanking residues Lys57 and Lys401 of human PDI in vitro. Mutagenesis studies have revealed these residues as modulating the oxidoreductase activity of PDI in a pH-dependent manner. Non-conservative amino acid substitutions resulted in enzyme variants upwards of 7-fold less efficient. This attenuated activity was found to translate into a 2-fold reduction of the rate of electron shuttling between PDI and the intraluminal endoplasmic reticulum oxidase, ERO1α, suggesting a functional significance to oxidative protein folding. In light of this, the possibility of lysine acetylation at residues Lys57 and Lys401 was assessed by in vitro treatment using acetylsalicylic acid (aspirin). A total of 28 acetyllysine residues were identified, including acLys57 and acLys401. The kinetic behavior of the acetylated protein form nearly mimicked that obtained with a K57/401Q double substitution variant providing an indication that acetylation of the active site-flanking lysine residues can act to reversibly modulate PDI activity
    corecore