34 research outputs found

    Prone Position Impairs Oxygen Supply-Demand Balance During Systemic Hypoxia in Rabbits

    Get PDF
    Ventilation in the prone position improves the prognosis of patients with severe acute respiratory distress syndrome (ARDS). Contraindications to ventilation in this position include unstable systemic circulation. Only a few reports exist on the effects of prone ventilation in respiratory failure on systemic circulation. This animal study compared systemic hemodynamic changes between supine and prone positions in anesthetized rabbits under acute systemic hypoxia (breathing 15% O2). Cardiac output and the systemic O2 extraction ratio increased under the hypoxia, but only in the supine group. Besides, the rate pressure product was higher in the prone group than in the supine group. This study showed that prone ventilation increases myocardial O2 consumption and suppresses compensatory mechanisms to maintain aerobic metabolism during systemic hypoxia. First of all, it will be necessary to examine the effect of prone ventilation on the O2 supply-demand balance in the ARDS model

    Marathoners’ Breathing Pattern Protects Against Lung Injury by Mechanical Ventilation: An Ex Vivo Study Using Rabbit Lungs

    Get PDF
    [Background] Breathing during a marathon is often empirically conducted in a so-called “2:2 breathing rhythm,” which is based on a four-phase cycle, consisting of the 1st and 2nd inspiratory and the 1st and 2nd expiratory phases. We developed a prototype ventilator that can perform intermittent positive pressure ventilation, mimicking the breathing cycle of the 2:2 breathing rhythm. This mode of ventilation was named the marathoners’ breathing rhythm ventilation (MBV). We hypothesized that MBV may have a lung protective effect. [Methods] We examined the effects of the MBV on the pulmonary pre-edema model in isolated perfused rabbit lungs. The pulmonary pre-edema state was induced using bloodless perfusate with low colloid osmotic pressure. The 14 isolated rabbit lung preparations were randomly divided into the conventional mechanical ventilation (CMV) group and MBV group, (both had an inspiratory/expiratory ratio of 1/1). In the CMV group, seven rabbit lungs were ventilated using the Harvard Ventilator 683 with a tidal volume (TV) of 8 mL/kg, a respiratory rate (RR) of 30 cycles/min, and a positive end-expiratory pressure (PEEP) of 2 cmH2O for 60 min. In the MBV group, seven rabbit lungs were ventilated using the prototype ventilator with a TV of 6 mL/kg, an RR of 30 cycles/min, and a PEEP of 4 cmH2O (first step) and 2 cmH2O (second step) for 60 min. The time allocation of the MBV for one cycle was 0.3 s for each of the 1st and 2nd inspiratory and expiratory phases with 0.2 s of intermittent resting between each phase. [Results] Peak airway pressure and lung wet-to-dry ratio after 60 min of ventilation were lower in the MBV group than in the CMV group. [Conclusion] MBV was considered to have a lung-protective effect compared to CMV

    Certification of butyltins and phenyltins in marine sediment certified reference material by species-specific isotope-dilution mass spectrometric analysis using synthesized (118)Sn-enriched organotin compounds

    Get PDF
    A new marine sediment certified reference material, NMIJ CRM 7306-a, for butyltin and phenyltin analysis has been prepared and certified by the National Metrological Institute of Japan at the National Institute of Advanced Industrial Science and Technology (NMIJ/AIST). Candidate sediment material was collected at a bay near industrial activity in Japan. After air-drying, sieving, and mixing the material was sterilized with γ-ray irradiation. The material was re-mixed and packaged into 250 glass bottles (15 g each) and these were stored in a freezer at −30 °C. Certification was performed by use of three different types of species-specific isotope-dilution mass spectrometry (SSID–MS)—SSID–GC–ICP–MS, SSID–GC–MS, and SSID–LC–ICP–MS, with (118)Sn-enriched organotin compounds synthesized from (118)Sn-enriched metal used as a spike. The (118)Sn-enriched mono-butyltin (MBT), dibutyltin (DBT), and tributyltin (TBT) were synthesized as a mixture whereas the (118)Sn-enriched di-phenyltin (DPhT) and triphenyltin (TPhT) were synthesized individually. Four different extraction methods, mechanical shaking, ultrasonic, microwave-assisted, and pressurized liquid extraction, were adopted to avoid possible analytical bias caused by non-quantitative extraction and degradation or inter-conversion of analytes in sample preparations. Tropolone was used as chelating agent in all the extraction methods. Certified values are given for TBT 44±3 μg kg(−1) as Sn, DBT 51 ± 2 μg kg(−1) as Sn, MBT 67 ± 3 μg kg(−1) as Sn, TPhT 6.9 ± 1.2 μg kg(−1) as Sn, and DPhT 3.4 ± 1.2 μg kg(−1) as Sn. These levels are lower than in other sediment CRMs currently available for analysis of organotin compounds

    An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe

    Get PDF
    A nuclear magnetic resonance-based ligand screening strategy utilizing a paramagnetic lanthanide probe is presented. By fixing a paramagnetic lanthanide ion to a target protein, a pseudo-contact shift (PCS) and a paramagnetic relaxation enhancement (PRE) can be observed for both the target protein and its bound ligand. Based on PRE and PCS information, the bound ligand is then screened from the compound library and the structure of the ligand–protein complex is determined. PRE is an isotropic paramagnetic effect observed within 30 Å from the lanthanide ion, and is utilized for the ligand screening in the present study. PCS is an anisotropic paramagnetic effect providing long-range (~40 Å) distance and angular information on the observed nuclei relative to the paramagnetic lanthanide ion, and utilized for the structure determination of the ligand–protein complex. Since a two-point anchored lanthanide-binding peptide tag is utilized for fixing the lanthanide ion to the target protein, this screening method can be generally applied to non-metal-binding proteins. The usefulness of this strategy was demonstrated in the case of the growth factor receptor-bound protein 2 (Grb2) Src homology 2 (SH2) domain and its low- and high-affinity ligands

    Rock weathering creates oases of life in a high Artic desert.

    Get PDF
    During primary colonization of rock substrates by plants, mineral weathering is strongly accelerated under plant roots, but little is known on how it affects soil ecosystem development before plant establishment. Here we show that rock mineral weathering mediated by chemolithoautotrophic bacteria is associated to plant community formation in sites recently released by permanent glacier ice cover in the Midtre Lovénbreen glacier moraine (78°53_N), Svalbard. Increased soil fertility fosters growth of prokaryotes and plants at the boundary between sites of intense bacterial mediated chemolithotrophic iron-sulfur oxidation and pH decrease, and the common moraine substrate where carbon and nitrogen are fixed by cyanobacteria. Microbial iron oxidizing activity determines acidity and corresponding fertility gradients, where water retention, cation exchange capacity and nutrient availability are increased. This fertilization is enabled by abundant mineral nutrients and reduced forms of iron and sulfur in pyrite minerals within a conglomerate type of moraine rock. Such an interaction between microorganisms and moraine minerals determines a peculiar, not yet described model for soil genesis and plant ecosystem formation with potential past and present analogues in other harsh environments with similar geochemical settings
    corecore